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The gut microbiota has emerged as a critical player in shaping and modulating brain function and has been shown to influence numerous
behaviors, including anxiety and depression-like behaviors, sociability, and cognition. However, the effects of the gut microbiota on
specific disorders associated with thalamo-cortico-basal ganglia circuits, ranging from compulsive behavior and addiction to altered
sensation and motor output, are only recently being explored. Wholesale depletion and alteration of gut microbial communities in rodent
models of disorders, such as Parkinson’s disease, autism, and addiction, robustly affect movement and motivated behavior. A new
frontier therefore lies in identifying specific microbial alterations that affect these behaviors and understanding the underlying mecha-
nisms of action. Comparing alterations in gut microbiota across multiple basal-ganglia associated disease states allows for identification
of common mechanistic pathways that may interact with distinct environmental and genetic risk factors to produce disease-specific
outcomes.
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Introduction
From their earliest origins, eukaryotic cells have had a symbiotic
relationship with microbes, which in multicellular organisms
cover nearly every surface exposed to the environment, support-
ing critical aspects of host metabolism and physiology (Franco-
Obregón and Gilbert, 2017). In humans, an estimated �1:1 to
10:1 ratio of microbial cells for every human cell resides within
the body, with the greatest reservoir being in the digestive tract
(Sender et al., 2016). This microbial community is not only large
by absolute number, but by complexity as well, and consists of
myriad bacterial, fungal, viral, and protozoal species. Bacteria
outnumber all other members, and of these, the Bacteroidetes and
Firmicutes phyla predominate (Rosenbaum et al., 2015). How-
ever, broad generalizations about their impact on the host cannot
easily be made as different species, and even strains within a
specific phylum can differ markedly in physiology and metabolic
output (Geva-Zatorsky et al., 2017). In addition, less abundant

and even rare taxa may regulate overall community structure and
function and play important roles in host physiology (Jousset et
al., 2017; Enaud et al., 2018).

Over the past two decades, an explosion of research has begun
to detail the robust relationship between gut microbiota and the
CNS. Many of the foundational studies investigating the so-called
gut-brain axis were made possible by the generation of germ-free
rodents, which are devoid of microbes from birth. These animals
demonstrate significant alterations in host physiology and behav-
ior, suggesting that the microbiota communicates critical signals
required for normal development (Mazmanian et al., 2005; Ley et
al., 2006; Diaz Heijtz et al., 2011; Neufeld et al., 2011). Additional
studies have manipulated content by either administering probi-
otics or antibiotics, or by direct transfer of gut microbiota across
model organisms. Such studies have revealed fundamental roles
for the gut microbiota in regulating complex host behaviors, in-
cluding social, stress-induced, and cognitive behaviors (Sudo et
al., 2004; Diaz Heijtz et al., 2011; Neufeld et al., 2011; Clarke et al.,
2013). More recent studies also point to a role for microbiota in
sensory-motor processing, movement disorders such as Parkin-
son’s disease (PD), motivational processes, and substance use
disorders (Hsiao et al., 2013; Kiraly et al., 2016; Sampson et al.,
2016). Table 1 highlights some experiments that take advantage
of wholesale depletion of gut microbiota to begin to investigate
the effects of gut microbiota on these disorders, which will be
discussed in this review.

To date, much of the work on gut microbial modulation of
brain function and output has focused on its effects on cognition,
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stress, and social behavior, with a large focus on the cortex, hip-
pocampus, hypothalamus, and amygdala (Sudo et al., 2004; Diaz
Heijtz et al., 2011; Neufeld et al., 2011; Clarke et al., 2013; Hoban
et al., 2018). This review focuses on the basal ganglia, as they play
an important role in sensory motor processing and the regulation
of habitual movement, which contributes to core features of
many neurobehavioral disorders (Figee et al., 2016). We will
highlight research that contributes to our understanding of how
the gut microbiota affects body movement and compulsive-like
behaviors. First, we discuss the role of gut microbiota in regulat-
ing sensorimotor circuits and behaviors that depend on these
circuits. Next, we review work demonstrating a link between gut
microbiota and motor dysfunction in PD. We then highlight
work that draws a link between gut microbiota and compulsive
behaviors, ranging from tics in autism to complex behaviors in
obesity and substance addiction. Finally, we explore common
themes that may indicate shared underlying mechanisms in the
gut-brain connection that generate dysfunction in basal ganglia
circuits.

The gut microbiota and sensorimotor circuits
The contributions of gut microbiota to sensorimotor functioning
in the gut and the brain are beginning to be characterized. For
instance, germ-free mice display decreased gastrointestinal sen-
sorimotor activity, as measured by lowered overall levels of gas-
trointestinal motility (Yano et al., 2015). Notably, treatment of
mice with the probiotic Bacteroides fragilis or colonization of
mice with a consortium of spore-forming bacteria, was sufficient
to correct gastrointestinal function, in a process mediated by mi-
crobially induced production of serotonin (Yano et al., 2015).
Direct proof that microbiota affect sensory processing in the
brain also comes from studies with germ-free mice, which show
deficits in sensorimotor gating of the startle reflex, suggesting an
inability to filter out extraneous sensory cues (Hsiao et al., 2013).
Alterations in gut microbiota in individuals with neuropsychiat-
ric conditions, such as autism and schizophrenia, may therefore
contribute to sensorimotor gating deficits observed in these dis-
orders (Hsiao et al., 2013; Kohl et al., 2013; Dinan et al., 2014). As
sensorimotor gating is processed within the cortico-basal ganglia
circuit, identification of mechanisms of microbial communica-
tion to this brain region that affect other aspects of basal ganglia
functioning, such as motor function and compulsive behavior,
will likely yield clues to how gut microbiota affect this form of
sensory processing.

Gut microbiota and motor function
Work on PD has revealed a link between gut microbiota and
motor function. While early studies suggested that the gut micro-
biota influences motor behavior, as germ-free mice exhibited in-

creased locomotion in the open field test (Diaz Heijtz et al.,
2011), it was unclear whether such a change depended on direct
actions of the microbiota on motor circuits. However, a mouse
model for PD revealed direct contributions of gut microbiota to
disease onset and progression in behavioral and histological
markers for the disorder. PD is a progressive, neurodegenerative
disorder characterized by a loss of dopaminergic neurons in the
midbrain, specifically within the substantial nigra pars compacta
and its projections to the striatum, which impairs the initiation
of movements (Hadj-Bouziane et al., 2012). Aggregation of
�-synuclein has been identified as a central component of PD
pathology. PD is generally considered a neuroinflammatory dis-
ease in which cytokines generated in the brain, and peripheral
immune cells migrating into the brain, promote �-synuclein mis-
folding. However, recent work suggests an additional vagal route
for inflammatory agents to promote neuroinflammation (Kan-
narkat et al., 2013). Injection of aggregates of �-synuclein into the
intestinal wall of healthy rodents promotes prion-like formation
of �-synuclein inclusion bodies along the vagus nerve and within
afferent brainstem loci, thereby providing a potential pathway to
the substantia nigra and dorsal striatum (Holmqvist et al., 2014;
Uemura et al., 2018). In support of this, two retrospective studies
found that complete vagotomy, but not partial vagotomy, which
does not completely denervate vagal connections to the gut, leads
to reduced risk of future diagnosis of PD (Svensson et al., 2015;
Liu et al., 2017). While the function of �-synuclein remains un-
clear, it is of note that it is present within the enteroendocrine
cells within the gastrointestinal tract (Chandra et al., 2017), and it
has been suggested to assist with vesicle trafficking in neurons
(Diao et al., 2013). Signals from the gut microbiota may locally
induce �-synuclein pathology or increase susceptibility to other
genetic or environmental risk factors (e.g., pesticides) that pro-
mote pathological �-synuclein misfolding (Brown et al., 2006).

Work by Sampson et al. (2016) points to a critical role of gut
microbes in PD pathology. Thy1-�-synuclein mice (“Line 61”),
which overexpress wild-type human �-synuclein, also known as
�-synuclein overexpressing (ASO) mice, were protected from
developing �-synuclein pathology and motor symptoms when
bred under germ-free conditions. Colonization with fecal mi-
crobes from control mice and healthy human subjects both pro-
duced impaired motor function in germ-free ASO mice. However,
colonizing mice with fecal microbes derived from PD patients
worsened motor outcomes. This suggests that, while gut micro-
biota facilitates disease pathology, at least in genetically suscepti-
ble individuals, the specific microbes found in persons with PD
may exacerbate disease outcomes.

Fecal microbiota collected from persons with PD, and subse-
quently colonized into germ-free mice, exhibited increased abun-
dance of the Gram-negative Proteobacteria phylum and reduced

Table 1. Effects of microbial depletion on motor function and motivated behaviora

Treatment Subject Behavior Description Reference

Germ-free C57BL/6 and Swiss-Webster mice, male Sensorimotor Decreased activation of intestinal sensorimotor neurons Yano et al., 2015
Low-dose penicillin C57BL/6 mice, male � female Social preference Increased preference for familiar conspecifics Leclercq et al., 2017
Germ-free Swiss-Webster mice, male Social preference Increased preference for familiar conspecifics Desbonnet et al., 2014
High-dose antibiotic mixture NIH Swiss mice, male Novel object preference Increased preference for familiar object Desbonnet et al., 2015
Germ-free Swiss-Webster mice, male Novel object preference Increased preference for familiar object Gareau et al., 2011
High-dose antibiotic mixture C57BL/6 mice, male Novel object preference Increased preference for familiar object Fröhlich et al., 2016
Germ-free ASO mice (Parkinson’s model), male Motor behavior Less robust deficits in time to traverse a beam, descend a pole,

and remove an adhesive from the nasal bridge
Sampson et al., 2016

Germ-free C57BL/6 mice, male Food consumption Decreased caloric consumption Rabot et al., 2010
High-dose antibiotic mixture C57BL/6 mice, male Drug-seeking behavior Increased conditioned place preference Kiraly et al., 2016
aEffects of germ-free status (relative to conventionally colonized mice) or treatment with antibiotics (relative to subjects not treated with antibiotics) on motor function, novelty-seeking behavior, or addiction.
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levels of spore-forming Lachnospiricae family and Ruminococcus
genus of the Firmicutes phylum (Sampson et al., 2016). Similar
changes to the microbiota are observed in other studies of PD
patients, which are reviewed by Tremlett et al. (2017) and Sun
and Shen (2018). However, no two studies report identical
changes in microbiota. Some studies note increases in specific
Clostridial species or species within the Firmicutes phylum (Be-
darf et al., 2017; Hill-Burns et al., 2017; Heintz-Buschart et al.,
2018; Qian et al., 2018), whereas others report decreases in clus-
ters of Clostridial species (Hasegawa et al., 2015; Scheperjans et
al., 2015; Hill-Burns et al., 2017; Li et al., 2017). Clostridia is a class
of the Firmicutes phylum that contains a large number of spore-
forming species that promotes serotonin production in the body
(Yano et al., 2015), which may drive systemic inflammation (Pat-
rick and Ames, 2015). However, some studies report an increase
in Lactobacillus in PD patients (Minato et al., 2017; Petrov et al.,
2017), a genus of the Firmicutes phylum that contains species
commonly used to reduce inflammation in a number of autoim-
mune disease models (Plaza-Díaz et al., 2017). Potentially con-
founding effects across study cohorts, such as differences in drug
treatment and dietary habits, may drive some of these discrepan-
cies. However, they may also reflect specific changes within the
genus level that may go undetected by the bacterial sequencing
methods (e.g., 16S rRNA sequencing) used in these studies, and
large-scale metagenomic analysis may provide a clearer indica-
tion of dysbiosis in PD (Poretsky et al., 2014).

Gut microbiota might contribute to several factors that pro-
mote �-synuclein misfolding in the basal ganglia, including di-
rect vagal transmission of the misfolded protein. In the work of
Sampson et al. (2016), neuroinflammation in specific-pathogen-
free ASO mice was observed in the frontal cortex and striatum,
but not in the cerebellum. Gut microbiota might stimulate vagal
efferents to produce this effect, given that vagal nerve stimulation
in rats has its most robust biophysical effects across a limited
number of midbrain and forebrain areas, including the basal gan-
glia (Surowka et al., 2015). Additionally, it might be that toxins
produced by the microbiota have differential access to different
brain regions depending on the permeability of the blood– brain
barrier (Yang and Chiu, 2017). Regions of the basal ganglia are
situated near regions of the blood– brain barrier that are partic-
ularly leaky in PD patients (Gray and Woulfe, 2015). Regardless
of the means of transmission, gut microbiota play a critical role in
driving pathology in this rodent model of PD and may play an
influential role in the etiology of this disease in humans as well.

Gut microbiota and repetitive behaviors
Just as components of gut microbiota may impair normal initia-
tion of motor function, they might also affect the basal ganglia’s
ability to prevent behaviors, allowing the development of tics and
other repetitive behaviors (Bronfeld and Bar-Gad, 2013). Fields
et al. (2018b) showed that increased intestinal load of lipo-
polysaccharides, an inflammatory antigen derived from Gram-
negative bacteria, influences repetitive behaviors. Small intestinal
bacterial overgrowth is a condition wherein Gram-negative bac-
teria and anaerobes are overly abundant, leading to inflammatory
bowel syndrome and related anxiety disorders (Posserud et al.,
2007; Popa and Dumitrascu, 2015). We used oral gavage delivery
of exogenous lipopolysaccharide into adult mice as a proxy for
small intestinal bacterial overgrowth driven by overgrowth of
Gram-negative bacteria. This treatment suppressed normal levels
of repetitive circling in the open field test, without affecting gen-
eral measures of locomotion, suggesting that the lipopolysaccha-
ride treatment specifically affects compulsive behaviors without

inducing a generalized sickness response (Fields et al., 2018b). In
line with this, germ-free mice, which have no lipopolysaccharide,
exhibit increases in compulsive-like behavior, such as repetitive
digging (Nishino et al., 2013). Studying specific changes of gut
microbiota in conditions that exhibit changes in locomotor and
habit circuits may yield substantial clues to other bacterial com-
ponents that actively modulate basal ganglia circuits.

Gut microbial changes reported in individuals with autism
spectrum disorder (ASD) and in rodent models of this disor-
der provide further clues regarding the potential mechanisms
through which gut microbiota modulate repetitive behavior. For
example, several studies consistently demonstrate elevated levels
of Clostridia in fecal samples collected from autistic subjects (Fi-
negold et al., 2002; Song et al., 2004; Parracho et al., 2005; Mar-
tirosian et al., 2011; Li and Zhou, 2016; Finegold et al., 2017;
Iovene et al., 2017; Vuong and Hsiao, 2017; Argou-Cardozo and
Zeidan-Chulia, 2018). Clostridia produce propionic acid, a short-
chain fatty acid byproduct of carbohydrate fermentation, which
has been proposed to cross the blood– brain barrier and may
contribute to the core social and behavioral deficits observed in
autism (Shultz, 2014). In support of this, several studies show
that intracerebroventricular injection of propionic acid affects
autism-related social and cognitive measures, including the in-
ability to activate goal-directed behavior switching in the water
maze and T-maze (Shultz et al., 2009; MacFabe et al., 2011).
Propionic acid treatment also elevated brain levels of serotonin
and dopamine (Shultz et al., 2008, 2009), and induced neuroin-
flammation across various cortical and subcortical regions,
which may contribute to the observed cognitive and behavioral
deficits (Shultz et al., 2008, 2009; MacFabe et al., 2011; Shultz,
2014). However, whether the dosages of propionic acid used in
these studies reflect levels found in autistic subjects remains to be
determined.

If Clostridia and other microbiota species induce behavioral
effects in autistic subjects, it will likely result from multiple acti-
vation pathways involving immune, humoral, and vagal routes.
For example, Clostridia produce several toxic byproducts found
in patients with ASD and animal models, including the uremic
toxins para-cresol and 4-ethylphenylsulfate, which might also
cross the blood– brain barrier and affect cortico-thalamo-basal
ganglia circuits (Enomoto and Niwa, 2007; Altieri et al., 2011;
Hsiao et al., 2013; Gabriele et al., 2014, 2016). Intravenous injec-
tion of 4-ethylphenylsulfate increased marble-burying behavior
in juvenile mice (Hsiao et al., 2013) and para-cresol levels corre-
lated with severity of repetitive behaviors in autistic subjects, but
not with other symptoms of autism (Gabriele et al., 2014).

Levels for other gut microbial species may also be altered in
patients with ASD (Li and Zhou, 2016; Vuong and Hsiao, 2017).
While microbiota changes lack consistency from study to study, a
unifying mechanism through which gut microbiota affect symp-
toms of ASD is by modifying the permeability of the gut. For
example, as discussed for PD, Prevotella levels are inversely cor-
related with gut barrier permeability (Brown et al., 2011; Forsyth
et al., 2011; Cakmak, 2015). In line with this, lower levels of
Prevotella correlate with greater burdens of behavioral autistic
symptoms (Kang et al., 2013; Krajmalnik-Brown et al., 2015;
Strati et al., 2017; Kang et al., 2018; Qiao et al., 2018). Neverthe-
less, some clinical studies do not find this correlation between
Prevotella and autism symptoms (Son et al., 2015; Strati et al.,
2017). Another model for ASD, the maternal immune activation
model of autism, shows an increase in Prevotella. However, this
model also demonstrates increased gut permeability and a treat-
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ment that restored the integrity of the gut barrier also normalized
anxiety and repetitive behavior (Hsiao et al., 2013).

Other findings highlight the importance of investigating func-
tional output of the gut microbiota in addition to identifying key
taxa associated with ASD. For example, some studies report an
increase in Sutterella, a member of the Proteobacteria phylum that
may contribute to gut barrier dysfunction and systemic endotox-
emia in autistic subjects (Williams et al., 2012; Wang et al., 2013);
however, these findings are not reported in other studies (Strati et
al., 2017; Qiao et al., 2018). Elevated levels of Lactobacillus species
are also reported for children with ASD (Kang et al., 2013; Pulik-
kan et al., 2018); however, one open label clinical study success-
fully used Lactobacillus species to treat gastrointestinal and
behavioral symptoms (Shaaban et al., 2017). These seemingly
contradictory studies may be explained by separate bacterial
strains within the same species having unique physiological and
behavioral effects (Merkx-Jacques et al., 2013; Proença et al.,
2017). Thus, it is important to screen for overall functional out-
put of microbiota rather than simply noting compositional dif-
ferences. This may also help researchers identify which microbial
changes contribute to behavioral symptoms or may be endoge-
nous compensatory mechanisms.

Gut microbiota and compulsive behaviors
Compulsive behaviors are observed not just across a wide spec-
trum of neuropsychiatric disorders, but also in behaviors not
traditionally associated with neuropsychiatric disorders, such as
compulsive eating. Compulsive eating may contribute to the
pathophysiology of obesity in a subset of individuals (Moore et
al., 2018). Obese individuals exhibit significant comorbidity with
obsessive-compulsive disorder (Albert et al., 2013), along with
several neurobiological markers of addiction, including increased
cortico-striatal connectivity, and impaired dopamine regulation
of the orbitofrontal cortex and dorsal striatum (Volkow et al., 2008,
2013; Cone et al., 2013). While the gut microbiota participates in
nutrient energy harvesting and plays a role in many other aspects
of host metabolism (Pascale et al., 2018), it may also drive com-
pulsive eating. Transfer of microbiota from obese mice to those
raised on a standard diet conferred many of the phenotypes ob-
served in high-fat diet fed mice. Mice that received transfer of a
microbiome from high-fat diet-fed mice showed significant pro-
pensity to become obese. Although feeding behavior itself was
not measured, these mice showed increases in anxiety-like behav-
ior on the open field test and elevated plus maze and increases in
compulsive-like burying behavior in the marble-burying test.
(Bruce-Keller et al., 2015).

Another set of psychiatric disorders marked by compulsive
behavior in humans are the substance use disorders. Recent work
has found that the gut microbiota both influences and is influ-
enced by the effects of psychostimulant drugs and may contribute
to compulsive substance use. Kiraly et al. (2016) showed that
antibiotic depletion of gut microbiota in adulthood leads to in-
creased sensitivity to the behavioral effects of cocaine in mice.
Antibiotic treatment increased the development of locomotor
sensitization and conditioned place preference at a dose that did
not produce behavioral effects in control animals. Antibiotic
treatment increased striatal expression of BDNF, a neuropeptide
with wide-ranging effects on brain physiology, regardless of co-
caine exposure. The increase in BDNF may serve as a trigger for
downstream neurochemical effects, as both cocaine and antibi-
otic treatments were required to elicit changes in glutamate and
dopamine receptor expression. These observations demonstrate
that the gut microbiota acutely influences function and output of

systems that encode motivational salience and mediate decision-
making (Kiraly et al., 2016).

Putting the pieces together
The studies discussed in this review highlight similarities and
differences in gut microbiota composition both within and across
various basal ganglia-associated disease states, providing as many
clues as questions regarding the potential effects of gut microbes
on basal ganglia circuits. Changes in gut microbiota could either
serve as significant or moderating factors in the etiology of these
diseases, or they could simply be interesting epiphenomena. Ac-
cumulating evidence points to the former, with wholesale deple-
tion and modification of gut microbiota either ameliorating or
worsening disease state in animal models of PD (Sampson et al.,
2016), obesity (Bruce-Keller et al., 2015), and cocaine addiction
(Kiraly et al., 2016). Alternatively, even if the changes to the mi-
crobiota that occur during disease processes are merely a by-
stander effect, the continued study of these changes may provide
benefit as early indicators of disease diagnosis or prognosis.

Microbiota are also required for the normal development of
basal ganglia circuits, as evidenced by reduced expression of
synapse-related gene expression within the striatum of germ-free
mice (Diaz Heijtz et al., 2011). Microbiota actively maintain nor-
mal basal ganglia physiology in adult animals, with antibiotic
depletion of gut microbiota increasing BDNF expression in the
ventral striatum in conventionally colonized mice (Kiraly et al.,
2016), potentially with wide-ranging effects (Song et al., 2017).
While such studies suggest that microbiota may affect basal gan-
glia function and behavioral output, the mechanisms underlying
these effects remain unknown.

To address this question, it is first important to acknowledge
the extensive functional redundancy within gut microbiota (Al-
lison and Martiny, 2008). For example, the Human Microbiome
Project revealed that it is possible for two healthy human individ-
uals to share minimal to no overlap in microbial species compo-
sition (Gilbert et al., 2018). This functional redundancy may
explain some of the contradictory findings of changes in gut mi-
crobiota within the diseases discussed here. For example, original
studies on gut microbial changes within obese subjects reported
increases in the Firmicutes-to- Bacteroidetes ratio in both obese
rodents and humans (Ley et al., 2005; Turnbaugh et al., 2006).
However, subsequent work either found no changes in this ratio
(Duncan et al., 2008; Million et al., 2013; Rosenbaum et al., 2015)
or an inverse of this ratio in obese subjects (Schwiertz et al., 2010;
Ignacio et al., 2016), along with more fine-grained increases and
decreases of species within both the Firmicutes and Bacteroidetes
phyla within obese subjects (Bruce-Keller et al., 2015; Jung et al.,
2018). Nevertheless, later work also confirmed the finding of an
increased Firmicutes-to-Bacteroidetes ratio in some obese sub-
jects, suggesting that this compositional change may serve as a
significant factor in a subset of the disease (Koliada et al., 2017).
These findings were accompanied with the observation of other
common changes, such as increases in the Actinobacteria phylum,
that may increase energy harvesting and compulsive eating (Ko-
liada et al., 2017).

Consideration of common effects of compositional changes
within the gut microbiota across various basal-ganglia associated
disorders may shed light on the core functional consequences
that may drive basal ganglia pathology. One potential core mech-
anism may be increases in gut permeability, which may be medi-
ated by several dysbiotic changes in gut microbiota. As discussed,
Prevotella may serve as a protective factor against barrier dysfunc-
tion, and is lower in abundance in subjects with PD and autism
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(Kang et al., 2013; Hasegawa et al., 2015; Keshavarzian et al.,
2015; Krajmalnik-Brown et al., 2015; Scheperjans et al., 2015;
Unger et al., 2016; Bedarf et al., 2017; Strati et al., 2017; Kang et
al., 2018; Qiao et al., 2018), but animal models of the disorder also
exhibit increases in Prevotella along with increases in gut perme-
ability (Hsiao et al., 2013). Overgrowth of Proteobacteria, which
is observed in PD (Forsyth et al., 2011; Keshavarzian et al., 2015;
Scheperjans et al., 2015; Unger et al., 2016; Li et al., 2017; Qian et
al., 2018) and autism (Williams et al., 2012; Wang et al., 2013),
along with obesity (Cani et al., 2007) and cocaine addiction
(Volpe et al., 2014), can also stimulate increases in intestinal per-
meability (Jakobsson et al., 2015), primarily mediated through
activation of innate immune receptor TLR4 by its cell surface
antigen lipopolysaccharide (Guo et al., 2015). However, here too,
noting increases in Proteobacteria are insufficient to infer func-
tional consequences, as even different strains of Escherichia coli, a
species in the Proteobacteria phylum, carry lipopolysaccharide
molecules with differing levels of immunogenicity, with some
serving as TLR4 agonists and others as TLR4 antagonists (Coats
et al., 2005). Current high-throughput gut microbiota sequenc-
ing efforts, which identify bacteria by a portion of its 16S rRNA
signature, cannot distinguish between strains, and some se-

quence tags fail to discriminate beyond the genus or family level
(Fukuda et al., 2016). Assays built to distinguish species and
strain-level differences in composition within taxa will allow for
investigation of the neurobiological effects of specific microbes
with either gnotobiotic models or targeted elimination (e.g.,
narrow-spectrum bacteriophage-derived treatments such as lysin
therapies that eradicate specific bacterial species) (Pastagia et al.,
2013). In addition, metabolic profiling of strains exhibiting the
most robust compositional changes may provide clues regarding
the overarching functional consequences of observed composi-
tional changes.

A specific etiologic trigger, such as gut barrier dysfunction,
which may be precipitated by several different changes in bac-
terial composition, likely interacts with several environmental
and genetic risk factors to precipitate specific disease out-
comes. This model is highlighted in Figure 1. Increases in gut
barrier dysfunction may alter other gut microbial communi-
cation pathways to the brain, which may include modifying
systemic short-chain fatty acid levels and afferent vagal activ-
ity. For example, both rare mutations and ingestion of envi-
ronmental toxins have been suggested to contribute to disease
onset in PD patients, perhaps leading to a greater rate of

Figure 1. Gut microbial alterations occur within the context of genetic and environmental factors that shape basal ganglia-associated disease susceptibility. These host factors affect both gut
microbial composition and basal ganglia function. Common microbial alterations associated with increased disease risk include increases in Proteobacteria, decreases in Prevotella, and alterations
in Clostridia, which are all associated with increased gut barrier dysfunction. Other risk factors, such as altered short-chain fatty acid levels, increased vagal activation, and other mechanisms (e.g.,
the release of other bacterial metabolites) may also result from gut microbial alteration. Increased systemic inflammation and neuro-inflammation are common endpoints of all of these alterations,
but other gut-to-brain mechanisms also contribute to basal ganglia disease etiology. Ultimately, gut-derived factors that alter basal ganglia function interact with other preexisting genetic and
environmental susceptibility factors to shape specific disease outcomes.
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�-synuclein misfolding along the vagus nerve (Smith and
Parr-Brownlie, 2018; Zeng et al., 2018).

Sex differences in various host systems, such as the immune
system (Klein and Flanagan, 2016), may combine with dysbiotic
changes in gut microbiota to exacerbate disease outcomes in one
or the other sex. For example, bacterial antigens may activate
differing types of inflammation in males and females (e.g., gen-
erate a more pro-allergic immune profile in males) (Kelly and
Gangur, 2009), which promote differing types of neuroinflam-
mation with potentially different behavioral effects. On the other
hand, Fields et al. (2018a) revealed that a common microbial
antigen elicited similar behavioral but differential immune re-
sponses in males and females (Fields et al., 2018a). Only a few
studies have directly investigated how gut microbiota and host
sex factors interact. For example, one landmark study by Markle
et al. (2013) identified robust sex differences in gut microbiota in
adult mice and revealed that gut microbiota from males when
transferred to females may elevate testosterone levels in females
(Markle et al., 2013). The recent National Institutes of Health’
mandate to include both female and male subjects in biomedical
research should undoubtedly be applied to the study of gut mi-
crobiota, which is likely to reveal many more sex-specific effects
of gut microbiota on the host.

Gut barrier dysfunction is not the only gut microbiota-
associated factor that has context-specific effects. Short chain
fatty acids have been associated with both proinflammatory and
anti-inflammatory effects, based on host context (Kuo et al.,
2014; Zhang et al., 2016). Furthermore, short chain fatty acid
treatment was shown to promote PD motor defects (Sampson et
al., 2016) but to protect against sensitization to cocaine (Kiraly et
al., 2016). These are not likely the only gut microbiota-associated
factors that affect host biology differently based on context. Fur-
thermore, these gut microbial effects are likely to both converge
and cancel each other out, so identifying dominant factors within
each disease state will be key to identifying prominent mecha-
nisms of action.

From vagal stimulation to systemic breach of gut-derived tox-
ins and from stimulation of systemic inflammation to systemic
release of bacterial metabolic byproducts, such as short chain
fatty acids, these mechanisms of action can be driven by multiple
compositional profiles and can have differential effects based on
host biology. Future studies will need to further identify not only
compositional differences in gut microbiota associated with
health and disease, but also the context-specific functional effects
of these microbial alterations. This will serve as a critical step
toward developing therapies for basal ganglia-associated disor-
ders targeted at gut microbial manipulation.
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Wiegand E, Trenkwalder C, Oertel WH, Mollenhauer B, Wilmes P
(2018) The nasal and gut microbiome in Parkinson’s disease and idio-
pathic rapid eye movement sleep behavior disorder. Mov Disord 33:88 –
98. CrossRef Medline

Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen
ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, Knight R, Payami H
(2017) Parkinson’s disease and Parkinson’s disease medications have

distinct signatures of the gut microbiome. Mov Disord 32:739 –749.
CrossRef Medline

Hoban AE, Stilling RM, Moloney G, Shanahan F, Dinan TG, Clarke G, Cryan
JF (2018) The microbiome regulates amygdala-dependent fear recall.
Mol Psychiatry 23:1134 –1144. CrossRef Medline

Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, Wang
ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pa-
thology spread from the gastrointestinal tract to the brain in rats. Acta
Neuropathol 128:805– 820. CrossRef Medline

Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA,
Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013)
Microbiota modulate behavioral and physiological abnormalities associ-
ated with neurodevelopmental disorders. Cell 155:1451–1463. CrossRef
Medline

Ignacio A, Fernandes MR, Rodrigues VA, Groppo FC, Cardoso AL, Avila-
Campos MJ, Nakano V (2016) Correlation between body mass index
and faecal microbiota from children. Clin Microbiol Infect 22:258.e1– e8.
CrossRef Medline

Iovene MR, Bombace F, Maresca R, Sapone A, Iardino P, Picardi A, Marotta
R, Schiraldi C, Siniscalco D, Serra N, de Magistris L, Bravaccio C (2017)
Intestinal dysbiosis and yeast isolation in stool of subjects with autism
spectrum disorders. Mycopathologia 182:349 –363. CrossRef Medline

Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Be-
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