Supporting Information

Constraints on aerosol nitrate photolysis as a potential source of HONO and NO_{x}

Paul S. Romer^{*a*}, Paul J. Wooldridge^{*a*}, John D. Crounse^{*b*}, Michelle J. Kim^{*b*}, Paul O. Wennberg^{*b,c*}, Jack E. Dibb^{*d*}, Eric Scheuer^{*d*}, Donald R. Blake^{*e*}, Simone Meinardi^{*e*}, Alexandra L. Brosius^{*f*}, Alexandre B. Thames^{*f*}, David O. Miller^{*f*}, William H. Brune^{*f*}, Samuel R. Hall^{*g*}, Thomas B. Ryerson^{*h*}, and Ronald C. Cohen^{*a*,*i*}

^a Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA.

 b Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

 c Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.

^d Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA.

 e Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.

^f Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA 16802, USA.

 g Atmospheric Chemistry Observations and Modeling Laboratory, NCAR, Boulder, CO 80301, USA.

 h Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA.

^{*i*} Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA 94720, USA.

Contents

- Pages S1–S10
- Figure S1–S7
- Tables S1–S4
- Equations S1–S12

Figure S1: Map of all measurements taken on all 7 campaigns used in the extended analysis. The first phase of ARCTAS deployment (ARCTAS-A) was not included because conditions in the springtime Arctic (low light, high halogens) make it difficult to compare against other spring/summertime measurements.

Figure S2: Average inorganic mass composition measured by SAGA in the boundary layer over the Yellow Sea for all filter samples (Panel a) and samples with over 5% mass composed of Ca^{2+} ions (Panel b).

Back trajectory centers of boundary layer obervations over the Yellow Sea

Figure S3: Back trajectories of airmasses sampled by the DC-8 in the boundary layer over the Yellow Sea calculated using FLEXPART driven by NCEP GFS analyses.

Back trajectory centers of free troposphere observations over the Yellow Sea

Figure S4: Back trajectories of airmasses sampled by the DC-8 in the free troposphere over the Yellow Sea calculated using FLEXPART driven by NCEP GFS analyses.

Figure S5: Evolution of the observed NO_x/HNO_3 ratio (red) and the calculated far-field ratio (black) as a function of the 2-Butyl Nitrate to *n*-butane ratio for all boundary-layer observations during KORUS-AQ. For both quantities, the thick line shows the binned median, and the thin lines show the binned inter-quartile range. $R_{\rm FF}$ is calculated assuming EF = 10 and using the best-guess estimates from Table S1.

Figure S6: Modeled and observed distribution of 2BN/nB ratios over the Yellow Sea. The modeled distribution includes all daytime model points between 0 and 3 days after model initialization.

Figure S7: $R_{\rm obs}$ in highly-aged airmasses as a function of total NO_y (Panel a), Ca²⁺ (Panel b), and relative humidity (Panel c). Note the reversed x-axis in Panel a, so that moving to the right on all panels is expected to correspond to an increase in nitrate photolysis rate and therefore an increase in $R_{\rm obs}$. The thick red line represents a linear fit to all data points; the thin red lines show the error in the fit calculated by bootstrap sampling.

Parameter	Low-End	Best-Guess	High-End
Cl_{Y} (ppt)	7.0	18	36
Br_{Y} (ppt)	2.5	3.5	7.0
I_{Y} (ppt)	2.5	5.5	11
$\gamma_{\rm ClONO_2}$	0.01	0.10	0.30
$\gamma_{\rm BrONO_2}$	0.02	0.10	0.80
$\gamma_{\rm IONO_2}$	0.02	0.10	0.80
$\gamma_{\rm RONO_2}$	0.001	0.002	0.010
MW_{RONO_2} (kg)	0.120	0.120	0.120
$v_{\rm dep,HNO_3}$ (cm s ⁻¹) ^a	1	2	4

Table S1: Parameters used in the calculation of $R_{\rm FF}$.

 a Gas-phase only, daytime average.

Table S2: Parameters used for modeling of plumes over the Yellow Sea. Median values were chosen to match best-guess estimates in the calculation of $R_{\rm FF}$. The 5th and 95th percentiles were set to best match the low-end and high-end estimates using either a normal or a log-normal distribution.

D /	N. 1. N. 1	rth orth
Parameter	Median Value	5 ^{cn} =95 ^{cn} percentiles
Pressure (mbar)	960	880-990
Temperature (K)	291	287 - 296
RelativeHumidity (%)	47	21 - 80
Altitude (km)	0.46	0.16 - 1.2
Latitude (°N)	20	10 - 30
HNO ₃ Gas-Phase Fraction	0.51	0.12 - 0.88
Aerosol Surface Area $(\mu m^2 cm^{-3})$	38	10 - 134
$k_{\rm dil}~({\rm s}^{-1})$	1.7e-05	1.1e-05-2.3e-05
$v_{\rm dep,HNO_3} \ ({\rm cm} \ {\rm s}^{-1})^a$	2.0	1.1 - 4.0
$\gamma_{ m ClONO_2}$	0.10	0.017 – 0.60
$\gamma_{\rm BrONO_2}$	0.10	0.015 - 0.68
$\gamma_{\rm IONO_2}$	0.10	0.015 - 0.68
$\gamma_{\rm RONO_2}$	0.005	0.003 - 0.009
$\gamma_{N_2O_5}$	0.014	0.007 – 0.039
Br_{Y} (ppt)	3.5	2.0 - 6.0
$Cl_{Y} (ppt)$	18	7.7 - 42
I_{Y} (ppt)	5.5	2.5 - 12

 a Gas-phase only, day time average.

Species	Median Concentration	$5^{\text{tn}}-95^{\text{tn}}$ percentiles
O_3 (ppb)	33	6-77
NO (ppb)	18	4 - 56
NO_2 (ppb)	15	3 - 42
$HNO_3 (ppb)$	4.6	1.1 - 13
PAN (ppb)	2.1	0.7 – 5.1
Methane (ppb)	2050	1920-2240
CO (ppb)	320	180 - 540
Ethane (ppb)	3.5	2.0 – 7.2
Ethene (ppb)	1.1	0.34 - 19
Propane (ppb)	2.9	1.1 - 15
Propene (ppb)	0.21	0.05 - 5.5
n-Butane (ppb)	1.5	0.5 - 5.6
2-Butyl Nitrate (ppb)	0.026	0.011 – 0.072
n-Pentane (ppb)	0.69	0.18 - 2.7
n-Hexane (ppb)	0.37	0.07 – 5.7
Toluene (ppb)	1.8	0.32 - 6.3
m-Xylene (ppb)	0.55	0.14 - 2.4
Isoprene (ppb)	0.3	0.04 – 0.6
α -Pinene (ppb)	0.016	0.004 – 0.054
Methanol (ppb)	19	8-42
Acetaldehyde (ppb)	2.5	0.7 - 7.1
Formaldehyde (ppb)	4.6	1.8 - 14
Additional VOCR (s^{-1})	1.4	1.4–1.4

Table S3: Initial concentrations used for modeling of plumes over the Yellow Sea.

Species	Median Concentration	$5^{\text{th}}-95^{\text{th}}$ percentiles
O_3 (ppb)	99	79–120
$NO_x (ppb)^a$	0.14	0.07 - 0.20
HNO_3 (ppb)	2.6	1.3 - 3.4
PAN (ppb)	0.6	0.3 - 1.4
Methane (ppb)	1960	1930 - 2020
CO (ppb)	194	147 - 309
Ethane (ppb)	2.78	2.12 - 3.18
Ethene (ppb)	0.013	0.006 - 0.019
Propane (ppb)	0.80	0.44 – 1.0
Propene (ppb)	0.017	0.015 - 0.019
n-Butane (ppb)	0.096	0.07 – 0.265
2-Butyl Nitrate (ppb)	0.025	0.016 - 0.029
n-Pentane (ppb)	0.02	0.008 - 0.07
n-Hexane (ppb)	0.01	0.004 – 0.05
Toluene (ppb)	0.005	0.002 – 0.17
m-Xylene (ppb)	0.012	0.006 - 0.015
Isoprene (ppb)	0.01	0.002 - 0.04
α -Pinene (ppb)	0	0–0
Methanol (ppb)	6.7	5.0 - 11.2
Acetaldehyde (ppb)	0.33	0.25 - 1.2
Formaldehyde (ppb)	0.506	0.35 - 3.1

Table S4: Background concentrations used for modeling of plumes over the Yellow Sea.

 a The partitioning of background $\rm NO_x$ between NO and $\rm NO_2$ was assumed to match the instantaneous partitioning in the model.

Eigenvector analysis of NO_x , HNO_3 , and PAN

Equations S1–S12 give explicit formulas for the effective first-order rate constants used in the eigenvector analysis. Values for all rate constants were taken from the IUPAC chemical kinetics database (Atkinson et al., 2006), except for $k_{\rm OH+NO_2}$ which used the results of Dulitz et al. (2018). Formulas for $k_{\rm assoc}$ and $k_{\rm dissoc}$ were taken from LaFranchi et al. (2009). Species marked in bold in the equations were not measured, and concentrations taken from a chemical box model were used instead. S_a is the aerosol surface area concentration, MW_X is the molecular weight of X, and R in Eq. S9 is the gas constant.

$$k_{\text{forward}} = \frac{1}{[\text{NO}_{x}]} \left(k_{\text{OH}+\text{NO}_{2}} [\text{OH}] [\text{NO}_{2}] + [\text{RONO}_{2}] \frac{\bar{v}_{\text{RONO}_{2}} \cdot \gamma_{\text{RONO}_{2}}}{4} S_{a} + [\mathbf{XONO}_{2}] \frac{\bar{v}_{\text{XONO}_{2}} \cdot \gamma_{\text{XONO}_{2}}}{4} S_{a} + [\mathbf{N}_{2}\mathbf{O}_{5}] \frac{\bar{v}_{\text{N}_{2}}O_{5}}{4} S_{a} \right)$$
(S1)

$$k_{\text{backward}} = k_{\text{OH}+\text{HNO}_3}[\text{OH}]f_g + j_{g\text{HNO}_3}f_g + j_{g\text{HNO}_3}EF(1-f_g)$$
(S2)

$$k_{\text{removal}} = \frac{1}{[\text{NO}_{\mathbf{x}}]} \left(\sum_{i} k_{\text{R}_{i}\text{O}_{2}+\text{NO}}[\mathbf{R}_{i}\mathbf{O}_{2}][\text{NO}]\alpha_{i} \right)$$
(S3)

$$k_{\rm dep} = \frac{v_{\rm dep}}{\rm BLH} f_g \tag{S4}$$

$$k_{\text{assoc}} = \frac{1}{[\text{NO}_{\text{x}}]} \left(k_{\text{CH}_{3}\text{CHO}+\text{OH}}[\text{CH}_{3}\text{CHO}][\text{OH}] + j_{\text{Acetone}}[\text{Acetone}] \right) \beta$$
(S5)

$$k_{\text{dissoc}} = (k_{\text{PAN}} + j_{\text{PAN}}) \cdot (1 - \beta)$$
(S6)

$$f_g = \frac{[\text{gHNO}_3]}{[\text{gHNO}_3] + [\text{pHNO}_3]}$$
(S7)

$$\beta = \frac{k_{\rm R}({\rm O}){\rm O}_2 + {\rm NO}_2[{\rm IVO}_2]}{k_{\rm R}({\rm O}){\rm O}_2 + {\rm NO}_2[{\rm NO}_2] + k_{\rm R}({\rm O}){\rm O}_2 + {\rm NO}[{\rm NO}] + k_{\rm R}({\rm O}){\rm O}_2 + {\rm HO}_2[{\rm HO}_2]}$$
(S8)

$$\bar{v}_X = \sqrt{\frac{8RT}{\pi \cdot MW_X}} \tag{S9}$$

$$\frac{\mathrm{d}[\mathrm{NO}_{\mathrm{x}}]}{\mathrm{d}t} = -k_{\mathrm{forward}}[\mathrm{NO}_{\mathrm{x}}] + k_{\mathrm{backward}}[\mathrm{HNO}_{3}] - k_{\mathrm{removal}}[\mathrm{NO}_{\mathrm{x}}] - k_{\mathrm{assoc}}[\mathrm{NO}_{\mathrm{x}}] + k_{\mathrm{dissoc}}[\mathrm{PAN}]$$
(S10)

$$\frac{\mathrm{d}[\mathrm{HNO}_3]}{\mathrm{d}t} = k_{\mathrm{forward}}[\mathrm{NO}_x] - k_{\mathrm{backward}}[\mathrm{HNO}_3] - k_{\mathrm{dep}}[\mathrm{HNO}_3]$$
(S11)

$$\frac{\mathrm{d}[\mathrm{PAN}]}{\mathrm{d}t} = k_{\mathrm{assoc}}[\mathrm{NO}_{\mathrm{x}}] - k_{\mathrm{dissoc}}[\mathrm{PAN}]$$
(S12)

References

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II — gas phase reactions of organic species, Atmos. Chem. Phys., 6(11), 3625–4055, doi: 10.5194/acp-6-3625-2006, 2006.
- Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., and Crowley, J. N.: Temperature-(208–318 k) and pressure-(18–696 torr) dependent rate coefficients for the reaction between OH and HNO₃, Atmos. Chem. Phys., 18(4), 2381–2394, doi: 10.5194/acp-18-2381-2018, 2018.
- LaFranchi, B. W., Wolfe, G. M., Thornton, J. A., Harrold, S. A., Browne, E. C., Min, K. E., Wooldridge, P. J., Gilman, J. B., Kuster, W. C., Goldan, P. D., de Gouw, J. A., McKay, M., Goldstein, A. H., Ren, X., Mao, J., and Cohen, R. C.: Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007, Atmos. Chem. Phys., 9(19), 7623–7641, doi: 10.5194/acp-9-7623-2009, 2009.