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1 SLOW CONVERGENCE OF DSM SYNTHETICS NEAR SOURCE

DEPTH

Because of the near-field terms, higher angular order spherical harmonics in DSM calcula-

tion have to be involved to obtain accurate coefficients clmk1, clmk2 and clmk3, as receiver

depth is closer to source depth (Kawai et al. 2006). Since a point seismic source is a math-

ematical singularity, it is not surprising that no convergence exists at the exact position of

source. However, how the convergence rate quantitatively changes with depth is unclear.

More generally, this slow convergence around source depth is intrinsically problematic for

all the Discrete-Wavenumber (DW) alike methods. For example, Zahradńık & Moczo (1996)

developed a DW-FD hybrid modeling method and used interpolation to circumvent the con-

vergence problem of DW at source depth. Interpolation does help us avoid the singularity

at the exact depth of source, but the convergence rate is still slow around the source depth,

that causes significantly additional computation costs. Here, we first analyze the analytical

solution of scalar Helmholtz equation in an uniform unbounded space and then numerically
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investigate the oscillation behavior of DSM synthetics near source depth. We propose a so-

lution of taking an average value over some integer periods of the oscillation to partially

remove the oscillation effect and therefore save computation expanses.

1.1 Spherical harmonics expansion of the Green’s function of the scalar

Helmholtz equation in an uniform unbounded space

A much simplified problem, which has an analytic solution, would be greatly useful to

understand the slow convergence issue. One of the best candidates would be the Green’s

function of the scalar Helmholtz equation in an unbounded space (see eq. 4.2 in Aki &

Richards 2002),

∂2g

∂t2
= δ(rs)δ(t) + c2∇2g (1)

where c is wave propagation velocity. Its time domain solution is

g(r, t) =
1

4πc2
δ(t− |r− rs|/c)
|r− rs|

(2)

Transforming the above solution into frequency domain gives

g(r, ω) =
e−iω|r−rs|/c

4πc2
1

|r− rs|
=
−ik
4πc2

h0(2)(k|r− rs|) (3)

where k = ω
c

is the wave number and h0(2) is a second spherical Hankel function with zero

order. This solution has a singularity of 1
|r−rs| at the source point r = rs. By using the

properties of spherical Hankel function, the above equation is rewritten as (see the eq. 105

in the page 658 of Skudrzyk 2012)

g(r, k) =
−ik
4πc2

h0(2)(k|r− rs|)

=
−ik
4πc2

∞∑
l=0

(2l + 1)
l∑

m=0

εm
(l −m)!

(l +m)!
cos[m(φ− φs)]

× P lm(cos(θs))P
lm(cos(θ))

 jl(krs)h
l
(2)(kr); r > rs

jl(kr)hl(2)(krs); rs > r

(4)

where

εm = 2,m > 0; εm = 1,m = 0. (5)
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P lm(cos(θ)) and P lm(cos(θs)) are the associated Legendre polynomials, where l and m indi-

cate the angular order and azimuthal order respectively. jl(krs) is a spherical Bessel function

and hl(2)(kr) is a second spherical Hankel function.

For simplification, the source is specified on the z-axis (θs = 0.0, φs = 0.0), as we do in

DSM calculation. Consequently, P lm(cos(θs)) is non-zero only for m = 0 and the Green’s

function g(r, k) has no dependence on the azimuth φ. Thus, eq. (4) is simplified to

g(r, k) =
−ik
4πc2

∞∑
l=0

(2l + 1)P l0(cos(θ))

 jl(krs)h
l
(2)(kr); r > rs

jl(kr)hl(2)(krs); rs > r

=
−ik
c2

∞∑
l=0

√
2l + 1

4π
Y l0(cos(θ))

 jl(krs)h
l
(2)(kr); r > rs

jl(kr)hl(2)(krs); rs > r

(6)

where Y l0(cos(θ)) is a spherical harmonic function. Similar to the coefficients clmk1, clmk2,

and clmk3 in DSM, we define a coefficient

al(r, k) =
−ik
c2

√
2l + 1

4π

 jl(krs)h
l
(2)(kr); r > rs

jl(kr)hl(2)(krs); rs > r
(7)

Thus

g(r, k) =
∞∑
l=0

al(r, k)Y l0(cos(θ)) (8)

In the following subsections, the properties, especially convergence, of al, are analyzed.

Because of the symmetry in eq. (7), we only focus on the case rs > r in the following

subsections.

1.1.1 Very low frequency

For the case of very low frequency or small wave number (kr � 0 and krs � 0), jl(kr) and

hl(2)(krs) have asymptotic forms (see the eqs. 9.1.7 and 9.1.9 in page 360, and the eqs. 6.1.8

and 6.1.12 in page 255 of Abramowitz & Stegun 1964)

lim
kr→0

jl(kr) = lim
kr→0

√
π

2kr
J l+

1
2 (kr) =

2ll!

(2l + 1)!
(kr)l (9)
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lim
krs→0

hl(2)(krs) = lim
krs→0

√
π

2krs
[J l+

1
2 (krs)− iY l+ 1

2 (krs)] = i
(2l)!

2ll!

1

(krs)l+1
(10)

Substituting the above two equations into eq. (7) gives

al(r, k) =
1

2rsc2
√
π

1√
(2l + 1)

(
r

rs
)l (11)

Because of r
rs
< 1, the coefficient al monotonically decreases with l and converges to zero

with a rate of
√

1
2l+1

( r
rs

)l, for given r and k. For example, al|l=20000

al|l=0
= 1.13 × 10−16 is tiny

and numerically negligible, when rs = 6371 km and r = 6361 km. But for the extreme case

r = rs, the convergence rate is as low as
√

1
2l+1

and al|l=20000

al|l=0
= 0.005. Thus, the convergence

rate greatly depends on the ratio r
rs

.

For the worst case r = rs, substituting eq. (11) into eq. (8) leads to

g(r, k) =
1

4πrc2

∞∑
l=0

P l0(cos(θ)) (12)

If θ also equals θs = 0◦, the associated Legendre polynomials P l0(cos(θ)) have a constant

value of 1.0 and therefore the term
∞∑
l=0

P l0(cos(θ)) is not convergent at all. This makes

mathematical sense, considering the source point is an intrinsic singularity in the governing

eq. (1). A next question is how eq. (12) behaves for r = rs and θ 6= θs.

Given r = rs, Fig. S1 shows the cumulative sums in eq. (12) for θ = 3.0◦ and 30◦. Both

cumulative sums start from zero, gradually approach the levels of their theoretical values

g(r, k) = 1
r cos(θ)

and finally oscillate around them. However, the dominant period of the

oscillation for θ = 3.0◦ is 4l ≈ 120, larger by a factor of 10 than 4l ≈ 12 for θ = 30◦.

For large angular order l, the associated Legendre function P l0(cos(θ)) can be approxi-

mated as (see the eq. 8.721 in page 1003 of Abramowitz & Stegun 1964)

P l0(cos(θ)) =

√
2

πl sin(θ)
cos[(l +

1

2
)θ − π

4
] +O(l−

3
2 ) (13)

The first term on the right hand side of the above equation is an oscillation, which decays

as 1√
l
. The dominant period of the cosine oscillation is 4l = 360◦

θ
, which perfectly matches

the results in Fig. S1.
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Figure S1: Cumulative sums on the right rand side of eq. 12, for a distance of 3◦ (red

line in the left figure) and 30◦ (red line in the right figure). For simplicity, we assume

4πc2 = 1. Thus, the theoretical value of g(r, k) equals 1
|r−rs| = 1

r cos(θ)
(red dashed lines),

where r = rs = 6371 km and θ is the distance. The oscillations of solutions are modulated

by a amplitude decay factor 1√
l

(black dashed lines) and the period of the oscillation is

inversely proportional to their distances.

1.1.2 Large angular order l

For a large angular order l (see the eq. 9.3.1 in page 365 of Abramowitz & Stegun 1964),

lim
l→∞

jl(kr) = lim
l→∞

√
π

2kr
J l+

1
2 (kr) =

1√
2kr(2l + 1)

(
ekr

2l + 1
)l+

1
2 (14)

lim
l→∞

hl(2)(krs) = lim
l→∞

√
π

2krs
[J l+

1
2 (krs)− iY l+ 1

2 (krs)] = i

√
2

krs(2l + 1)
(
ekrs

2l + 1
)−l−

1
2 (15)

where J l+
1
2 (kr) and Y l+ 1

2 (kr) are the first and second Bessel functions respectively.

Substituting the above two equations into eq. (7) gives

al(r, k) =
1

2c2rs
√
π

1√
2l + 1

(
r

rs
)l (16)

Comparing eq. (16) to eq. (11), they are exactly the same. Thus, the conclusions, regard-

ing the convergence rate and oscillation behavior stated in subsection 1.1.1, are also valid

here for any frequency, as long as the angular order l is sufficiently large.
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Further more, it turns out that the turning point lt, above which the validity of asymp-

totic forms eqs. (14) and (15) builds up, is l + 1
2

= kr. This equation is just the well-known

relationship between the parameters of wavenumber and angular order. The physical inter-

pretation behind lt is that any non-decay waves should have a phase velocity faster than

ct.

1.2 Slow convergence of DSM synthetics around source depth

As shown in the eq. (1) of the main text, DSM synthetic u(r, θ, φ) of each frequency is

expressed as an infinite sum (l → +∞) of weighted spherical harmonics. In practice, the

sum is truncated at a sufficiently large angular order, where the amplitude of expansion

coefficients (
∑

m[|clmk1|2 + |clmk2|2 + |clmk3|2])1/2 decays below a given tiny fraction (e.g.

0.001%) of the maximum amplitude. Kawai et al. (2006) found that synthetic becomes

rapidly accurate, once the involved maximum angular order is larger than a critical threshold

angular order ld.

However, the specific number of the critical threshold angular order ld greatly depends

on the depth of source. Given a receiver on the free surface of the Earth, a shallower source

requires a higher critical threshold angular order ld to obtain accurate synthetic, due to the

near-field terms (Kawai et al. 2006). Suppose that there is a source buried at a depth of 10 km

and two teleseismic stations are placed at a distance of θ = 30◦, but different depths. Fig.

S2 shows the vertical component synthetics of the two stations for a period of 100 s. Both

cumulative sums of the real parts of the solutions oscillate, when l is larger than the threshold

angular order of lt = 97, and finally converge to a similar value. These two stations have the

same oscillation period 4l = 12 (insets in Fig. S2), that indicates a depth independence.

However, the convergence rate of the deeper receiver is much faster than the shallower one.

The amplitudes of the oscillations for both stations decay with increasing l, which are well

approximated by a form of 1√
2l+1

( r
rs

)l. This decay factor or convergence rate greatly depends

on the ratio r
rs

, that explains the slow convergence of synthetics around source depth. This

decay form is also reflected in the change of expansion coefficient amplitude with the radius
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r. For given l and rs, the amplitude of the expansion coefficient clmk1 decays as a power

function ( r
rs

)l for rs > r and ( rs
r

)l for rs < r (Fig. S3). For example, the amplitude ratio of

clmk1|l=12000 to clmk1|l=4000 is larger than 0.1 at the source depth, but decays to < 10−5 at

the depth either 10 km shallower or 10 km deeper than the source.
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Figure S2: Oscillation behavior of DSM synthetic ur (period T = 100 s) at large angular

orders. An explosion source at a depth of 10 km is modeled and two teleseismic receivers are

located at the same horizontal distance of 30◦, but different depths (10 km in the left figure

and 15 km in the right figure). The blue lines are imaginary parts and the red lines show

real parts. The black dashed lines indicate 1√
2l+1

( r
rs

)l decay shapes. The cumulative sums of

real parts oscillate with a period of 4l = 12 (zoom-in insets), once they pass the threshold

angular order lt = 97.

The slow convergence and oscillation behavior are consistent with the conclusions stated

in Section 1.1, although some minor differences exist, due to the more complex 1D Earth

structure here than the homogeneous unbounded space used in Section 1.1. For example,

4l = 12 is exactly equal to 360◦/θ, where θ = 30◦ is the distance. The rough decay rate

1√
2l+1

( r
rs

)l is also consistent with the conclusion in section 1.1. The threshold angular order

lt = 97 in Fig. S2 corresponds to a phase velocity of ct = 2πr/[T (lt + 1/2)] = 4.11 km/s.

This phase velocity is between the S-wave velocity 3.36 km/s and P-wave velocity 5.8 km/s
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Figure S3: Amplitude of the expansion coefficient clmk1 (period T = 100 s), as a function of

radius. An explosion source is placed at a radius of 6361 km, the same as Fig. S2. The dashed

lines indicate the power function decay trends, which fit the data well on both sides of the

source radius. The amplitude changes are disturbed around the discontinuities of seismic

properties, such as the free surface and middle crust interface at a depth of 20 km.

in the upper crust and very close to the phase velocity of surface wave with a period of 100

s.

Fig. S4 and S5 show the results for a point source of vertical single force at a depth of

0 km, which are the Green’s functions used in our hybrid method. These results are similar to

the explosion source (Fig. S2 and S3). For example, both of them show oscillation behavior

at l > 97 and the oscillation period is 4l = 12 (Fig. S2 and S4). The amplitude of the

expansion coefficient decays as a power function ( r
rs

)l or ( rs
r

)l (Fig. S3 and S5). However,

comparing Fig. S4 to S2, the vertical single force shows more complex amplitude changes

of real parts of ur than the explosion source. For example, for the explosion source, the



9

amplitudes of real parts of ur monotonically decrease with l (Fig. S2), once l is larger than

the threshold angular order lt = 97. In contrast, the amplitude change is not monotonous

for the single force. For the station at a depth of 10 km below the source, the amplitude

shows an increasing trend with l in a range of ∼ 200 < l < ∼ 900 (red line in the right

figure of Fig. S4). When the station is closer to the source (e.g. 1 km below the source),

this increasing trend spans a wider range of ∼ 200 < l < ∼ 2000 or maybe higher (red

line in the left figure of Fig. S4). We speculate that this might be due to different radiation

patterns between an explosion source and a single force.

In summary, the near-field terms lead to slow convergence of DSM synthetics around

source depth, that requires higher angular order harmonics involved to obtain accurate

synthetics. But the near-field terms should be minor important for teleseismic synthetics

(e.g distance > 20◦), because they are expected to decay to a negligible level. The fact is

that the near-field terms give rise to numerical oscillation around true values of teleseismic

synthetics. Hence, our solution is taking an average value over some integer periods of

oscillation to suppress the oscillation effect.
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Figure S4: Same as Fig. S2, but the source is a vertical single force at a depth of 0 km and

the stations have depths of 1 km (left figure) and 10 km (right figure).
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Figure S5: Same as Fig. S4, but the source is a vertical single force at a depth of 0 km.

2 LAGRANGE POLYNOMIAL INTERPOLATION OF GREEN’S

FUNCTIONS

As described in the main text, an equally spaced distance table is prespecified and Green’s

functions associated with each distance in the table are computed and stored. The Green’s

functions on target distances are then obtained by Lagrange interpolations from the database.

This method substantially reduces the number of Green’s function records and thus the de-

mand for storage. The quality of the Lagrange interpolation depends on the distance interval

and the degree of polynomial. Generally, the distance interval should decrease with the slow-

ness and frequency of the seismic waves, because smaller slowness and/or lower frequency

seismic waves usually have smoother spatial variations with distance. For example, Fig. S6

shows displacement Green’s functions in a distance range of 30.5o−31.5o for two frequencies

of 0.1 Hz and 1 Hz. The 0.1 Hz Green’s functions show smoother variations with distance
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than the 1 Hz results. In order to obtain accurate interpolated Green’s functions, the distance

space for the 1 Hz must be much smaller than the 0.1 Hz.

Fig. S7 shows the results of Lagrange polynomial interpolations with different degrees.

Higher degree polynomials produce more accurate interpolation results, but take more com-

putation time. In order to balance the computation time against accuracy, we choose 16-

degree Lagrange polynomial interpolation.

������

������

�

�����

�����

��	� ��	� ��	�
��	����

��	���


��	����

�	����

�	����

�	���


�	����

��	� ��	� ��	�

��
����������� ��
�����������

D
is

pl
ac

�m
�n

t

D
is

pl
ac

�m
�n

t

������������
 �����������


（�� （��

Figure S6: Complex values of vertical displacement Green’s functions at a depth of 80 km.

The source is a vertical single force applied on the free surface. The left figure corresponds

to the frequency of 0.1 Hz and the right figure shows the 1 Hz results. The solid lines are

real parts and the dashed lines show imaginary parts.
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Figure S7: Testing performances of Lagrange polynomial interpolations with different de-

grees. The black lines are the same as Fig. S6b. “nfit” represents the degree of Lagrange

polynomial. The red points with a space of 0.015o show the values used in interpolations.
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3 THE CASE OF THE 2016/10/27 MW6.0 OFF COAST SOUTHERN

CHILE EARTHQUAKE

Figure S8: Teleseismic stations (blue triangles) used in Fig. 11a. The red star shows the

location of earthquake.
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Figure S9: Testing the consequences of the mismatch between local SEM model and 1D

DSM model on the coupling interface. (a) SEM model used in Fig. 12 of the main text.

(b) Adding artificial solid media walls on the ocean sides of SEM box. (c) The red lines

are synthetics for the model with ocean sides (Fig. S9a) and the blue lines show synthetics

associated with the solid media wall model (Fig. S9b). They are pretty similar to each other

and only small differences are visible in the time window 60 - 120 s.
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4 STATIONS USED IN THE CASE OF THE 2009/09/10 MW5.9 SEA OF

OKHOTSK EARTHQUAKE

Azimuth = 360 deg

Azimuth = 270 deg

Figure S10: Stations (blue triangles) used in Fig. 14. The red star shows the location of

earthquake.

Figure S11: Stations (blue triangles) used in Fig. 15. The red star shows the location of

earthquake.
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