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Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging imaging modality for 

studying biological tissues. However, in conventional single-view OR-PAM, the lateral and axial 

resolutions—determined optically and acoustically, respectively—are highly anisotropic. In this 

Letter, we introduce dual-view OR-PAM (DV-OR-PAM) to improve the axial resolution, achieving 

three-dimensional (3D) resolution isotropy. We first use 0.5 μm polystyrene beads and carbon 

fibers to validate the resolution isotropy improvement. Imaging of mouse brain slices further 

demonstrates the improved resolution isotropy, revealing the 3D structure of cell nuclei in detail, 

which facilitates quantitative cell nuclear analysis.
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Optical-resolution photoacoustic microscopy (OR-PAM) has found broad applications in 

imaging biological objects ranging from organelles to organs [1, 2]. OR-PAM can achieve 

lateral resolution in several micrometers or even sub-micrometers [3, 4] by tightly focusing 

the optical focal spot. However, the axial resolution in ORPAM, which is determined by the 

bandwidth of an ultrasonic transducer matching the targeted tissue penetration, is typically 

limited to tens of micrometers. The anisotropic resolutions hindered OR-PAM from 

revealing accurate three-dimensional (3D) structures of biological tissue.
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OR-PAM with ultraviolet laser illumination has recently been exploited to image human 

breast and mouse brain tissues with specific cell nuclear contrast for cancer diagnosis and 

intraoperative margin assessment as well as for basic research in neuroscience [5–8]. The 

resolution anisotropy in OR-PAM with ultraviolet laser illumination is particularly severe 

due to the finer optical lateral resolution enabled by the shorter laser wavelength (e.g., 0.33 

μm lateral resolution versus 48 μm axial resolution [5]).

In recent years, different approaches have been developed to enhance the axial resolution, 

thus improving the resolution isotropy of OR-PAM. Wide bandwidth ultrasonic transducers 

[9] and optical ultrasonic detectors [10] have been utilized for high-frequency ultrasonic 

detection to refine axial resolution, yet the severe attenuation of high-frequency acoustic 

waves in biological tissue limits the imaging depth and working distance. Although the 

Weiner deconvolution algorithm has also been utilized to improve the axial resolution, the 

improvement is not significant due to the stringent signal-noise ratio (SNR) requirement 

[11]. Moreover, optical sectioning has been achieved in OR-PAM by nonlinear effects such 

as two-photon absorption [12] and Grüneisen relaxation [13, 14]; the imaging speed, 

however, is reduced owing to the need for additional depth scanning. Multi-view optical 

illumination has been applied in both light sheet fluorescence microscopy [15, 16] and OR-

PAM [17, 18], to improve the resolution isotropy. In particular, in the previous 

demonstration of multi-view OR-PAM [17], the sample was required to be rotated to achieve 

multi-view optical illumination, which may introduce undesirable movement of the sample. 

Furthermore, the previous work [17, 19] proved that dual-view is sufficient in providing 

isotropic resolution on the condition that a complementary, perpendicular view is acquired 

and properly merged.

In this Letter, we report dual-view OR-PAM (DV-OR-PAM) with ultraviolet laser 

illumination, developed to improve resolution isotropy. The schematic of DV-OR-PAM is 

illustrated in Fig. 1. The 5-mm-diameter UV laser beam (Wedge-HF-266, 266-nm 

wavelength, Bright Solutions SRL) is split into two orthogonal beams, named as the left and 

right view laser beams hereafter. The two beams are then focused onto the sample from 

below, each by an aspheric lens with an NA of 0.29 (AFL25–40-S-U, asphericon GmbH). 

The ultrasonic waves generated inside the sample through the photoacoustic effect are 

detected by an ultrasonic transducer (V358-SU, 50-MHz central frequency, 88% bandwidth 

(one-way), Olympus NDT, Inc.) with a homemade concave lens at the front to provide 

acoustic focusing. After electrical amplification (56 dB, two ZFL-500LN+, Mini-Circuits, 

Inc.), the signal is digitized by a data acquisition card (ATS9350, Alazar Technologies, Inc.) 

at a sampling rate of 500 MS/s and sent to a computer for afterward processing. Each A-line 

signal is converted to a depth-resolved profile by taking the envelope. The water tank with 

the sample is raster scanned with a step size of 0.31 μm on the x-y plane by a motorized 

scanning stage (PLS-85, PI miCos GmbH) to obtain a single-view 3D image (e.g., the left 

view). The sample is then re-scanned with the same configuration but with the right view 

laser beam to obtain an orthogonal-view 3D image.

The axial pixel size in the original 3D images is 3 μm (assuming the speed of sound is 1.5 

mm/μs), which is larger than the lateral pixel size (0.31 μm). Interpolation is applied in the 

axial direction to make the pixel size isotropic. The optical axes of the dual-view beams, 
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together with the detection axis of the ultrasonic transducer, are coplanar on the x-z plane 

and symmetrically aligned with respect to the ultrasonic transducer axis, both with 45-

degree tilt angles. The left and right view images are transformed to a coordinate system of 

the sample for image registration through an affine transformation, including both shear and 

translation transformations, as shown in Eq. 1, where x’, y’ and z’ are the coordinates in the 

sample system; x, y, and z are the local coordinates for the two views; tx, ty and tz constitute 

the translation vector for the transformation matrix. The shear transformation is performed 

on the x-z plane. The x coordinate transformations for the left and right view images are x’ = 

x − z and x’ = x + z , respectively. The effect of the shear transformation is illustrated in 

Figs. 1(b) and 1(c) for the left and right view images, respectively.

x′
y′
z′
1

=

1 0 ±1 tx

0 1 0 ty

0 0 1 tz
0 0 0 1

x
y
z
1

(1)

Sub-resolution polystyrene beads with a 0.5 μm average diameter, together with a target to 

be imaged, were embedded in agarose gel as registration markers [20]. The beads were 

detected in the two view images and localized as point objects for registration. Values of tx, 
ty and tz in Eq. 1 are optimized by globally minimizing the total displacement between the 

corresponding registration point objects between the left and right view images.

The sub-resolution beads were also used to extract the point spread functions (PSFs) in the 

two view images. The single bead images were averaged over four acquisitions, and 

normalized to serve as the PSFs of the two view images. The PSFs were also affine 

transformed accordingly to co-register. The co-registered two view images and PSFs were 

then used for dual-view Richardson-Lucy deconvolution with 10 iterations [16, 20] to obtain 

a single dual-view image.

We used the sub-resolution beads to calibrate the resolutions of the original two images and 

the dual-view image. The volumetrically rendered 3D images of a single bead are shown in 

Figs. 2(a), 2(b), and 2(c) for the left view, the right view, and the dual view, respectively. 

Note that the original left and right view images were not affine transformed. The 

resolutions defined by the full width at half maximum are plotted in Fig. 2(d). The 

resolutions on the x-axis are 3.0 μm, 2.6 μm, and 1.8 μm for the left view, the right view, and 

the dual view, respectively. The resolutions on the y-axis are 1.7 μm, 1.7 μm and 1.3 μm for 

the left view, the right view, and the dual view, respectively. The acoustically determined 

axial resolution of the original left and right view images, far worse than the optically 

defined lateral resolutions, is 37 μm, which account for the elongated bead profiles and 

resolution anisotropy (Figs. 2(a), 2(b)). Dual-view imaging greatly improved the axial 

resolution to 1.8 μm (i.e., by a factor of 20), making the bead profile nearly isotropic in 3D 

(blue bars in Fig. 2(d)). As the dual-view deconvolution is performed on the x-z plane, the x-
z resolution isotropy—quantified as the ratio between the x and z resolution—is improved 
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from 12.3/14.2 (left view/right view) to 1.0. The resolutions in the original two views in the 

x direction are about 2 larger than the resolutions in the y direction because of the oblique 

45-degree illumination with respect to the z-axis. The resolution on the y-axis for oblique 

illumination is the same as normal incident illumination. In addition, the x and y resolutions 

are improved in the dual-view images due to deconvolution in the reconstruction algorithm.

To better demonstrate the performance of DV-OR-PAM, we made a 3D tissue phantom 

composed of 6-μm-diameter carbon fibers placed at different depths and orientations. The 

3D images of the carbon fibers are shown in Figs. 3(a), 3(b), and 3(c) for the left view, the 

right view, and the dual view, respectively. A clearer carbon fiber network is revealed in the 

dual-view image due to the enhanced axial resolution and ~9 dB SNR improvement. The 

improved resolution isotropy in DV-OR-PAM can reveal finer depth information as shown in 

Figs. 3(d), 3(e), and 3(f), which are the y-z maximum amplitude projections (MAP) of the 

volumetric images shown in Figs. 3(a), 3(b), and 3(c). The carbon fibers at different depths 

are clearly revealed in the dual-view y-z MAP image, while in the original two y-z MAP 

images, the two carbon fibers are unresolved due to the poor axial resolution.

We imaged mouse brain slices of 200 μm thickness [6] to further validate DV-OR-PAM. To 

enlarge the imaging area, the step size was set as 0.62 μm with an imaging field of view over 

1 mm × 0.5 mm along the x and y axes. The absorption contrast at the 266 nm wavelength in 

mouse brains is predominantly cell nuclei [8], which appear to be the brightest features in 

the images. The x-y MAP images of the mouse brain slice are shown in Figs. 4(a), 4(b), and 

4(c) for the left view, the right view, and the dual view, respectively. To better visualize the 

improved image quality of DVOR-PAM, zoomed-in images of the red dashed boxes are 

shown in Figs. 4(d), 4(e), and 4(f). The cell nuclei can be better identified in the dual-view 

image with improvement in both resolution and SNR (by ~10 dB). Specifically, the cell 

nuclear profile in the blue dashed boxes, which cannot be resolved in the original two 

images (Figs. 4(g) and 4(h)), can be clearly revealed in the dual-view image as shown in Fig. 

4(i). The detailed internal structure of the cell nuclei provided by DV-OR-PAM can 

potentially facilitate accurate cancer diagnosis [21, 22].

We have digitally extracted the image stacks on the x-y plane of the red dashed regions at 

five different depths with an interval of 3.1 μm. The image stacks are shown in Figs. 4(j)-(l) 

for the left view, right view, and dual view images, respectively. In the original images, the 

image stacks at five different depths show a similar brightness because of the poor axial 

resolution, while in the dual-view image, different layers of cell nuclei are clearly 

demonstrated.

With the improved axial resolution, it is possible to reveal the accurate 3D shape of a cell 

nucleus as shown in Figs. 5(a)-(c), corresponding to the red dashed regions shown in Figs. 

4(a)-(c). We quantitatively analyzed the cell nuclear volume, with a histogram plotted in Fig. 

5(d). The average cell nuclear volumes are 5312 ± 2202 μm3 and 6665 ± 2253 μm3 for the 

left and right views, respectively. While in the dual-view image, the average cell nuclear 

volume is 778 ± 396 μm3, which is much closer to the realistic cell nuclear volume if an 

average diameter of 6 μm and a spherical shape are assumed [23]. Cell nuclear volumes and 

shapes are important diagnostic features for cancer diagnosis [24].
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In conclusion, a dual-view optical illumination for axial resolution improvement in OR-PAM 

was developed. Sub-resolution beads and carbon fiber phantoms were used to validate the 

axial resolution improvement and resolution isotropy. The SNR of the dual-view images was 

also improved. We used mouse brain slices to further demonstrate the efficacy of DV-OR-

PAM for quantitative cell nuclear analysis. The DV-OR-PAM is a promising tool for cancer 

diagnosis by providing quantitative 3D cell nuclear information.
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Fig. 1. 
(a) Schematic of the DV-OR-PAM system. (b), (c) Shear transformed images in the purple 

dashed boxes for the left and right views, respectively. The corresponding original images 

are enclosed in the gray dashed boxes for comparison.
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Fig. 2. 
Resolution calibration for DV-OR-PAM using 0.5-μm-diameter beads as point objects. 

Volumetrically rendered bead images for (a) the left view, (b) the right view, and (c) the dual 

view, respectively. (d) Resolutions in the x, y, and z directions for the left view, the right 

view, and the dual view images.
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Fig. 3. 
Imaging of four 6-μm-diameter carbon fibers (indicated by red arrows) with different depths 

and orientations. Volumetric carbon fiber images for (a) the left view, (b) the right view, and 

(c) the dual view. y-z MAP images to show the depth information for (d) the left view, (e) 

the right view, and (f) the dual view.
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Fig. 4. 
Imaging of a mouse brain slice. x-y MAP images for (a) the left view, (b) the right view, and 

(c) the dual view, respectively. (d)-(f) Zoomed-in red dashed regions of (a)-(c). (g)-(i) 

Zoomed-in blue dashed regions of (d)-(f), showing the cell nuclear profile. Digitally 

reconstructed x-y images of the red dashed regions at five different depths with an interval of 

3.1 μm for (j) the left view, (k) the right view, and (l) the dual view, respectively.
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Fig. 5. 
Volumetric rendering of mouse brain slice images corresponding to the red dashed regions in 

Fig. 4 for (a) the left view, (b) the right view, and (c) the dual view. (d) Histogram of the cell 

nuclear volumes imaged by the original two views and the dual view.
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