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The idea of using fragment embedding to circumvent the high computational scaling of accurate electronic
structure methods while retaining high accuracy has been a long-standing goal for quantum chemists. Tra-
ditional fragment embedding methods mainly focus on systems composed of weakly correlated parts and are
insufficient when division across chemical bonds is unavoidable. Recently, density matrix embedding theory
(DMET) and other methods based on the Schmidt decomposition have emerged as a fresh approach to this
problem. Despite their success on model systems, these methods can prove difficult for realistic systems
because they rely on either a rigid, non-overlapping partition of the system or a specification of some spe-
cial sites (i.e. “edge” and “center” sites), neither of which is well-defined in general for real molecules. In
this work, we present a new Schmidt decomposition-based embedding scheme called Incremental Embedding
that allows the combination of arbitrary overlapping fragments without the knowledge of edge sites. This
method forms a convergent hierarchy in the sense that higher accuracy can be obtained by using fragments
involving more sites. The computational scaling for the first few levels is lower than that of most correlated
wave function methods. We present results for several small molecules in atom-centered Gaussian basis sets
and demonstrate that Incremental Embedding converges quickly with fragment size and recovers most static
correlation in small basis sets even when truncated at the second lowest level.

I. INTRODUCTION

The fast and accurate calculation of quantum mechan-
ical properties of molecules and materials is one of the
major unsolved problems in quantum chemistry. The
computational cost of most accurate electronic structure
methods rises sharply with system size, limiting their ap-
plications to small systems and/or moderate-sized basis
sets.1–6 This scaling challenge can be potentially circum-
vented by fragment embedding, where the system is di-
vided into smaller fragments, and the computationally
involved, high-level theory is only required for each in-
dividual fragment. The complicated interaction between
the fragment and its large-sized surroundings is then ap-
proximated by the interaction with an effective bath that
mimics the rest of the system. The idea of fragment
embedding serves as the basis for many methods, in-
cluding fragment molecular orbital theory7–10 (localized
molecular orbital-based embedding), subsystem density
functional theory11–14 (density-based embedding), and
dynamic mean-field theory15–19 (local Green’s function-
based embedding) to name a few.

A major challenge to the development of a gen-
eral fragment-based method is the treatment of chem-
ical bonds between fragments. Recently, Schmidt
decomposition20–22 has been used for embedding frag-
ments that are strongly correlated to a bath, which oc-
curs when embedding fragments across chemical bonds.
For each fragment, the Schmidt decomposition transform
the rest of the system into an entangled, effective bath
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which is of same dimension as the fragment. A low-
dimensional embedding Hamiltonian is then constructed
in the Schmidt space and solved accurately therein. In
practice, a high-level calculation such as FCI (full con-
figuration interaction23), DMRG (density matrix renor-
malization group24,25) or CCSD (coupled-cluster singles
and doubles26,27) is embedded in a low-level bath (usually
mean-field, e.g. Hartree-Fock23), to recover the electron
correlation missing at the mean-field level.

In order to optimize the embedding, some match-
ing conditions are usually imposed. So far there have
been two main classes. In the first class, DMET (den-
sity matrix embedding theory28,29) and DET (density
embedding theory30,31), one uses rigid, non-overlapping
fragments and matches the one-particle density matrix
(1PDM) between the fragment and the bath. Mathe-
matically this is achieved by adding to the low-level bath
an effective one-particle potential, which changes both
the low- and high-level 1PDMs. This effective potential
is then tuned to satisfy the matching condition. This ap-
proach has shown good performance on model systems
such as the Hubbard model and atomic rings/chains,
even in the strong correlation domain28–33. As with many
fragment embedding methods, however, the restriction to
non-overlapping fragments results in persistent edge ef-
fects and slow convergence with fragment size32,34. In
BE (Bootstrap Embedding35), one instead uses overlap-
ping fragments and requires in the overlapping region the
“edge” sites from one fragment agree on density matrix
elements with the “center” sites from another fragment.
As long as one can make a clear distinction between the
edge sites (usually on the boundary of a fragment) and
the center sites (usually the most embedded part), this
scheme helps to get rid of the edge effects and leads
to faster convergence as demonstrated on the Hubbard
model35.
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Though successful for model systems, these methods
encounter difficulties with real molecules. On the one
hand, the need for a rigid, non-overlapping partition of
the system makes DMET/DET ambiguous when high
symmetries such as translational invariance are lost. As a
consequence, applications to realistic systems have been
so far restricted to atomic rings29,32, chains29 or sim-
ple polymers31 in small basis sets where one atom or
monomer with several basis functions can be considered
as a fragment. One attempt at modeling real molecules
was made by Wouters et al.32 who performed DMET cal-
culations for the potential energy surface of a symmetric
SN2 reaction, C12H25F···F– −−→ C12H25F···F– . How-
ever, the DMET result was less accurate than that of
the full-system CCSD even with a fragment as large as
four CH2 groups. BE, on the other hand, can do overlap-
ping fragments but requires a clear definition of edge and
center sites, which is also ambiguous in systems lacking
certain symmetries. This was demonstrated by Ricke et
al.36 who performed a number of BE calculations on 2D
Hubbard model with fragments of different shapes and
choices of center sites. According to their report, the
combination that gives the best energetics is not always
intuitive.

We present here a scheme, Incremental Embedding,
that allows the combination of arbitrary overlapping frag-
ments without the knowledge of edge sites. As a proof of
concept, we test this new fragment embedding scheme on
several molecules in atom-centered Gaussian basis sets.
Numerical results suggest that this method converges
quickly with fragment size at equilibrium geometry and
recovers most static correlation in minimal basis sets, but
the performance deteriorates in either bond dissociation
limit or larger basis sets. We show that this arises due to
the nature of the HF Schmidt bath and point out some
possible solutions.

This article is organized as follows. In Sec. II, we give
the theoretical background through briefly reviewing the
Schmidt decomposition and existing Schmidt-space frag-
ment embedding methods. In Sec. III, we formulate our
theory of Incremental Embedding based on a new con-
cept, Schmidt reduction, introduced therein. In Sec. IV,
we give the computational details. Then in Sec. V, we
present numerical results on several molecular systems
as a proof of concept. In Sec. VI, we discuss a potential
problem of using HF as the bath. Finally in Sec. VII, we
conclude this work by pointing out several future direc-
tions.

II. BACKGROUND

In the following, terminologies from lattice model are
used for the formal discussion. All results can be adapted
to realistic systems by replacing the “site basis” with the
appropriate one-particle basis in the corresponding sce-
nario. For example, for molecules this could be either
symmetrically orthogonalized atomic orbitals23 (SOAO)

or localized molecular orbitals (LMO) given by some fla-
vor of orbital localization methods (e.g. the Foster-Boys
scheme37).

A. Schmidt Decomposition

Suppose the system consists of two parts, the fragment
(which we assume to be the minority) and the environ-
ment, such that the Hilbert space for the whole system is
a direct product of the two subsystems, i.e. H = Hf⊗He.
Any state |Ψ〉 ∈ H therefore has the following tensor
product decomposition

|Ψ〉 =

dimHf∑
i

dimHe∑
j

Ψij |fi〉 ⊗ |ej〉, (1)

where |fi〉 ∈ Hf and |ej〉 ∈ He are the (many-body) ba-
sis states that span the fragment and the environment,
respectively. Eqn (1) can be brought to the Schmidt de-
composed form

|Ψ〉 =

dimHf∑
p

λp|fp〉 ⊗ |bp〉 (2)

by a singular value decomposition on the coefficient ma-
trix Ψ, where |bp〉’s are the so-called Schmidt entangled
bath states and λp’s are the singular values. The ben-
efit of the Schmidt decomposition is that the length of
the expansion is limited by the number of linearly inde-
pendent fragment states (those with nonzero λp). Thus
the decomposed form has a manageable length no matter
how large the original system is, as long as the fragment
is not too large. Eqn (2) is exact in the sense that if

|Ψ〉 is a ground state of Ĥ at some level of theory, the
embedding Hamiltonian

Ĥemb = P̂ ĤP̂ (3)

obtained by projecting Ĥ onto the Schmidt space with
operator

P̂ =

dimHf∑
pq

|fp〉〈fp| ⊗ |bq〉〈bq| (4)

shares the same ground state as Ĥ at the same level of
theory. For example, the exactness of HF-in-HF embed-
ding has been verified explicitly in Ref. 29.

In electronic structure theory, the Schmidt decomposi-
tion is usually performed in the site basis. In general, for
a fragment composed of Nfrag sites Ĥemb can be written
as

Ĥemb =

2Nfrag∑
pq

h̃pqc
†
pcq +

2Nfrag∑
pqrs

Ṽpqrsc
†
pcqc

†
rcs+

2Nfrag∑
pqrstu

T̃pqrstuc
†
pcqc

†
rcsc

†
tcu + · · ·

(5)
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where the summation goes over Nfrag fragment sites and
the same number of Schmidt bath sites. If one starts with
a mean-field wave function, the complicated many-body
Hamiltonian in eqn (5) is truncated at the two-body level
and therefore can be solved by the aforementioned accu-
rate quantum chemical methods such as FCI, DMRG and
CCSD. For this reason, nearly all Schmidt-space frag-
ment embeddings – including this work – use a HF bath,
with only a few exceptions38. Then in order to optimize
the embedding, one often needs to impose some flavor of
matching conditions. So far there have been two main
classes: DMET/DET match the fragment and bath us-
ing rigid, non-overlapping fragments, and BE matches
fragment to fragment when they overlap. We will review
both classes in the following two subsections.

Before that, let us put special emphasis on two po-
tential problems underlying the HF bath. First, if some
site is unentangled with all other sites in the bath wave
function, it gives vanishing singular value in eqn (2) and
is therefore redundant for the embedding. This basis set
degradation problem is in fact not rare for realistic sys-
tems with a mean-field bath, to which we will get back
in Sec. VI. Second, for a K-site, 2N -electron system the
maximum number of sites that can be entangled with
each other is upper bounded by the number of electrons
or holes in the system, i.e.

Nfrag ≤ Nmax
frag = min{N,K −N}. (6)

In other words, this limits the size of fragments one can
use in a Schmidt decomposition. If the system in concern
is half-filled (i.e. N = K), one can expect to approach the
exact solution by resorting to fragments of larger size. If
this is not the case, however, such convergence is vague.
In practice, a large-sized basis set is often needed in or-
der to include as much dynamic correlation as possible.
This will make the system far from half-filling and there-
fore deteriorate the performance of embedding with a HF
bath. We will also get back to this point later in Sec. V C.

B. DMET and DET

In 2012, Knizia and Chan28 proposed the idea to em-
bed a high-level theory in a HF bath. To optimize the
embedding, a one-particle effective potential v̂eff is added
to the HF bath:

|Φ(v̂eff)〉 = arg min
Φ
〈Φ|Ĥ + v̂eff|Φ〉 (7)

where |Φ〉 is restricted to be a single Slater determinant.
The bath 1PDM is then made to match the fragment
1PDM by tuning this effective potential

〈Φ(v̂eff)|c†pcq|Φ(v̂eff)〉 = 〈Ψ(v̂eff)|c†pcq|Ψ(v̂eff)〉 (8)

where |Ψ〉 denotes the (correlated) embedding wave func-
tion, and indices p and q go over fragment sites only. Note
that in generating Ĥemb [eqn (3)], v̂eff is involved only in

the bath part. Therefore, |Ψ〉 gains its dependency on
v̂eff only through the bath. As demonstrated by Tsuchi-
mochi et al., the matching condition in eqn (8) is not
always exactly satisfiable38 and therefore is optimized in
a least-squares sense32. Nevertheless, once the matching
is achieved, the total energy can be expressed as a sum
of fragment energies

EDMET =
∑
A

(EA)DMET =
∑
A

〈ΨA|ÊA|ΨA〉 (9)

where the summation goes over all (non-overlapping)

fragments {A}; {ÊA} partitions Ĥ

Ĥ =
∑
A

ÊA (10)

such that each of them only involves terms that be-
long to the fragment as well as half the interactions be-
tween the fragment and the bath to avoid double count-
ing. DMET is extremely powerful for strongly corre-
lated model systems such as the Hubbard model28,33 and
atomic rings29,32 where unique partitions of the system
are obvious due to the high symmetry. Two years later,
Bulik et al. 30 simplified the matching condition in eqn
(8) by requiring only the diagonal of the 1PDM to be
matched, i.e.

〈Φ(v̂eff)|c†pcp|Φ(v̂eff)〉 = 〈Ψ(v̂eff)|c†pcp|Ψ(v̂eff)〉 (11)

where p goes over fragment sites only. This variant is
named DET and has shown performance that are com-
parable with the original DMET30,31.

When applying DMET/DET to realistic systems, the
absence of high symmetry makes an unambiguous non-
overlapping partition of the system difficult or even im-
possible. Different partitions often lead to different re-
sults and there is no apparent way to evaluate the quality
of those different choices. In the most general scenario,
perhaps the best one can do is to adopt the following
one-site embedding scheme:

E1-site =

K∑
p

(Ep)DMET (12)

where index p goes over all sites and (Ep)DMET is simply
the “site energy”. Eqn (12) is free of the ambiguity prob-
lem by construction, but the generalization to fragments
of larger size is not obvious in the context of DMET. We
will see in Sec. III how this scheme could be improved
systematically by Incremental Embedding.

C. Bootstrap Embedding

In addition to the ambiguity of fragment partition, the
restriction to non-overlapping fragments also results in
slow convergence with fragment size due to the persis-
tent edge effects. Recently, Welborn et al.35 proposed
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the BE scheme in order to eliminate the edge effects in
certain situations. The motivation is that when several
fragments overlap, the edge sites in one fragment might
be the center of another. Therefore by matching proper-
ties such as 1PDM and/or 2PDM of the former to those
of the latter, one can expect improving the description
of the edge sites without deteriorating the center sites.
Mathematically this is formulated as a constrained op-
timization. Suppose fragment A overlaps partially with
fragment B, and A’s center sites C(A) are edge sites of
B. Then the matching condition between A and B is
satisfied by making the following Lagrangian stationary

L[ΨB ;λ,Λ] = 〈ΨB |Ĥemb,B |ΨB〉+∑
pq∈C(A)

λBpq(〈ΨB |c†pcq|ΨB〉 − PA
pq)+

∑
pqrs∈C(A)

ΛB
pqrs(〈ΨB |c†pcqc†rcs|ΨB〉 − ΓA

pqrs),

(13)

which can be transformed to an eigenvalue problem of a
dressed Hamiltonian

Ĥeff
emb,B = Ĥemb,B +

∑
i,j∈C(A)

λBpqc
†
pcq+

∑
pqrs∈C(A)

ΛB
pqrsc

†
pcqc

†
rcs.

(14)

In other words, the Lagrange multipliers play the role of a
constraint potential v̂c to satisfy the matching conditions.
Similar to the direct optimization method in DFT39,40,
Ricke et al. proved that L has a negative semi-definite
Hessian, making its stationary point a maximum and
rendering eqn (14) numerically favorable36. Results on
model systems have suggested that this method indeed
leads to faster convergence with fragment size35.

Despite its success on model systems, the generaliza-
tion of BE to a general molecular system is challenging.
This is because the distinction between the edge and the
center sites is often vague unless certain symmetries such
as translational invariance, are present. Nevertheless, the
idea of matching among overlapping fragments is of sig-
nificant importance. We will see that it provides – after
being combined with the technique we are going to in-
troduce in the next section – a path towards realistic
systems.

III. THEORY

A. Schmidt Reduction

We first introduce a tool that enables us to encode the
information from a larger embedding space to a smaller
one. Suppose we start with a wave function |Ψ〉, perform
the Schmidt decomposition with an m-site fragment, and
obtain the embedding Hamiltonian Ĥm in the resulting
2m-electron, 2m-site space (assuming all sites are entan-
gled). Then we solve for its ground state |Ψm〉, perform

a second Schmidt decomposition involving n < m sites,
and obtain a new embedding Hamiltonian Ĥm→n in the
resulting 2n-electron, 2n-site space. Overall, the process
can be summarized as

|Ψ〉 m-site SD−−−−−−→
Ĥ

Ĥm
FCI−−→ |Ψm〉

n-site SD−−−−−−→
Ĥm

Ĥm→n. (15)

We call this process a Schmidt reduction (SR) from m
sites to n sites, or m→ n SR for short. Due to the exact
nature of the Schmidt decomposition, Ĥm and Ĥm→n

share the same ground state even though the latter could
be of much smaller dimension.

If one starts with a HF wave function |Φ〉, Ĥm has a
simple form involving only one- and two-body interac-
tions due to the mean-field nature of its bath. However,
|Ψm〉 is correlated and so is the Schmidt bath derived

from it. This renders Ĥm→n complicated and awkward
to deal with in practice [cf. eqn (5)]. The workaround
here is to go to the Schmidt-space matrix representation.
For instance, Ĥm→1 can be elegantly represented by a
4-by-4 matrix Hm→1 in the complete one-site Schmidt
basis:

| 〉 ⊗ | ↑↓ 〉, | ↑ 〉 ⊗ | ↓ 〉, | ↓ 〉 ⊗ | ↑ 〉, | ↑↓ 〉 ⊗ | 〉. (16)

One of the important consequences of eqn (15) is that
it suggests an obvious way to combine overlapping frag-
ments: reduce each of them onto the n sites where they
all overlap. It is then natural to require that the proper-
ties of all fragments agree on those common sites. This
provides a powerful set of matching conditions that are
not based on the discrimination of edge and center sites.
In the following, we introduce one realization of this idea,
Incremental Embedding.

B. Incremental Embedding from Two Sites to One Site

One way to exploit the strength of Schmidt reduction is
what we introduce in this work, Incremental Embedding
(henceforth abbreviated as IE). The goal is to construct
a one-site effective Hamiltonian Hp for any given site p
such that it contains correlation at the level of m-site
embeddings (m ≥ 2). In this section, we focus on the
lowest order, m = 2. The resulting theory is named IE
from two sites to one site, or 2 → 1 IE for short. The
generalization to m > 2 will be presented in Sec. III D.

Suppose we have already solved the HF wave function
|Φ〉 for a system described by the following K-site Hamil-
tonian

Ĥ =

K∑
pq

hpqa
†
paq +

K∑
pqrs

Vpqrsa
†
paqa

†
ras. (17)

Then a Schmidt decomposition of |Φ〉 on site p gives the
mean-field approximation to Hp

|Φ〉 SD on p−−−−−→
Ĥ

H0
p , (18)
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which is merely the matrix representation of Ĥ in the
one-site Schmidt basis of site p derived from the mean-
field bath. A better approximation can be obtained by
the following 2→ 1 SR

|Φ〉 SD on (p,q)−−−−−−−→
Ĥ

Ĥpq
FCI−−→ |Ψpq〉

SD on p−−−−−→
Ĥpq

H q
p , (19)

where q 6= p could be any other site. According to the
exact nature of SR,H q

p contains the correlation between
p and q at the level of two-site embedding, and thus is an
improvement over H0

p . However, approximating Hp by
H q

p is problematic: different choices of q in general give
different H q

p ’s and it is hard to determine which choice
is better than others.

These observations motivate one to consider how to ap-
propriately accumulate contributions from multiple sites.
A simple sum ofH q

p ’s over several sites q 6= p leads to se-
vere double-counting problem, since each matrix alone is
a representation of the full Hamiltonian Ĥ. To this end,
we propose to first divide the Hamiltonian into pieces,
obtain the SR matrix representation for each piece using
the two-site fragment that is most relevant to it, and then
assemble them to construct an approximate Hp that is
free of double-counting.

Specifically, consider the following partition of Hamil-
tonian

Ĥ =

K∑
q 6=p

Î q
p (20)

where we require each Î q
p include terms that (i) belong

to the fragment (p, q) or (ii) are interactions between q
and other sites. If some term is shared by l fragments,
we simply attach a factor of 1

l to average it over all rel-

evant fragments. In other words, eqn (20) distributes Ĥ
evenly to all two-site fragments anchored by p. With this
partition in hand, we define the incremental Hamiltonian
from two sites to one site as

∆I2→1
p =

K∑
q 6=p

I q
p − (I q

p )0 (21)

where I q
p is the matrix representation of Î q

p in the one-
site Schmidt basis of site p obtained by the following
(p, q)→ p SR

|Φ〉 SD on (p,q)−−−−−−−→
Ĥ

Ĥpq
FCI−−→ |Ψpq〉

SD on p−−−−−→
Î q
p

I q
p (22)

and (I q
p )0 is its mean-field counterpart

|Φ〉 SD on p−−−−−→
Î q
p

(I q
p )0. (23)

The physical meaning of ∆I2→1
p is clear: it accumulates

the correlations between site p and all other sites that are

missing at the mean-field level. Adding this correction to
H0

p , we have a better approximation to H0
p ,

H2→1
p = H0

p + ∆I2→1
p . (24)

One can expectH2→1
p to be of the quality of two-site em-

beddings, since each piece of the Hamiltonian is improved
by the embedding calculation involving the most relevant
two-site fragment. This is also schematically illustrated
in FIG. 1.

SR
p

SR

SR

p

q

r

s

2




1
IE

co
ns

tr
ai
n

p

p

p

p

p

FIG. 1. Schematic illustration of 2 → 1 IE in a four-site
lattice model. The mean-field approximation H0

p (brown) is
improved by incremental Hamiltonians from three two-site
embedding calculations: (p, q) (red), (p, r) (blue), and (p, s)
(yellow). The site density Ppp and pair-density Γpppp derived
from H2→1

p (green) can in return be used to constrain the
embedding calculations.

Once we obtain the effective Hamiltonians {H2→1
p } for

all sites, we can readily determine their ground states
{u2→1

p } (as the eigenvectors of the lowest eigenvalue) and
compute the site densities {Ppp} (vide infra). In general,
they do not add up to the correct number of electrons,
because eachH2→1

p is generated from multiple fragments
of different chemical potentials. This violation in the con-
servation of particle number can be fixed by introducing
a global chemical potential µ, which is determined by
solving

K∑
p

Ppp(µ) = N (25)

where the µ-dependent site densities are obtained from
solving {H2→1

p + µD} (as opposed to the bare Hamilto-
nians); D = diag (0, 1, 1, 2) in the Schmidt basis shown
in eqn (16). We note that it is also possible to apply a set
of site-specific chemical potentials {µp} to tune the pop-
ulation for each site. This is useful when IE is performed
in a non-self-consistent manner (see Sec. III F).

C. Expectation Values in 2→ 1 IE

In last section, we discussed how a one-site effective
Hamiltonian can be constructed from successively im-
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proving the mean-field description by incorporating the
correlation with every other site. Once done, the ground
state for each site is approximated by a four-dimensional
vector, {u2→1

p }, in the one-site Schmidt basis [eqn (16)].
The ground state expectation value of any given oper-
ator can then be evaluated by summing contributions
from each site. Let us take the total energy as an exam-
ple, whose corresponding operator is the Hamiltonian Ĥ.
First we obtain a partition of Ĥ over all sites

Ĥ =

K∑
p

Êp (26)

which is a special case of eqn (10) with each fragment
involving only one site. For each site p, we further parti-
tion Êp by distributing it evenly to all relevant two-site
fragments in a way similar to eqn (20)

Êp =

K∑
q 6=p

Ê q
p . (27)

With this partition, a matrix representation of Êp in the
Schmidt basis of 2 → 1 IE can be constructed by the
same procedure described in eqns (21 – 24)

E2→1
p = E0

p + ∆E2→1
p , (28)

which gives the site energy for p at the level of 2→ 1 IE

E2→1
p = (u2→1

p )†E2→1
p u2→1

p . (29)

Finally, the total energy for 2→ 1 IE is simply a sum of
all site energies

E2→1 =

K∑
p

E2→1
p . (30)

Eqn (30) can be viewed as an unambiguous generaliza-
tion of the one-site DMET energy in eqn (12) to two-site
fragments. The generalization to an arbitrary number of
fragment sites is presented in the following section.

Note that the process above becomes extremely simple,
if the operator involves only one site, say p. In that sce-
nario, one can bypass the partition and summation steps
[eqn (26 – 28)], and obtain the matrix representation of
that operator using any fragments involving p. Examples
of this type include the diagonal elements of 1PDM (site
densities, {Ppp}) and 2PDM (pair-densities, {Γpppp}).

D. Generalization to Fragments of Arbitrary Size

In this section, we generalize IE to fragments of arbi-
trary size, in a way that is similar to the method of incre-
ments commonly used in local correlation methods41–44.
The end results can be summarized in the following re-
cursive formula for m ≥ 3

Hm→1
p = H(m−1)→1

p + cm→1∆Im→1
p (31)

where cm→1 is an appropriate constant that ensures the
series of equations terminate appropriately (vide infra);
∆Im→1

p is the incremental Hamiltonian from m sites to
one site,

∆I3→1
p =

K∑
r>q 6=p

I qr
p − I q

p − I r
p

∆I4→1
p =

K∑
s>r>q 6=p

I qrs
p − I qr

p − I rs
p

− I qs
p + I p

p + I r
p + I s

p

· · ·

(32)

where terms like I qr
p and I qrs

p are matrix representa-

tions of the sum of relevant pieces of Ĥ as defined in eqn
(20). For example, I qr

p can be obtained by the following
3→ 1 SR

|Φ〉 SD on (p,q,r)−−−−−−−−→
Ĥ

Ĥpqr
FCI−−→ |Ψpqr〉

SD on p−−−−−→
Î q
p +Î r

p

I qr
p (33)

The physical meaning of ∆Im→1
p is also straightforward:

it is the correction from m-site embedding calculations
that are not included in any (m− 1)-site embedding cal-
culations.

The constant coefficients {cm→1} arise due to the dif-
ference between traditional incremental methods (such
as the aforementioned local correlation methods) and IE.
In local correlation methods, a hierarchy similar to eqn
(31), but with cm→1 ≡ 1 for all m, can be derived, which
terminates when all sites are involved (i.e. m = K). In
that situation, the local correlation method is exact in
the sense that it is equivalent to applying the same cor-
relation method to all sites. In IE, on the other hand,
the highest level one can go with eqn (31) is limited by
the maximum number of entangled sites, Nmax

frag [eqn (6)].
If one requires that the highest level of IE be

(i) exact when the system is at half-filling (i.e.Nmax
frag =

K/2), and

(ii) an average of all Nmax
frag -site embedding calculations

otherwise,

the following expressions for {cm→1} can be derived

cm→1 =

(
K −m

Nmax
frag −m

)/(
K − 2

Nmax
frag − 2

)
. (34)

Note that when Nmax
frag = K, eqn (34) gives cm→1 ≡ 1

and hence formally reduces to traditional local correla-
tion methods. Moreover, eqn (34) gives c2→1 = 1 for
m = 2, which is also consistent with 2→ 1 IE [eqn (24)].

In order to generalize the energy evaluation scheme, we
need to generalize eqn (28) to multiple sites. To that end,
a recursive formula similar to eqn (31) can be derived for
Ep,

Em→1
p = E(m−1)→1

p + cm→1∆Em→1
p , (35)
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where {cm→1} is the same set of coefficients given by eqn
(34). With this in hand, the site energy

Em→1
p = (um→1

p )†Em→1
p um→1

p , (36)

and the total energy

Em→1 =

K∑
p

Em→1
p (37)

for m→ 1 IE can be straightforwardly evaluated, where
um→1
p is the lowest eigenvector of Hm→1

p (with a proper
chemical potential). Eqn (37) can be viewed as an unam-
biguous generalization of the one-site DMET energy in
eqn (12) to fragments composed of an arbitrary number
of sites.

E. Matching Conditions

So far we have not touched one of the most powerful in-
gredients in embedding calculations – the matching con-
dition. From the discussion above, constructing Hm→1

p

requires embedding calculations for all m-site fragments
involving site p. Without any constraints, these overlap-
ping fragments in general will not agree with one another
on their common site, with the only exception where the
exact bath is used as opposed to the mean-field approx-
imation. This observation indicates that one can opti-
mize these embedding calculations by forcing the match
to happen.

Suppose we have obtained {Hm→1
p } for all sites. Solv-

ing them under an appropriate chemical potential, we can
compute {Ppp} and {Γpppp} as described in Sec. III C.
These values are our current best estimation of the diag-
onal elements of the exact 1PDM and 2PDM. Naturally,
we can require the site densities and pair-densities of all
fragments match them. Mathematically, the problem of
constraining certain density matrix elements to given val-
ues can be formulated as a constrained optimization, and
has already been addressed in BE [eqn (13) and (14)].35,36

Here, we adapt the method to IE. Suppose we want to
constrain both site densities and pair-densities for a two-
site fragment (p, q). We can achieve this by introducing
the following Lagrangian

Lpq[Ψpq;λ,Λ] = 〈Ĥpq〉pq+∑
r=p,q

[
λr(〈a†rar〉pq − Prr)+

Λr(〈a†rara†rar〉pq − Γrrrr)
] (38)

where Ĥpq is the embedding Hamiltonian; {Prr} and
{Γrrrr} are the target values; 〈 · · · 〉pq is short for
〈Ψpq| · · · |Ψpq〉. Making Lpq stationary leads to the fol-
lowing eigenvalue equation

(Ĥpq + v̂c
pq)|Ψpq〉 = Epq|Ψpq〉 (39)

where Ĥpq is dressed by a constraint potential

v̂c
pq =

∑
r=p,q

(λra
†
rar + Λra

†
rara

†
rar). (40)

Eqns (39) and (40) enable us to apply the desired con-
straints to fragment calculations readily in a ground state
formalism. Note that the constraint potential only exists
in obtaining |Ψpq〉, and should not be included in other
steps of SR.

F. Density Optimization

Once the matching conditions are imposed to each
fragment in IE, one can construct a new set of {Hm→1

p }
and recompute the site densities and pair-densities. In
general, these values are of better quality compared to
the old estimation, due to the embedding being optimized
by the matching conditions. In return, these new densi-
ties can be used to constrain further embedding calcula-
tions which will generate {Hm→1

p } of even better qual-
ity. This process can be repeated until self-consistency is
reached, making the theory a closed loop (FIG. 1).

The discussion above immediately suggests an algo-
rithm to optimize the densities in IE self-consistently.
Here, we state it for 2 → 1 IE for the sake of simplic-
ity, and the generalization to larger fragments should be
straightforward.

1. Solve the HF wave function |Φ〉 for the whole sys-
tem; obtain the mean-field Hamiltonians {H0

p} for
all sites.

2. Obtain some guess densities {P (0)
pp } and {Γ(0)

pppp}
(e.g. HF).

3. Perform embedding calculations for all two-site
fragments; in each calculation, constrain the site
densities and pair-densities of the fragment sites to

match {P (0)
pp } and {Γ(0)

pppp}, respectively.

4. For each site p, Schmidt reduce all p-involved frag-
ments to p, and compute H2→1

p according to eqn
(24).

5. Diagonalize {H2→1
p } under an appropriate global

chemical potential µ; obtain the ground states
{u2→1

p }, and recompute {Ppp} and {Γpppp}.

6. If the new densities do not match {P (0)
pp } and

{Γ(0)
pppp}, go back to step 2 with the new guess den-

sities; otherwise, the density optimization is con-
verged, and the ground state expectation values of
desired operators can be computed using {u2→1

p }.

In addition to the self-consistent version, we note that
IE can also be formulated as a non-self-consistent theory.
In terms of the algorithm, the main difference lies in step
5: instead of solving for a global chemical potential, one
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determines a set of site-specific chemical potentials {µp},
such that for each site the population matches the guess
densities. In other words, the densities are not optimized
and IE is used in a one-shot style, similar to the G0W0

method.45–47 This approximation would be useful when
(i) the system is large and hence full self-consistency is
expensive, and (ii) the quality of the guess densities is
reasonable. We will examine the performance of this ap-
proximation in Sec. V.

G. Computational Scaling

We end this section by briefly discussing the computa-
tional scaling. For m→ 1 IE, the total work is dominated
by the embedding calculations of

(
K
m

)
∼ O(Km) m-site

fragments. Symmetries can effectively reduce this num-
ber by a constant factor, as fragments related by symme-
try operations will give same one-site Hamiltonian and
hence need to be evaluated only once. For each fragment,
there are two potential rate-limiting steps: (i) the ba-
sis transformation of integrals (including the partitioned

Hamiltonian {Î q
p }) from the site basis to the Schmidt ba-

sis, and (ii) the high-level calculation (in this paper, FCI).
For small fragments (m � K), the former dominates
with a O(K4) scaling, which will exceed the aforemen-
tioned O(Km) scaling if m < 4. Fortunately, the basis
transformation needs to be performed only once, due to
the mean-field bath not being optimized in IE. This fea-
ture makes the basis transformation step usually negligi-
ble, especially in the self-consistent version. Under these
conditions, m → 1 IE has a scaling of O(Km), which
is lower than most accurate quantum chemical methods
[> O(K5)] if the incremental expansion [eqn (31)] can be
truncated at a small m.

IV. COMPUTATIONAL DETAILS

In the following computational work, we will examine
the performance of IE using several small molecules. The
symmetrically orthogonalized atomic orbitals23 (SOAOs)
are used as site basis for the radial expansion of the hy-
drogen ring, while localized molecular orbitals (LMOs)
of the Foster-Boys style37 are used in all other cases.
The necessary atomic integrals are generated by Psi448.
The Foster-Boys localization is performed in Q-Chem49.
Molecular geometries are also optimized in Q-Chem at
the B3LYP50/cc-pVTZ51 level and can be found in Sup-
porting Information. All embedding calculations, in-
cluding IE, BE and one-site DMET, are performed us-
ing the electronic structure program, frankenstein,52

developed by one of the authors. Spin-restricted HF
(RHF) and FCI are used as bath and high-level solvers,
respectively. In self-consistent IE, both site densities and
pair-densities are self-consistently determined based on
an RHF guess. In the non-self-consistent version, only
the site densities are constrained to the RHF values due

to the bad quality of the mean-field pair-densities. For
one-site DMET, we abandon the self-consistency and also
constrain the site densities to the RHF values. For all
systems tested in this work, the exact solutions are ac-
cessible and obtained by the Block DMRG code53–57.

V. RESULTS

A. Radial Expansion of the Hydrogen Ring Model

We select the minimal-basis hydrogen ring model as
our first example for several reasons. First it can be
viewed as the simplest generalization of the Hubbard
model towards real molecules, covering both weakly cor-
related domain (near equilibrium geometry) and strongly
correlated domain (dissociation limit). Second, it is an
“easy” case for Schmidt-space embedding with a HF bath
according to our discussion in Sec. II A because the sys-
tem is at half-filling. Last but not least, the cyclic sym-
metry makes all sites (which are symmetrically orthogo-
nalized 1s orbitals in this case) equivalent. This not only
renders BE applicable for comparison, but also tremen-
dously reduces the computational work for IE so that the
trend of convergence with fragment size can be examined
thoroughly.
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FIG. 2. Total energy error per atom (in kcal/mol) of the
radial expansion of STO-3G H10.

In FIG. 2 the energy errors per atom in the radial
expansion of STO-3G H10 are plotted for IE and BE, re-
spectively. The non-self-consistent version of IE is used
since the site densities are completely determined by the
cyclic symmetry. For BE, fragments involving two and
three adjacent sites are used, but only in the latter is
there the distinction of center and edge sites. In that
case, the pair-densities of edge sites are made to match
that of the center site. Due to the half-filled configura-
tion, both methods become exact when using fragments
composed of five sites. Overall, both methods are very
accurate even at the 2-site level. The error is consis-
tently small (< 2 kcal/mol per atom) for all geometries
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tested here. Near the equilibrium position (∼ 0.95 Å),
systematic improvements are observed for both methods
when fragments of larger size are used. In the dissoci-
ation limit, correct asymptotic behavior is recovered in
all cases even though the HF bath is spin-restricted. At
intermediate geometries (1.5 ∼ 2.0 Å), however, the con-
vergence with fragment size is not monotonic for IE: the
3 → 1 level suffers from severe over-correlation and is
worse than 2 → 1; this over-correlation is only amelio-
rated by corrections from the 4 → 1 level. Quite the
contrary, BE continues to reduce the error by using a
larger fragment and shows better accuracy compared to
IE with the same fragment size. Nevertheless, the perfor-
mance loss of IE compared to BE is somewhat expected
in this specific example, since the model is Hubbard-like
and therefore optimal for the latter.

B. Single Bond Breaking

Now we consider two real molecules, CH4 and C2H6 in
their minimal basis (STO-3G), to which BE is no longer
applicable. Both molecules show merely a small devia-
tion from the ideal half-filled configuration. Therefore,
we can still expect good performance from the embed-
ding calculations. Specifically we are interested in the
energetics of the following two single-bond breaking pro-
cesses:

CH4 −−→ CH3 · + H ·
C2H6 −−→ CH3 · + CH3 · .

(41)

First we consider the PESs obtained by non-self-
consistent IE as shown in FIG. 3, along with non-self-
consistent, one-site DMET results for comparison. In
both methods, the site densities are constrained to the
RHF values, whose quality is high near equilibrium ge-
ometry but deteriorates quickly as the bond is stretched
(see Figure S1 in Supporting Information). If the error
is mainly density-driven, we should expect good accu-
racy at equilibrium geometries as well as increasing error
along the dissociation processes. This is indeed the case
for one-site DMET (green), as can be seen from the grow-
ing gap between the embedding solution and the exact
one in FIG. 3. 2→ 1 IE (red) shows similar trend when
approaching the dissociation limit, but recovers only a
limited amount of correlation energies at equilibrium po-
sition. On the contrary, 3→ 1 IE (blue) predicts equilib-
rium energies of very high accuracy (almost overlap the
exact solution) and also improves the asymptotic behav-
iors significantly. This indicates that IE could effectively
mitigate the sensitivity to the quality of the underlying
approximate densities by using fragments of larger size.

The performance of non-self-consistent IE – especially
the under-correlation at equilibrium geometry at the
2→ 1 level – is an indication that the error of this method
is not purely density-driven. To confirm this inference,
we repeat the IE calculations above but self-consistently

determine the site densities and pair-densities. The re-
sults are presented in FIG. 4. By comparing it to FIG.
3, one can clearly see that imposing self-consistency sig-
nificantly improves the results at equilibrium geometry
at the 2→ 1 level, and keeps the high accuracy of 3→ 1
IE at the same time. In the dissociation limit, how-
ever, imposing self-consistency has opposite effects: the
PESs are shifted upwards slightly at both levels (though
3 → 1 has a much smaller amplitude) compared to the
non-self-consistent results, making the under-correlation
problem even more severe therein. A scrutiny on the
comparison of the site densities and pair-densities ob-
tained by all these methods (Figure S1 in Supporting
Information) shows that the change from FIG. 3 to FIG.
4 is not density-driven, as the self-consistent densities
and pair-densities are consistently worse than the non-
self-consistent counterparts. Nevertheless, the results of
3 → 1 IE seem to be stable, especially near equilibrium
geometries. In those cases, one can safely abandon the
self-consistency condition without losing much accuracy.

C. Correlation Energies at Equilibrium Geometry

As a final example, we investigate the effect of larger
basis sets. As mentioned in Sec. II A, any deviation from
half-filling deteriorates the performance of Schmidt-space
embeddings using HF bath wave functions. In practice,
however, large basis sets are often essential to recover the
dynamic part of electron correlation. It is thus of signifi-
cant importance to examine how IE behaves in large basis
sets. In FIG. 5, we present in terms of bar plot the error
of total energies for four molecules at equilibrium geome-
tries predicted by non-self-consistent IE, along with one-
site DMET for comparison. Three basis sets of increasing
size are used: STO-3G, 3-21G and 6-311G. For the min-
imal basis, all molecules are close to being half-filled. IE
shows a consistent improvement with fragment size in all
cases except for C2H4, and the errors of the 3 → 1 en-
ergies are within several kcal/mol’s. One-site DMET, on
the other hand, gives good results for CH4 and C2H6 (as
already seen in FIG. 3) but under-correlates badly for
the other two unsaturated molecules. Since the densi-
ties are the same for all three cases, these results again
confirm our conjecture that the errors of Schmidt-space
embedding methods are not density-driven: compared to
one-site DMET, IE successfully captures the entangle-
ment among different sites, especially when fragments of
larger size are used.

When the basis size is increased, the deviation from
half-filling renders the under-correlation problem of one-
site DMET even worse, as can be seen from the increasing
heights of the green bars in FIG. 5b and c. In terms of
absolute values, one can see clearly that this is because
the correlation energies recovered by one-site DMET re-
main unchanged or even drop slightly as the basis size
gets larger, while the exact correlation energies always
go up (Figure S2 in Supporting Information). The same
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phenomenon appears in IE, but the trend there is more
complicated. At first, switching from minimal to double-
zeta basis leads to overestimation of correlation energies
for all molecules. Moreover, the convergence with frag-
ment size gets reversed: 3 → 1 predicts more negative
numbers than 2→ 1 does, making it worse by going to a
higher level of theory. Moving further to the triple-zeta
basis, however, sets IE back on track: both 2 → 1 and
3→ 1 energies are of high accuracy. This occurs as a con-
sequence of error cancellation: the correlation energies
recovered by IE do not increase when going from 3-21G
to 6-311G, which happens to cancel the over-correlation
errors in the double-zeta basis accidentally (Figure S2 in
Supporting Information). This phenomenon, observed in
both one-site DMET and IE, is in fact related to the basis
unentanglement problem of the RHF bath. In next sec-
tion, we will discuss this problem more thoroughly using
a specific example.

VI. DISCUSSION

In Sec. II A we briefly mentioned that the unentangle-
ment in bath wave function (in this work, RHF) leads
to linear dependency in the Schmidt decomposition [eqn
(2)] and effectively degrades the basis. Here we present
a specific example that embodies this problem. We re-
peat our calculations in Sec. V A using a homemade ba-
sis set STO-3G∗, obtained by adding one pz orbital to
each STO-3G hydrogen (assuming the atomic ring lies
in the xy plane). The PESs obtained in the new basis
are presented in FIG. 6 along with the original results for
comparison. The first thing to notice is that the RHF so-
lution remains unchanged. Population analysis suggests
that the set of p orbitals are not occupied at all. This
is expected by our construction of the new basis since
all of the one-electron atomic integrals between the new
orbitals and the original 1s orbitals vanish by symme-
try. The only non-vanishing parts are the two-electron
integrals involving an even number of p orbitals such as
(pzpz|1s1s). Unfortunately, these non-trivial interactions
are not captured by the mean-field wave function due to
it being a one-electron theory. As a result, the Schmidt
space in the new basis is exactly the same as in the origi-
nal one, which explains the concurrence of two IE curves
in FIG. 6. For the exact solution, however, those interac-
tions do contribute to the total energy, and one can see
a lower energy in the new basis.

This specifically designed example helps us to under-
stand the trend shown in FIG. 5. As mentioned in Sec.
V C, in terms of absolute values, the correlation energies
recovered by both one-site DMET and IE cease to in-
crease once the basis set reaches a certain size (see also
Figure S2 in Supporting Information). This observation
indicates that the basis unentanglement problem of the
mean-field bath could be common in realistic systems,
especially when large-sized bases are used.

VII. CONCLUSION

In conclusion, we have introduced Incremental Embed-
ding, a new Schmidt-space fragment embedding scheme
that allows the combination of arbitrary overlapping frag-
ments without the knowledge of edge sites. Underlying
this new method is one of the key concept introduced in
this work, Schmidt reduction, which allows information
to be encoded from a large embedding space to a smaller
one. Based on this technique, IE constructs one-site ef-
fective Hamiltonians for all sites by hierarchically incor-
porating corrections from embeddings involving two-site
fragments, three-site fragments, and etc to the mean-field
approximation. The potential double counting problem
is avoided by an elaborate application of the method of
increments. This method can be viewed as an unam-
biguous many-site generalization of one-site DMET. It
can be made either self-consistent or non-self-consistent.
The computational scaling is O(Km) for the lowest few
levels in the hierarchy, which are much lower than most
correlated wave function theories.

Numerical simulations on small molecules in atom-
centered Gaussian bases suggest that the convergence
with fragment size is quick in small bases; most of the
electron correlation is recovered for all molecules tested,
even when truncated at the 3 → 1 level. Imposing self-
consistency in site densities and pair-densities improves
the performance of IE considerably near equilibrium ge-
ometry, through an approach that is not density-driven.
For larger bases, both IE and one-site DMET recover
only a fraction of the correlation energy, which can be at-
tributed to the more general basis unentanglement prob-
lem of the RHF bath. In summary, this work marks
the first attempt of applying Schmidt-space embedding
methods to realistic molecular systems using overlapping
fragments.

In the future, IE can be extended in a number of direc-
tions. First of all, up to this point we restrict ourselves
to FCI for the embedding Hamiltonian, which is com-
putationally expensive and can only be applied to frag-
ments of limited size. One can, of course, pursue other
high-level solvers such as DMRG and CCSD, which have
better computational scaling and can therefore be ex-
tended to fragments of larger size. Second, as for the
site basis, we restrict ourselves in this work to SOAOs
or LMOs by the Foster-Boys scheme for the sake of sim-
plicity, but other choices do exist. In analogy to local
correlation methods such as local MP241–43 and local
CCSD44, perhaps the most straightforward way is to ex-
plore the possibilities of using other LMOs such as those
given by the Pipek-Mezey scheme58,59 and the Edmiston-
Ruedenberg scheme60. Last but not least, the conflict
between the half-filled embedding space and the maxi-
mum number of entangled sites in a HF bath calls for a
better bath wave function. In this regard, the Hartree-
Fock-Bogoliubov61,62 (HFB) wave function might be a
good candidate because it is (i) always half-filled in the
quasi-particle space, and (ii) still a mean-field theory and



11

therefore retains the simplicity of embedding Hamiltoni-
ans in a mean-field bath.
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FIG. 3. Potential energy surfaces of (a) stretching one C−H bond of a methane molecule and (b) symmetrically dissociating
an ethane molecule into two methyl radicals, predicted by the non-self-consistent IE and one-site DMET. The STO-3G basis
set is used in both cases.
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FIG. 4. The same calculation as shown in FIG. 3, with site densities and pair-densities self-consistently determined by IE.
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FIG. 5. Equilibrium geometry total energy errors (in kcal/mol) obtained by the non-self-consistent IE for several molecules in
different basis sets: (a) STO-3G, (b) 3-21G and (c) 6-311G. One-site DMET results are also included for comparison.
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FIG. 6. A re-plot of FIG. 2 for the total energy of H10 near
equilibrium geometry. Data labelled with an asterisk are com-
puted in the new basis STO-3G∗.
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