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Visible-Light-Induced, Copper-Catalyzed Three-Component Cou-
pling of Alkyl Halides, Olefins, and Trifluoromethylthiolate to Gen-
erate Trifluoromethyl Thioethers 
Jian He, Caiyou Chen, Gregory C. Fu,* and Jonas C. Peters* 

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, 
United States 
 
ABSTRACT: Photoinduced, copper-catalyzed coupling reactions are emerging as a powerful method for generating Csp3–
Y (Y = C or heteroatom) bonds from alkyl electrophiles and nucleophiles. Corresponding three-component couplings of 
alkyl electrophiles, olefins, and nucleophiles have the potential to generate an additional Csp3–Y bond and to efficiently 
add functional groups to both carbons of an olefin, which serves as a readily available linchpin. In this report, we establish 
that a variety of electrophiles and a trifluoromethylthiolate nucleophile can add across an array of olefins (including sty-
renes and electron-poor olefins) in the presence of CuI/binap and blue-LED irradiation, thereby generating trifluorome-
thyl thioethers in good yield. The process tolerates a wide range of functional groups, and an initial survey of other nucle-
ophiles (i.e., bromide, cyanide, and azide) suggests that this three-component coupling strategy is versatile. Mechanistic 
studies are consistent with a photoexcited Cu(I)/binap/SCF3 complex serving as a reductant to generate an alkyl radical 
from the electrophile, which likely reacts in turn with the olefin and a Cu(II)/SCF3 complex to afford the coupling prod-
uct. 
KEYWORDS: copper catalysis, C–S bond formation, three-component cross-coupling, photoredox catalysis, photochemistry 
 
INTRODUCTION 
Because of its high lipophilicity and electron-withdrawing 
nature,1 the incorporation of an SCF3 group into bioactive 
molecules (see Figure 1) can significantly alter their 
pharmacokinetic and physicochemical properties.2,3 
While C–H functionalization,4 radical addition,5 and elec-
trophilic substitution6,7 can be exploited to construct C–
SCF3 bonds, the toxicity of gaseous CF3SCl and the multi-
step routes needed to access certain other electrophilic 
SCF3 reagents can be an impediment to such approaches.8 
Consequently, the incorporation of an SCF3 group 
through the use of an SCF3 nucleophile is attractive, e.g., 
through an SN2 reaction with an alkyl electrophile.9–11 

 
Figure 1. Examples of bioactive compounds that contain an 
alkyl–SCF3 subunit. 

 
We have recently reported that cross-couplings of a va-

riety of nucleophiles with organic electrophiles can be 
achieved under mild conditions (–40 to 30 °C) in the 
presence of light and a copper catalyst.12–15 In one of the 
simplest mechanistic scenarios that we have considered, 
an organic radical (R•), generated through electron trans-
fer from a photoexcited copper(I)–nucleophile adduct (B) 
to the electrophile, reacts with a copper(II)–nucleophile 
complex to yield the cross-coupling product (top of Fig-
ure 2, C®D).16 We have established that, in at least some 
photoinduced, copper-catalyzed couplings, bond for-
mation occurs after cage escape of the radicals.17 

We have been interested in further enhancing the 
scope and the utility of photoinduced, copper-catalyzed 
coupling reactions, e.g., by creating two new bonds in the 
process, rather than one. For example, we speculated that 
it might be possible to intercept the organic radical (R•) 
with an olefin, prior to C–Nu bond formation (bottom of 
Figure 2). If the resulting radical (R’•) were subsequently 
trapped by a Cu(II)–nucleophile complex (C), then a 
three-component coupling would be achieved. Among 
the potential impediments to the success of such a pro-
cess are direct substitution of the alkyl electrophile by the 
nucleophile (either via an SN2 reaction or via the pathway 
illustrated at the top of Figure 2) and olefin polymeriza-
tion.18 

It is important to note that there are several recent re-
ports of copper-catalyzed three-component couplings of 
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 2 

alkyl halides, olefins, and nucleophiles, both thermally 
(>80 °C)19 and photochemically induced,20 although none 
employ SCF3 as a nucleophile.21,22 The photoinduced pro-
cesses are limited to the use of perfluoroalkyl iodides as 
electrophiles and employ high-energy ultraviolet irradia-
tion (254 nm),20  conditions under which the C–I bond of 
the electrophile may undergo direct homolysis.23 Addi-
tionally, prior photoinduced, three-component couplings 
with alkyl electrophiles have generally employed mono-
substituted olefins as substrates; there is a single reported 
example using a 1,2-disubstituted olefin (the cyanofluoro-
alkylation of trans-β-methylstyrene).20a  

 

 
 
Figure 2. Top: Outline of a possible pathway for photoin-

duced, copper-catalyzed cross-coupling; Bottom: Outline of a 
possible pathway for photoinduced, copper-catalyzed three-
component cross-coupling. 
 

In this report, we establish that copper-catalyzed three-
component couplings of an array of alkyl halides and ole-
fins with trifluoromethylthiolate can be achieved under 
mild conditions (r.t. or below; blue-LED irradiation) to 
generate functionalized trifluoromethyl thioethers in 
good yield (eq 1). The scope with respect to the alkyl elec-
trophile and the olefin compares favorably with previous 
studies of copper-catalyzed three-component couplings.20 

 

 

RESULTS AND DISCUSSION 
Upon surveying an array of reaction parameters, we iden-
tified a procedure that achieves the desired three-
component coupling (Table 1, entry 1; 82% yield). Control 
experiments establish the importance of CuI, binap, and 
light (entries 2–4); notably, essentially none of the target 
product is observed in the absence of light even at 80 °C 
(entry 5). Irradiation at 350 or 300 nm, rather than with 
blue LED, leads to significantly less-efficient coupling 
(entries 6 and 7). A variety of Cu(I) and Cu(II) sources 
provide the desired product in fairly good yield (entries 
8–10), whereas copper nanoparticles do not (entry 11). 
Replacement of binap with several other phosphines, as 
well as 1,10-phenanthroline, leads to little desired product 
(entries 12–16), and commonly used iridium and rutheni-
um photocatalysts24 are relatively ineffective (entries 17 
and 18). The three-component coupling proceeds some-
what less efficiently with less binap (entry 19), less 
CuI/binap (entry 20; no further reaction after 24 h), and 
less electrophile/NMe4SCF3 (entry 21). Although the cou-
pling cannot be conducted under an atmosphere of air 
(entry 22), it is not highly water-sensitive (entry 23). 

This photoinduced, copper-catalyzed three-component 
coupling is effective for a variety of olefins (Table 2). For 
example, terminal olefins that bear an alkyl, aryl, or car-
bonyl group engage in the coupling in good yield (entries 
1–9); in the case of benzyl acrylate, conjugate addition of 
thiolate can be avoided by conducting the reaction at –10 
°C. Importantly, the method is not limited to couplings of 
terminal olefins: 1,1- and 1,2-disubstituted olefins, as well 
as a trisubstituted olefin, are also suitable reaction 
 
Table 1. Photoinduced, Copper-Catalyzed Three-
Component Coupling: Effect of Reaction Parameters 
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Table 2. Scope with Respect to the Olefin 

 

 
partners (entries 10–14); it is noteworthy that, for the cou-
plings that generate diastereomers, the stereoselectivity is 
high (> 10:1; entries 13 and 14). The method can be applied 
to a more complex substrate derived from estrone, giving 
the desired product in excellent yield (entry 15). On a 
gram-scale, the three-component coupling illustrated in 
entry 8 proceeds in 82% yield. 

The scope with respect to the alkyl halide is also fairly 
broad (Table 3). Thus, a variety of α-bromocarbonyl com-
pounds, including primary, secondary, and tertiary elec-
trophiles, participate in the three-component coupling 
(entries 1–8). Because of the high nucleophilicity of tri-
fluoromethylthiolate and the high electrophilicity of pri-
mary and secondary α-bromocarbonyl compounds, three-
component reactions of the latter were conducted at low 
temperature (–40 to –10 °C) in order to disfavor direct SN2 
reactions (entries 1–6);9b of course, this solution would 
not be available in the case of thermal (vs. photochemi-
cal) copper-catalyzed three-component couplings. 

This method is not limited to the use of α-
bromocarbonyl compounds as electrophilic coupling 
partners: perhalogenated electrophiles (Table 3, entries 9–
11), 2-iodo-1,1,1-trifluoroethane (entry 12), and an α-
bromosulfone (entry 13) also participate in the three-
component coupling, providing very good yields of the 
desired trifluoromethyl thioethers (entries 9–13). On the 
other hand, our standard conditions are not effective for 
the coupling of an unfunctionalized alkyl halide. 
 

Table 3. Scope with Respect to the Alkyl Halide 

 

 
With regard to the functional-group tolerance of this 

photoinduced, copper-catalyzed three-component cou-
pling, the examples provided in Tables 2 and 3 demon-
strate compatibility with esters, ethers, carbamates, am-
ides, ketones, and sulfones. We have further examined 
the functional-group compatibility of this method by car-
rying out the model reaction in the presence of various 
additives (Table 4).25 Thus, with a wide range of additives, 
the three-component coupling proceeds with little or no 
impact on the yield of the desired product or on the addi-
tive (top of Table 4). In the case of a benzofuran, a sec-
ondary alcohol, and an aldehyde, the yield of the desired 
product is also largely unaffected, and most, but not all, of 
the additive is recovered (middle of Table 4). In contrast, 
the three-component coupling is inhibited somewhat by 
the presence of an indole, an N-alkyl aniline, and a. sec-
ondary amine, and the additive is partly or entirely con-
sumed (bottom of Table 4) 
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 4 

Table 4. Functional-Group Tolerance: Effect of Addi-
tives 

 
 

From the outset, as schematically outlined at the bot-
tom of Figure 2, our longer-term objective has been to 
develop photoinduced, copper-catalyzed three-
component couplings of electrophiles, olefins, and nucle-
ophiles into a general strategy for the convergent synthe-
sis of functionalized organic compounds under mild con-
ditions. We therefore regard it as significant that the 
method that we have developed for trifluoromethylthiola-
tion can be applied directly to three-component cou-
plings that utilize other nucleophiles (Table 5). Thus, un-
der the same conditions, bromide, cyanide, and azide 
serve as suitable nucleophiles, furnishing the target com-
pounds in promising yield (Table 5).26 These initial obser-
vations provide a strong impetus for further reaction-
development efforts in this area. 

With regard to the mechanism of the photoinduced, 
copper-catalyzed three-component coupling to form tri-
fluoromethyl thioethers, Figure 2 (bottom) provides an 
outline of one of the pathways that we have considered.27 
In this mechanistic scenario, [Ln(binap)CuI(SCF3)] may 
serve as compound A, undergoing photoexcitation to 
generate [Ln(binap)CuI(SCF3)]* (B). This intermediate 
engages in electron transfer with the alkyl halide, provid-
ing [Ln(binap)CuII(SCF3)] (C) and an organic radical (R•). 
The organic radical adds to the olefin to produce a new 
organic radical, which reacts with a persistent copper(II) 
radical (C)16b,28,29 to afford the three-component coupling 
product and a copper(I)–halide (D). Ligand exchange be-
tween complex D and trifluoromethylthiolate completes 
the catalytic cycle and regenerates complex A. 

 

Table 5. Use of Other Nucleophiles 

 
 
Through treatment of CuI first with AgSCF3 (1.0 equiv) 

and then with binap (1.0 equiv) in CH3CN at room tem-
perature, followed by crystallization, we have been able to 
obtain pale-yellow crystals that we have crystallograph-
ically characterized as [(binap)Cu(SCF3)]2 (1, Figure 3a).22a 
In the solid-state, two Cu centers are bridged by trifluo-
romethylthiolates, with the Cu2(SCF3)2 subunit forming a 
planar four-membered ring with a C2 axis along the 
Cu×××Cu vector. The absorption spectrum of complex 1 in 
acetonitrile shows an absorption profile with intensity 
tailing into the region of blue-LED excitation (380-520 
nm) (Figure 3b). The excitation and the emission profiles 
of copper complex 1 are provided in Figure 3c; we have 
established that ethyl bromodifluoroacetate quenches the 
luminescence (see the Supporting Information). 

Complex 1 can be used in place of CuI and binap as a 
catalyst for the three-component coupling, affording the 
product in virtually the same yield as under the standard 
conditions using 10% CuI/10% binap (eq 2); essentially no 
coupling is observed in the dark (<1%). Irradiation of cop-
per complex 1 in acetonitrile with ethyl bromodifluoro-
acetate and allylbenzene provides the thioether product 
in moderate yield (48%); again, no reaction occurs in the 
absence of light (eq 3). These observations indicate that 
complex 1, or a compound derived from complex 1, may 
be an intermediate in the photoinduced, copper-catalyzed 
three-component coupling. 

Irradiation of the model reaction in the absence of CuI 
does not consume the electrophile, which suggests that 
the SCF3 anion itself is not photoreactive under the cou-
pling conditions (see the Supporting Information). Re-
placing binap with a Ru or Ir photosensitizer affords the 
three-component coupling product, but in much lower 
yield (eq 4).30 

To test whether a carbocation intermediate might be 
formed when using an aliphatic olefin substrate, we sub-
jected 4-penten-1-ol to the standard conditions shown in 
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 5 

Table 1. The cyclized product expected from a carbocation 
intermediate was not observed (see SI). 

 

 

Figure 3. (a) Crystal structure of dicopper complex 1 (ther-
mal ellipsoids drawn at 50% probability; hydrogens omitted 
for clarity). (b) Absorption spectra of complex 1 in CH3CN at 
room temperature. (c) Excitation (emission wavelength: 520 
nm) and emission (excitation wavelength: 350 nm) spectra in 
CH3CN at room temperature. 

 

 
 
To probe for the release of an organic radical R• upon 

photoreduction of the electrophile (bottom of Figure 2), 
the model reaction was irradiated under the standard 
conditions, but in the presence of TEMPO. A moderate 
yield of the TEMPO–R adduct was observed (eq 5), but 
essentially none of the three-component coupling 
pr0duct. Furthermore, we have performed a radical-clock 

experiment which indicates that R’•, generated from radi-
cal addition of the olefin (Figure 2, bottom), undergoes 
C–S coupling more slowly than the ring-opening reaction 
(eq 6). These observations are consistent with the in-
volvement of an organic radical intermediate. 

 

 
 
In view of our observation that bromide can serve as a 

nucleophile in photoinduced, copper-catalyzed three-
component couplings (Table 5, entry 1), we sought to ex-
clude the possibility that, in the synthesis of thioethers 
from aliphatic olefins, an alkyl bromide is generated as an 
intermediate. We therefore irradiated a mixture of an 
alkyl bromide and NMe4SCF3 in the presence of CuI/binap 
(eq 7). No thioether was observed, indicating that the 
alkyl bromide is not an intermediate in the synthesis of 
the thioether (eq 7). 

 

 
 
We have also carried out EPR studies to explore wheth-

er a copper(II) species accumulates during a catalyzed 
three-component coupling. Upon irradiation of the model 
reaction (Table 1) for 10 minutes at room temperature, 
only a trace of a copper(II) signal was evident, and the 
signal had disappeared after 60 minutes of irradiation 
(see the Supporting Information). Given that the reaction 
is ~20% complete after 60 minutes, this indicates that 
copper(II) does not accumulate during the reaction. Curi-
ously, irradiation of the model reaction at –40 °C for 10 
min, conditions under which little coupling product is 
formed, followed by freeze-quenching at –198 °C, gives 
rise to a strong EPR signal (see the Supporting Infor-
mation). This signal shows an unpaired spin coupled to 
63/65Cu (I = 3/2). The same EPR-active species could be 
detected by the addition of tris(4-
bromophenyl)ammoniumyl hexachloroantimonate (Mag-
ic Blue) to CuSCF3 at –78 °C in the presence of NMe4SCF3, 
but in the absence of binap. Hence, this EPR-active spe-
cies is likely an SCF3-ligated copper(II) species (e.g., 
CuII(SCF3)3

– or CuII(SCF3)4
2-). Its role in the catalytic path-

way, if any, remains unclear. 
We have previously considered related tandem photo-

redox and bond-forming cycles for photoinduced, copper-
catalyzed couplings,13e,13f and we note that such a scenario 
may be operative in the three-component couplings de-
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 6 

scribed herein. It may also be that more than one path-
way is viable. 

 
CONCLUSIONS 
As schematically outlined at the bottom of Figure 2, we 
have been interested in expanding our efforts in photoin-
duced, copper-catalyzed couplings to include three-
component couplings of electrophiles, olefins, and nucle-
ophiles, which could provide a powerful approach to the 
convergent synthesis of functionalized organic com-
pounds; in the present study, we describe our initial pro-
gress, specifically, the development of an efficient method 
for the coupling of activated alkyl halides, olefins, and 
trifluoromethylthiolate to generate trifluoromethyl thi-
oethers in good yield using a simple catalyst (CuI/binap). 
The ability to conduct these photoinduced reactions 
without heating and with blue-LED (rather than 254 nm) 
irradiation is advantageous relative to related methods. 
Beyond providing the first example of Csp3–SCF3 bond 
construction using photoinduced copper catalysis, we 
have observed that nucleophiles other than thiolate can 
also be used in the methodology described herein, there-
by furnishing C–Br, C–CN, and C–N3 bonds. This observa-
tion points to rich opportunities to exploit photoinduced, 
copper-catalyzed three-component couplings to generate 
functionalized products that contain an array of useful C–
C and C–heteroatom bonds. Ongoing efforts are directed 
at exploring the full scope of such processes. 
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with an Aryl Halide. Chem. Sci. 2016, 7, 4091–4100. (b) Ahn, J. M.; 
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