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ABSTRACT

Direct imaging of exoplanets presents both significant challenges and significant gains. The advantages

primarily lie in receiving emitted and, with future instruments, reflected photons at phase angles not

accessible by other techniques, enabling the potential for atmospheric studies and the detection of

rotation and surface features. The challenges are numerous and include coronagraph development and
achieving the necessary contrast ratio. Here, we address the specific challenge of determining epochs

of maximum angular separation for the star and planet. We compute orbital ephemerides for known

transiting and radial velocity planets, taking Keplerian orbital elements into account. We provide

analytical expressions for angular star–planet separation as a function of the true anomaly, including
the locations of minimum and maximum. These expressions are used to calculate uncertainties for

maximum angular separation as a function of time for the known exoplanets, and we provide strategies

for improving ephemerides with application to proposed and planned imaging missions.
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1. INTRODUCTION

Direct imaging of exoplanets provides opportunities

for significantly extending exoplanet science, such as di-

rect atmospheric retrieval (Feng et al. 2018), and un-

locking intrinsic planet properties, such as albedo, rota-
tion, and obliquity (Cowan et al. 2009; Kane & Torres

2017). The method of direct imaging also remains

one of the most challenging techniques for studying

exoplanets. At the present time, only ∼1% of the

known exoplanets have been discovered using direct
imaging, according to data from the NASA Exoplanet

Archive (Akeson et al. 2013). However, many technol-

ogy advancements, both instrumental and with soft-

ware, have taken place over recent years that allow
significantly enhanced capabilities to extract a plane-

tary signature from the stellar diffraction pattern. The

Gemini Planet Imager (GPI) (Macintosh et al. 2014)

and the Spectro-Polarimetric High-Contrast Exoplanet

Research (SPHERE) (Beuzit et al. 2008) instruments
have contributed significantly to the ground-based im-

aged planets inventory. Examples of other current and

planned ground-based instruments include the Subaru

Coronagraphic Extreme Adaptive Optics (SCExAO) in-
strument (Jovanovic et al. 2016), the Magellan Adap-

tive Optics (MagAO-X) instrument (Males et al. 2018),
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the Keck Planet Imager and Characterizer (Mawet et al.

2017), and the Planet Formation Imager (Monnier et al.

2018). Development continues to progress for proposed

space-based imaging facilities, such as the WFIRST
coronagraph (Douglas et al. 2018), the Habitable Exo-

planet imaging mission (HabEx) (Arya et al. 2017), and

the Large Ultraviolet/Optical/Infrared Surveyor (LU-

VOIR) (France et al. 2017). The methodology for clas-

sifying discoveries from such facilities and their expected
yields is a key component for the mission science drivers

(Kopparapu 2018).

The observing strategy for direct imaging efforts re-

quires an efficient target selection and time manage-
ment, particularly for space-based resources. For known

indirectly detected exoplanets, the optimal observing

times require sufficient orbital architecture knowledge to

constrain when the planet will have an angular separa-

tion from the host star that places it outside of the inner
working angle (Kane 2013; Schworer & Tuthill 2015).

Many of the radial velocity (RV) planets, for exam-

ple, have poorly determined orbital ephemerides due to

the uncertainties in the Keplerian orbital solution com-
pacted by the time since last observation (Kane et al.

2009; Jenkins et al. 2010). Observing those host stars

with the after a long time baseline can help reacquire

the planet’s orbital phase and dramatically improve the

ephemerides.
In this paper, we address the issue of determining
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the maximum angular separation between the star and

planet for Keplerian orbital solutions. In Section 2 we

discuss the challenge of orbital ephemerides and calcu-

late the uncertainty in orbital location for 300 known
exoplanets projected forward to 2025. In Section 3, we

provide analytical expressions for both the star–planet

separation and the derivative with respect to the true

anomaly, which allows the epoch of maximum angu-

lar separation to be determined. Section 4 combines
the work of the previous sections and provides cal-

culated maximum angular separations, orbital phases

where they occur, and uncertainties on those orbital lo-

cations for 50 known exoplanets. We provide concluding
remarks in Section 5 and recommendations for observ-

ing strategies designed to improve orbital ephemerides

for direct imaging observations.

2. EXOPLANET ORBITAL EPHEMERIDES

At the present time, exoplanet discoveries are dom-

inated by those that utilize the transit method. Here

we focus on those planets that have full Keplerian or-
bital solutions in order to provide a complete description

of the orbital phase and angular separation. Exoplanets

with Keplerian orbital solutions tend to be those discov-

ered with the RV technique, for which survey durations
have extended the period sensitivity beyond ∼10 years

(Wittenmyer et al. 2016). Data regarding exoplanets

and orbital parameters are available from numerous

sources, both in the literature and online (Butler et al.

2006; Wright et al. 2011). For this study, we utilize the
data from the NASA Exoplanet Archive (Akeson et al.

2013), where the data are current as of 2018 August 17.

We calculate the uncertainty in the planetary orbital

location for 2025 January 1 (JD = 2,460,676.5). This
date was chosen since it approximately matches the an-

ticipated first light and/or launch of numerous ground

and space-based telescopes that aim to directly image

long-period planets. We propagate the uncertainties

from the time of periastron passage using methodology
of Kane et al. (2009). This methodology uses Keplerian

orbital elements and their uncertainties with multiples

of the orbital period to calculate epochs of specific orbit

locations relative to times of measured periastron pas-
sage. Kane et al. (2009) uses this method to determine

uncertainties and transit windows for times of inferior

conjunction, whereas we use the method to describe the

general uncertainty on orbital location. The results of

these calculations are shown in Figure 1, which plots
the uncertainty in the orbital location as a function of

the orbital period. The relationship between these two

parameters follows a power law where the uncertainty

in orbital location becomes comparable to the orbital
period for particularly long periods, indicated by the

solid line. This means that the location of those plan-

Figure 1. The calculated uncertainty in the planetary or-
bital location as a function of orbital period for 300 known
exoplanets. The solid line shows where the uncertainty in
the orbital location is the same as the orbital period. The
uncertainty in the orbital location has been calculated for
January 1, 2025 by propagating the uncertainties in the or-
bital period and time of periastron passage.

ets in their orbit has been completely lost, making it

impossible to provide useful ephemeris information for

follow-up observations that require such knowledge. An
example of such follow-up observations is the need to

predict times of maximum angular separation for direct

imaging experiments.

There are several significant outliers in Figure 1 for

which the ephemerides are relatively well defined. The
combination of RV data with transit data from the

K2 mission by Chakraborty et al. (2018) produced an

exceptionally strong constraint on the time of perias-

tron passage for EPIC 211945201b. In the case of
HD 168443b, targeted RV observations during perias-

tron by the Transit Ephemeris Refinement and Mon-

itoring Survey (TERMS), combined with a long time

baseline, yielded very small uncertainties on the time of

periastron passage (Pilyavsky et al. 2011). In general,
the calculations presented here demonstrate the need

for further RV observations to reacquire the planetary

location.

3. MAXIMUM ANGULAR SEPARATION

The angular star–planet separation can be sensitive to

the Keplerian orbital element of eccentricity, depending

upon the orbital inclination and the argument of peri-

astron. It is thus critical to include the full Keplerian
orbital solution when calculating the angular separation.

The star–planet separation, r, is generally expressed

as

r =
a(1− e2)

1 + e cos f
(1)

where a is the semi-major axis, e is the eccentricity,

and f is the true anomaly. The angular separation as a
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Figure 2. Projected angular separation (solid line) of a planet in a 1 AU semi-major axis orbit around a star located 10 parsecs
from the observer. The four panels shown represent a wide range of Keplerian orbital parameters, including eccentricity e,
argument of periastron ω, and orbital inclination i. The derivative of the angular separation is shown as a dotted line, where
the intersections with the zero-point (horizontal dashed line) indicate the orbital phase locations of the minimum and maximum
projected angular separation.

function of f , as computed by Kane (2013), is given by

∆θ =
r

d

(

cos2(ω + f) + sin2(ω + f) cos2 i
)

1

2 (2)

where ω is the argument of periastron, i is the or-
bital inclination, and d is the star–observer distance

(Kane & Gelino 2011). When expressed in this way, the

units of the angular separation in Equation 2 are in ra-

dians.

For the purposes of this work, the main objective is
to determine epochs of maximum angular separation.

To achieve that for a Keplerian orbit, it is necessary to

substitute Equation 1 into Equation 2 and differentiate

the resulting expression with respect to f . Such differ-
entiation is nontrivial, but does result in the following

analytical expression:

d

df
(∆θ)=−

a(e− 1)2

d(e cos f + 1)2
·

1
√

cos2 i sin2(ω + f) + cos2(ω + f)
·

(e cos2 i sin f sin2(ω + f) + ((e cos2 i− e) ·

cos f + cos2 i− 1) cos(ω + f) sin(ω + f) +

e sin f cos2(ω + f)) (3)

Therefore, the maximum and minimum angular sepa-

rations occur where Equation 3 equals zero (stationary

points).

Shown in Figure 2 are four examples of the pro-

jected angular separation (solid line) for a hypothetical
planetary system located 10 parsecs from the observer

and with a planetary semi-major axis of 1 AU. This is

demonstrated for eccentricities of 0.2 and 0.5 and for a

range of periastron arguments and orbital inclinations.
An orbital phase of zero in the plots corresponds to su-

perior conjunction where the phase angle is also zero.
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Also shown in Figure 2 as a dotted line is the deriva-

tive of the angular separation equation, corresponding

to the rate of change of the angular separation. The

stationary points (where the derivative crosses the zero-
point shown as a horizontal dashed line) indicate the

locations of maximum and minimum angular separa-

tions. The maximum angular separations occur at or-

bital phases of 0.69, 0.75, 0.58, and 0.35 for the top-left,

top-right, bottom-left, and bottom-right panels respec-
tively. It is worth noting that the maximum angular

separation does not necessarily occur when the contrast

ratio between the star and planet are optimal for de-

tection, since that also depends on the phase angle and
scattering properties of the atmosphere (Kane & Gelino

2010; Nayak et al. 2017).

4. EPOCHS OF OPTIMAL OBSERVATION

Here we combine the calculations of the previous two

sections and apply these to the 300 known exoplanets

described in Section 2. For exoplanets without an ec-
centricity value, we fix the orbit to circular (e = 0.0). If

the argument of periastron is missing, we fix the peri-

astron to the plane perpendicular to the sky that aligns

with inferior conjunction (ω = 90◦). For the majority of

the 300 targets considered, the inclination is unknown,

and in those cases, we fix the inclination to an edge-on

orientation (i = 90◦). This inclination was chosen as

a conservative limit since approximately edge-on orbits
are the most difficult for direct imaging detection.

Table 1 shows the top 50 known exoplanet targets

ranked by their maximum angular separation, ∆θmax,

shown in units of milliarcsecs (mas). Also included are

the predicted orbital phase past superior conjunction
(phase angle of zero) where the maximum angular sep-

aration will occur, φmax, and the uncertainty (in orbital

phase units) of when that will occur, σφ. All of the plan-

ets represented in Table 1 are assumed to have edge-on
orbits with the exception of eps Eri b, which has a mea-

sured orbital inclination of i = 30.1◦ (Benedict et al.

2006). Therefore, the planetary masses, Mp, are mini-

mum masses (except for eps Eri b) in units of Jupiter

masses, MJ . Note that the values of ∆θmax and φmax do
not change with time (unless the orbital solution is up-

dated), but the uncertainty in phase, σφ, where ∆θmax

occurs does increase with time and is calculated for 2025,

as described in Section 2. This means that the σφ values
apply to the next maximum angular separation event

that occurs past the 2025 date.

Table 1. Maximum angular separations.

Planet P a e ω i Mp d ∆θmax φmax σφ

(days) (AU) (◦) (◦) (MJ ) (pcs) (mas)

eps Eri b 2502.00 3.39 0.70 47.0 30.1 1.55 3.2 1679.6 0.609 0.013

47 UMa d 14002.00 11.60 0.16 110.0 90.0 1.64 14.1 859.6 0.293 0.630

HD 217107 c 4270.00 5.32 0.52 198.6 90.0 2.60 19.7 398.3 0.367 0.125

GJ 676 A c 7337.00 6.60 0.00 90.0 90.0 6.80 16.9 390.5 0.249 0.026

HD 160691 c 4205.80 5.24 0.10 57.6 90.0 1.81 15.3 359.5 0.719 0.455

HD 150706 b 5894.00 6.70 0.38 132.0 90.0 2.71 27.2 298.6 0.387 0.762

HD 134987 c 5000.00 5.80 0.12 195.0 90.0 0.82 22.2 291.4 0.281 0.113

HD 142 c 6005.00 6.80 0.21 250.0 90.0 5.30 25.6 279.0 0.239 0.100

47 UMa c 2391.00 3.60 0.10 295.0 90.0 0.54 14.1 265.3 0.751 0.439

HD 219077 b 5501.00 6.22 0.77 57.6 90.0 10.39 29.2 249.7 0.452 0.042

GJ 328 b 4100.00 4.50 0.37 290.0 90.0 2.30 20.0 239.1 0.768 0.135

GJ 179 b 2288.00 2.41 0.21 153.0 90.0 0.82 12.1 235.1 0.326 0.108

HD 166724 b 5144.00 5.42 0.73 202.3 90.0 3.53 43.0 206.7 0.400 0.273

ups And d 1276.46 2.51 0.30 258.8 90.0 4.13 13.5 189.2 0.219 0.004

HD 196067 b 3638.00 5.02 0.66 148.2 90.0 6.90 43.6 172.7 0.499 0.177

HD 113538 c 1818.00 2.44 0.20 280.0 90.0 0.93 15.9 155.8 0.771 0.045

HAT-P-11 c 3407.00 4.13 0.60 143.7 90.0 1.60 37.8 155.0 0.480 0.097

47 UMa b 1078.00 2.10 0.03 334.0 90.0 2.53 14.1 153.4 0.742 0.080

nu Oph c 3186.00 6.10 0.17 4.6 90.0 27.00 46.8 151.6 0.695 0.022

Table 1 continued
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Table 1 (continued)

Planet P a e ω i Mp d ∆θmax φmax σφ

(days) (AU) (◦) (◦) (MJ ) (pcs) (mas)

HD 106515 A b 3630.00 4.59 0.57 123.8 90.0 9.61 36.4 151.2 0.459 0.010

gam Cep b 903.30 2.05 0.05 94.6 90.0 1.85 13.8 149.1 0.259 0.110

HD 141399 e 5000.00 5.00 0.26 90.0 90.0 0.66 36.2 133.4 0.708 0.251

HD 10647 b 989.20 2.02 0.15 212.0 90.0 0.94 17.4 130.5 0.275 0.158

HD 220773 b 3724.70 4.94 0.51 226.0 90.0 1.45 49.0 129.5 0.293 0.253

HD 133131 B b 5769.00 6.15 0.61 103.0 90.0 2.50 47.0 123.2 0.413 0.394

HD 98649 b 4951.00 5.60 0.85 248.0 90.0 6.80 42.8 122.3 0.244 0.232

HD 219828 c 4791.00 5.96 0.81 145.8 90.0 15.10 77.9 119.4 0.548 0.021

HD 8673 b 1634.00 3.02 0.72 323.4 90.0 14.20 38.3 117.0 0.646 0.045

HD 38529 c 2140.20 3.71 0.34 17.8 90.0 13.38 42.4 115.5 0.627 0.013

HD 187123 c 3810.00 4.89 0.25 243.0 90.0 1.99 47.9 111.1 0.247 0.205

HD 160691 b 643.25 1.50 0.13 22.0 90.0 1.08 15.3 109.5 0.704 0.038

HD 29021 b 1362.30 2.28 0.46 179.5 90.0 2.40 30.6 108.7 0.391 0.016

HD 147513 b 528.40 1.32 0.26 282.0 90.0 1.21 12.9 104.7 0.774 0.253

HD 169830 c 2102.00 3.60 0.33 252.0 90.0 4.04 36.3 104.2 0.229 0.499

HD 4203 c 6700.00 6.95 0.24 224.0 90.0 2.17 77.8 103.5 0.274 1.902

HD 183263 c 3070.00 4.35 0.24 345.0 90.0 3.57 52.8 101.2 0.688 0.132

HD 181433 d 2172.00 3.00 0.48 90.0 90.0 0.54 26.1 100.6 0.325 0.375

7 CMa b 796.00 1.93 0.22 77.0 90.0 2.46 19.8 99.8 0.698 0.120

HD 32963 b 2372.00 3.41 0.07 107.0 90.0 0.70 35.2 98.5 0.267 0.183

HD 216437 b 1256.00 2.32 0.29 63.0 90.0 1.82 26.5 96.0 0.660 0.325

HD 10180 h 2205.00 3.38 0.09 142.0 90.0 0.21 39.0 93.0 0.283 0.336

HD 11964 b 1945.00 3.16 0.04 90.0 90.0 0.62 34.0 92.9 0.256 0.240

HD 133131 A c 3568.00 4.49 0.49 100.0 90.0 0.42 47.0 91.8 0.365 0.717

HD 37605 c 2720.00 3.81 0.01 221.0 90.0 3.37 42.9 89.8 0.251 0.259

HD 4732 c 2732.00 4.60 0.23 118.0 90.0 2.37 56.5 88.5 0.321 0.087

HD 79498 b 1966.10 3.13 0.59 221.0 90.0 1.34 49.0 87.3 0.317 0.099

HAT-P-17 c 5584.00 5.60 0.39 181.5 90.0 3.40 90.0 86.5 0.369 0.919

BD-11 4672 b 1667.00 2.28 0.05 231.0 90.0 0.53 27.3 86.1 0.253 0.080

HD 181433 c 962.00 1.76 0.28 21.4 90.0 0.64 26.1 84.5 0.647 0.128

GJ 317 b 692.00 1.15 0.11 342.0 45.0 2.50 15.1 84.1 0.717 0.088

The highest ranked case of eps Eri b within Table 1 is

represented in the panels of Figure 3. The left panel
shows a top-down view of the orbit, which is highly

eccentric (e = 0.7) and has a predicted maximum an-

gular separation of ∆θmax = 1.68′′. The right panel

displays the angular separation as well as the rate of
angular separation change (derivative of angular sepa-

ration, see Equation 3), as described in Figure 2. The

combination of the large predicted maximum angular

separation and the relatively small uncertainty on the

orbital ephemeris (0.013 phase units) make this an ideal

target for follow-up observations from an orbit perspec-

tive. More recent work by Mawet et al. (2018) suggests
that eps Eri b has a substantially more circular orbit

(e = 0.07), which would reduce the predicted maxi-

mum angular separation to ∆θmax = 1.14′′ but maintain

the planet’s top-ranked position in Table 1. The well-
defined orbit, including orbital inclination, is a result of

a simultaneous fit of RV and astrometric data through

the use of Hubble Space Telescope (HST) observations

(Benedict et al. 2006). Note that eps Eri is an active

star that will present other observational challenges for
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Figure 3. Plots showing the orbit and angular separation for eps Eri b. The left panel represents a top-down view of the eps
Eri b orbit where the orientation with respect to the observer is shown with the dotted lines. The size of the plot one side is
equivalent 7.12 AU which, as the distance of the system (d = 3.21 pcs) is equivalent to an angular size of 2.22′′. The vertical
dashed line indicates the location of maximum angular separation of the planet from the host star as seen from the observer,
corresponding to the 1.68′′value shown in Table 1. The right panel shows the variation in maximum angular separation (solid
line) and rate of angular separation change (dotted line) for eps Eri b.

direct detection of the known exoplanet (Metcalfe et al.
2013; Jeffers et al. 2014).

By contrast, cases such as the 47 UMa system have

large predicted maximum angular separations but rela-

tively large uncertainties concerning when that separa-
tion will occur (0.439 and 0.630 phase units for the c and

d planets, respectively). Such systems will benefit enor-

mously from further RV observations at specific epochs

that will provide vast improvements to the orbital solu-

tion (Kane et al. 2009). Provided that the uncertainty
in orbital phase can be constrained to cover a range of

orbital locations that lie outside the inner working angle

of an instrumental design, then the targets will be viable

for observations.

5. CONCLUSIONS

A key component of designing imaging missions is the

selection of optimal targets for observation. These are

naturally drawn from the known RV exoplanets since
these provide test cases for technology demonstrations

and contain the necessary long-period demographic re-

quired by direct imaging experiments. The Keplerian

nature of the RV orbits can lead to enhanced angular

separations, though the timing of such separations is
often poorly constrained. The methodology provided

here allows the direct calculation of maximum angular

separation via the stationary points of the angular sep-

aration equation. As stated at the end of Section 3, the
epochs of maximum angular separation do not necessar-

ily correspond with the epochs of expected maximum

planet brightness. The contrast ratio of exoplanets de-
pends upon numerous factors such as the wavelength

of observation and also the type (terrestrial, gas giant),

age, atmospheric properties, and albedo of the planet

(Feng et al. 2018). The focus of this work is to allow
the observation of planets that would otherwise be inside

of the inner working angle of the imaging experimental

design (Turnbull et al. 2012).

The challenge of improving the RV targets to ensure

that they will minimize telescope resources is one that
must be met before a systematic imaging survey can

commence. The RV time required to refine the orbits

of long-period planets can be moderate, provided that

one utilizes the same facility that was used to acquire
the discovery data (Kane et al. 2009). Precise observ-

ing strategies depend on the properties of the individual

targets and need to be customized on a case-by-case ba-

sis (Kane 2007; Bottom et al. 2013). Refining the orbits

of the planets discussed in this paper will help enor-
mously toward increasing the detection yield of missions

such as WFIRST, HabEx, and LUVOIR and will also

aid in planning follow-up observations with James Webb

Space Telescope for detecting phase variations of known
planets. For missions launching in the mid 2020s, it is

paramount that the process of orbital refinement com-

mences with sufficient lead time to avoid compromising

the target list.
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