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ABSTRACT 22 

In dividing cells, depolymerizing spindle microtubules move chromosomes by pulling at 23 

their kinetochores. While kinetochore subcomplexes have been studied extensively in 24 

vitro, little is known about their in vivo structure and interactions with microtubules or 25 

their response to spindle damage. Here we combine electron cryotomography of serial 26 

cryosections with genetic and pharmacological perturbation to study the yeast 27 

chromosome-segregation machinery at molecular resolution in vivo. Each kinetochore 28 

microtubule has one (rarely, two) Dam1C/DASH outer-kinetochore assemblies. 29 

Dam1C/DASH only contacts the flat surface of the microtubule and does so with its 30 

flexible “bridges”. In metaphase, 40% of the Dam1C/DASH assemblies are complete 31 

rings; the rest are partial rings. Ring completeness and binding position along the 32 

microtubule are sensitive to kinetochore attachment and tension, respectively. Our 33 

study supports a model in which each kinetochore must undergo cycles of 34 

conformational change to couple microtubule depolymerization to chromosome 35 

movement.  36 
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INTRODUCTION 37 

The spindle apparatus, a microtubule-based machine, partitions chromosomes equally 38 

between mother and daughter cells during mitosis. In yeast, the microtubules (MTs) in 39 

both the nucleus and cytoplasm are anchored by their closed “minus” ends to the 40 

nuclear-envelope-embedded microtubule-organizing centers, termed spindle pole 41 

bodies. The MT “plus” end (the tips of the 13 protofilaments) can have either a flared or 42 

‘ram’s horn’ configuration (Winey et al., 1995). Kinetochore MTs (kMTs) attach to 43 

chromosomes while the long pole-to-pole MTs render the spindle its characteristic 44 

shape. To prevent chromosome missegregation, cells employ the spindle assembly 45 

checkpoint (SAC) to delay anaphase onset until two conditions are met: first, each sister 46 

chromosome must attach to kMTs emanating from one of the spindle pole bodies (bi-47 

orientation or amphitelic attachment) (Musacchio and Salmon, 2007). Second, the 48 

spindle must generate tension via opposition between the kMT-induced poleward 49 

pulling forces and the cohesion between sister chromatids mediated by cohesin 50 

complexes (Michaelis et al., 1997). Damaged spindles and erroneous kMT attachments 51 

resulting in either unoccupied kinetochores or a loss of tension in the spindle apparatus 52 

leads to the activation of the SAC. The activated SAC imposes a transient cell-cycle 53 

arrest in prometaphase, allowing cells to restore kinetochore-microtubule attachments 54 

before progressing to anaphase (Tanaka, 2010). 55 

The kinetochore is a multi-functional protein complex that mediates the 56 

chromosome-kMT attachment and couples kMT depolymerization to poleward 57 

movement of the chromosome. Furthermore, the kinetochore is central to the SAC 58 

because it can assess the quality of chromosome-kMT attachment. Kinetochores are so 59 
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complex that its subassemblies -- classified as centromere-proximal “inner-kinetochore” 60 

or kMT-associated “outer-kinetochore” complexes based on traditional EM studies -- are 61 

often studied as reconstituted complexes (Musacchio and Desai, 2017). High-precision 62 

fluorescence imaging in vivo has revealed the composition and the average positions of 63 

many of these subassemblies (Joglekar and Kukreja, 2017). In yeast, the best-64 

understood one is the outer-kinetochore Dam1C/DASH complex (Cheeseman et al., 65 

2001; Hofmann et al., 1998; Janke et al., 2002; Jones et al., 1999; Li et al., 2002). Ten 66 

different polypeptides assemble as a Dam1C/DASH heterodecamer (Miranda et al., 67 

2005). Dam1C/DASH heterodecamers can further oligomerize as rings around MTs 68 

(Miranda et al., 2005; Westermann et al., 2005). Owing to their circular shape and ability 69 

to form stable load-bearing attachments on MTs in vitro (Asbury et al., 2006; Franck et 70 

al., 2007; Westermann et al., 2006), Dam1C/DASH rings are thought to anchor the 71 

chromosome onto kMTs and couple kMT depolymerization to chromosomal poleward 72 

movement by interacting with the protofilaments’ curved tips (Efremov et al., 2007). 73 

Knowledge of kinetochore structure at the molecular level in vivo would shed light 74 

on fundamental questions that cannot be addressed by reconstitution. These questions 75 

include how the kinetochores couple to the kMTs; how the kinetochore subunits are 76 

oligomerized; how kinetochores are distributed in 3-D within the spindle; and how both 77 

the kinetochore and spindle respond to perturbation. These structural details remain 78 

largely unknown in vivo because kinetochores are sensitive to conventional electron-79 

microscopy sample-preparation methods (McEwen et al., 1998; McIntosh, 2005). 80 

Structural insights into large complexes like kinetochores and spindles in vivo require 81 
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electron cryotomography (cryo-ET), which can reveal the 3-D architecture of giant 82 

cellular machines and their subcomponents in a life-like state (Gan et al., 2011). 83 

We used cryo-ET of both serial and single frozen-hydrated sections 84 

(cryosections) to test decades-old structural models of the yeast chromosome-85 

segregation system in vivo. We have examined the structure of yeast outer-kinetochore 86 

Dam1C/DASH oligomers and their interactions with kMT walls in metaphase cells both 87 

with and without tension, in cells treated with a spindle poison, and in comparison to 88 

Dam1C/DASH-MT complexes in vitro. We found that Dam1C/DASH can oligomerize 89 

into two types of rings, both of which can stably associate with kMTs. Finally, our study 90 

reconciles different views concerning the mechanism of outer-kinetochore function in a 91 

new model of MT-powered chromosome movement.  92 
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RESULTS 93 

 94 

Dam1C/DASH forms both complete and partial rings in vitro 95 

To understand how individual Dam1C/DASH rings interact with MTs, we performed 96 

cryo-ET of plunge-frozen Dam1C/DASH assembled around MTs in vitro (Fig. S1) 97 

(Miranda et al., 2005). We observed both complete and partial rings (Fig. 1A-B). 98 

Consistent with previous studies (Miranda et al., 2005; Westermann et al., 2005), our 99 

cryotomograms showed that most Dam1C/DASH rings are slightly tilted relative to the 100 

MT’s axis. Furthermore, most of these complete and partial rings have flexible 101 

structures that connect the ring’s rim to the MT walls (Fig. 1C). These connections are 102 

called “bridges” (Miranda et al., 2007; Wang et al., 2007; Westermann et al., 2005) and 103 

are thought to be composed of parts of the Dam1p and Duo1p proteins (Legal et al., 104 

2016; Zelter et al., 2015). 105 

Rotational power-spectra analyses (Murphy et al., 2006) of individual rings 106 

showed that most of the complete Dam1C/DASH rings had 17-fold symmetry in vitro 107 

(Fig. S2A-G). This conclusion was further supported by asymmetric 3-D class averages, 108 

which also have 17-fold symmetry (Fig. 1D and S3). Unlike in previous studies (Ramey 109 

et al., 2011; Wang et al., 2007; Westermann et al., 2006), we did not observe any 16-110 

fold-symmetric rings in vitro; the reason for this difference is not clear. Nevertheless, our 111 

Dam1C/DASH structure shares similar motifs with the previous ring structure (Ramey et 112 

al., 2011), such as the inward-pointing stump-like densities that correspond to a portion 113 

of the bridge (Fig. 1E) and densities extending from the ring’s rim, parallel with the MT 114 

surface. We call these latter motifs “protrusions”, following the nomenclature of a recent 115 
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structure of reconstituted Dam1C/DASH rings (Steve Harrison, personal 116 

communication). For brevity, herein we use the terms bridge, rim, and protrusion when 117 

referring to these prominent Dam1C/DASH structural motifs (Fig. 1E). 118 

 119 

Strategy to study yeast kinetochore structure in vivo 120 

The in vivo structure of Dam1C/DASH is unknown. Previous tomography studies of 121 

high-pressure-frozen, freeze-substituted cells revealed weak densities at kMT plus ends 122 

that might be partial or complete rings (McIntosh et al., 2013). To eliminate fixation, 123 

dehydration and staining as sources of structural distortion, we prepared all our cells by 124 

high-pressure freezing, followed by thinning to ~ 100 - 150 nm by cryomicrotomy. As a 125 

positive control, we assembled Dam1C/DASH rings around MTs in vitro and subjected 126 

these samples to the same high-pressure freezing and cryomicrotomy done for cells. 127 

The contrast of cryotomograms from such samples is extremely low due to the high 128 

concentration of the dextran cryoprotectant (Chen et al., 2016). Both partial and 129 

complete Dam1C/DASH rings were nevertheless visible in the resultant cryotomograms 130 

(Fig. S4). Therefore, cryo-ET of cryosections can reveal both partial and complete 131 

Dam1C/DASH rings around kMTs if they exist in vivo. 132 

We prepared mitotic yeast cells with either attached kinetochores under tension, 133 

detached kinetochores without tension, or attached kinetochores without tension (Fig. 134 

2A). Knockdown of Cdc20 function causes yeast cells to arrest in metaphase with 135 

kinetochores attached to the spindle and under tension (Lau and Murray, 2012; O'Toole 136 

et al., 1997). To visualize kinetochores in metaphase, we arrested cells by depleting 137 

Cdc20 in a GAL-Cdc20 strain (Fig. 2B). Because kinetochores take up a tiny fraction of 138 
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the cell’s volume, a single cryosection taken randomly through a cell is unlikely to 139 

contain a kinetochore. To overcome this challenge, we devised a parallel-bar-grid-140 

based serial-cryo-ET workflow that made possible the reconstruction of larger portions 141 

of spindles (Fig. 2C and D, 3A). 142 

 143 

Dam1C/DASH forms both complete and partial rings around kMTs in vivo 144 

We reconstructed portions of 23 metaphase spindles, each with at least 3 serial 145 

cryotomograms (most-complete example in Fig. S5). We identified kMTs based on their 146 

short length, location, and orientation relative to the nuclear envelope (Fig. 3B). Both 147 

complete and partial ring structures encircled the kMT plus ends (Fig. 3C-F). We herein 148 

assign these complete and partial rings as Dam1C/DASH because their shape, 149 

diameter (47 ± 5 nm, mean and standard deviation, n = 12), localization at the kMT 150 

plus-ends, bridge densities (see below), and their absence from cytoplasmic MTs (see 151 

below) are all consistent with that expected of Dam1C/DASH from in vivo and in vitro 152 

studies. Our most complete serial-cryo-ET reconstruction (Figs. 3B and S5) contained 153 

half a spindle with 13 Dam1C/DASH rings (Fig. 3B). Budding yeast cells have 16 154 

kinetochores per half spindle (one kinetochore per sister chromosome), so we probably 155 

missed 3 Dam1C/DASH rings due to the ambiguity of cryo-ET densities near the 156 

cryosection surfaces (14 surfaces in 7 cryosections). The reconstruction is complete 157 

enough that we estimate that all kinetochores would fit into a rectangular volume less 158 

than 0.5 µm on a side (Fig. 3C). 159 

 160 

Dam1C/DASH bridges contact the flat or gently curved surfaces of kMTs 161 
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Most kMTs had a single Dam1C/DASH ring (complete or partial, n = 82) (Fig. 3B and 162 

C). Only 4 kMTs had two partial Dam1C/DASH rings each (one example shown in Fig. 163 

3C). All rings were tilted relative to the kMT axis and the majority of them were 164 

positioned within 50 nm of the plus end. We did not observe any contacts between 165 

Dam1C/DASH and the protofilaments’ curved tips. Instead, the only Dam1C/DASH-kMT 166 

interactions observed were between the kMT walls and Dam1C/DASH’s bridges (Fig. 167 

3D-F; additional examples in Fig S6). Furthermore, we did not observe any contact 168 

between Dam1C/DASH and the back of the protofilaments’ curve tips in vitro (Fig. S7). 169 

The Dam1C/DASH bridges are conformationally heterogeneous, even within the same 170 

ring, and could either be coplanar with the rim or curved out of plane (Fig. 3D and E). If 171 

each Dam1C/DASH heterodecamer contributes a single bridge, then there would be up 172 

to 17 bridges per ring. In both our in vivo and in vitro datasets, we observed up to 8 173 

bridges per ring, meaning that most of the bridges were in an as-yet-unknown 174 

conformation. This conformational flexibility explains how the bridge appears as a 175 

continuous density from the Dam1C/DASH rim to the MT surface in cryotomograms but 176 

as a stump-like density in multi-ring averages. 177 

Two complete Dam1C/DASH rings in vivo had sufficient contrast to reveal that 178 

they had 17-fold symmetry (one analysis shown in Fig. S2H). To better understand how 179 

Dam1C/DASH is organized in vivo, we symmetrized these two rings, yielding density 180 

maps with higher signal-to-noise-ratio (Fig. 3G). These symmetrized rings have 181 

protrusions, which extend from the rim like the rings in vitro (Fig. 1D). In both instances, 182 

the protrusions point toward the kMT plus end, possibly as a result of interactions with 183 

other kinetochore proteins. The surface opposite the protrusions is relatively 184 
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featureless, similar to the rings seen in vitro. From these symmetrized rings, we 185 

estimate that partial rings missing four or more Dam1C/DASH heterodecamers would 186 

have a gap large enough for a MT to pass through them (Fig. 3G). 187 

 188 

Unattached Dam1C/DASH forms partial rings, which remain clustered 189 

Damaged spindles activate the SAC and can cause kinetochore detachment (Gillett et 190 

al., 2004). To test how spindle disruption affects kinetochore organization, we treated 191 

Dam1p-GFP-expressing cells with the spindle poison nocodazole and then imaged 192 

them by immunofluorescence microscopy (Fig. 4A). Excluding a small subset of cells 193 

that lacked both Dam1C/DASH and MT fluorescence signals, cells had either zero 194 

(18%, n = 41), one (63%, n = 143), or two punctate tubulin signals (13%, n = 30). 195 

Punctate MT fluorescence signals suggests that they are very short and form small 196 

clusters. Unlike MTs, all Dam1C/DASH fluorescence was confined to a single focus, 197 

suggesting that all the Dam1C/DASH rings formed a single cluster. 198 

The intact spindle is a prominent landmark that facilitated our systematic search 199 

for kinetochores in metaphase-arrested cells; this strategy was not possible in 200 

nocodazole-treated cells because spindles are disrupted. We therefore performed cryo-201 

ET of 131 randomly chosen cryosections of these cells and were able to locate kMTs in 202 

5 cryotomograms. Consistent with the immunofluorescence data, the nocodazole-203 

treated cells contained small clusters of extremely short MTs (20 - 50 nm long, Fig. 4B 204 

and Table S1), all of which had flared ends. In untreated cells, cytoplasmic MTs have 205 

their plus ends near the cell membrane, making them extremely challenging to find in 206 

cryosections. Owing to their shortness in nocodazole-treated cells, the plus ends of four 207 
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cytoplasmic MTs were seen in the vicinity of the nuclear envelope. Dam1C/DASH rings 208 

were found around some kMTs (nuclear) while cytoplasmic MTs did not have any 209 

Dam1C/DASH rings encircling them (Fig. 4B-D). In one instance, we observed the 210 

Dam1C/DASH rim in contact with the kMT surface (Fig. 4D), but we did not see any 211 

Dam1C/DASH rings contacting the back of the protofilaments’ curved tips. Like in 212 

metaphase cells, Dam1C/DASH rings attached to kMT walls via flexible bridges. We 213 

also located small clusters of unattached Dam1C/DASH partial rings in the 214 

nucleoplasm, far from the spindle pole body (Fig. 4E and F). Our observations are 215 

consistent with the notions that kinetochores are clustered by an MT-independent 216 

mechanism (Goshima and Yanagida, 2000; Jin et al., 2000; Richmond et al., 2013) and 217 

that all sixteen budding-yeast kinetochores work together like a single, much-larger 218 

mammalian kinetochore (Aravamudhan et al., 2014; Joglekar et al., 2009; Joglekar et 219 

al., 2008). In summary, some Dam1C/DASH subcomplexes detach from damaged 220 

spindles and are found as clusters of partial rings. Another subset of Dam1C/DASH 221 

rings encircle the extremely short kMTs and only contact the kMT’s flat surface. 222 

 223 

Kinetochore position on the kMT is sensitive to tension 224 

Even if kinetochores are attached to kMTs, the spindle checkpoint can still be activated 225 

if tension across the spindle is lost. To determine how the outer kinetochore responds to 226 

loss of tension in the presence of attached kinetochores, we imaged metaphase cells in 227 

which cohesin can be conditionally cleaved. In these cells, Scc1 is replaced by Scc1-228 

TEV268, which can be cleaved at an internal recognition site by inducible TEV protease 229 

(Mirchenko and Uhlmann, 2010; Uhlmann et al., 2000) (and this paper). Light 230 
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micrographs showed that these cells have a large bud, extra-long spindle, and a multi-231 

lobed nucleus (Fig. 5A). Our cryotomograms confirmed that these cells had distorted 232 

nuclei and showed that MTs were absent from the center of the spindle (Fig. 5B and 233 

S8). We located 33 Dam1C/DASH rings, which were much more difficult to find because 234 

longer kMTs made the plus ends rarer in our cryotomograms and because many rings 235 

were located far from the kMT plus end (example serial reconstruction in Fig. 5C and 236 

Table S1). Unlike in the other cells we imaged, Dam1C/DASH rings were rarely 237 

clustered; only one such cluster was found in this dataset (Fig. S8). The ratio of 238 

complete to partial rings in these cells was similar to that in metaphase cells (Table S1). 239 

In the absence of tension, some Dam1C/DASH rings were located very far (> 240 

100 nm) from the kMT plus ends. To test for a correlation between tension and the 241 

location of a Dam1C/DASH ring along a kMT, we measured the kMT-tip-to-242 

Dam1C/DASH distance for all three spindle conditions, with complete and partial rings 243 

kept as separate groups (Fig. 5E). In metaphase cells with kinetochores under tension, 244 

there was no difference between the kMT-tip-to-Dam1C/DASH distances in complete 245 

and partial rings (means and standard deviations -- complete ring: 17 ± 18 nm, n = 17; 246 

partial ring: 24 ± 18 nm, n = 26; two-tailed t-test p > 0.05). However, in the absence of 247 

spindle tension, a few partial rings were located much farther from the kMT plus ends 248 

than the complete rings (complete ring: 17 ± 6 nm, n = 4; partial ring: 82 ± 80 nm, n = 6; 249 

F-test, p < 0.01). The complete rings in all three spindle states -- metaphase, 250 

tensionless, disrupted -- were located close to the kMT plus end (disrupted spindle: 12 ± 251 

6 nm, n = 7, two-tailed t-test p > 0.05 for all pairwise comparisons). In summary, 252 
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complete rings, but not partial rings, remain associated with the kMT plus end in the 253 

absence of tension.  254 
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DISCUSSION 255 

The discovery that the Dam1C/DASH outer-kinetochore complex can form rings around 256 

MTs suggested a mechanism for how kinetochores can remain attached to a dynamic 257 

kMT tip (Hill, 1985; Miranda et al., 2005). Notably, a kMT-encircling complete ring is 258 

thought to be topologically trapped because its means of dissociation is the plus end, 259 

which is blocked by the protofilaments’ curved tips. Structural studies have revealed a 260 

more complicated picture: Dam1C/DASH can also form spirals and partial rings (Gonen 261 

et al., 2012; Wang et al., 2007). Furthermore, calibrated fluorescence-microscopy 262 

experiments revealed that each kinetochore has, on average, twelve Dam1C/DASH 263 

heterodecamers (Dhatchinamoorthy et al., 2017), challenging the notion that the 264 

complete ring is the only functional form of Dam1C/DASH in vivo. Our study has now 265 

shown that partial and complete partial Dam1C/DASH rings coexist in vivo, with partial 266 

rings being the majority species. Many partial rings have gaps larger than 25 nm, 267 

meaning that those kinetochores do not attach to kMTs by topological means. How 268 

would Dam1C/DASH keep chromosomes attached to spindles under tension? We 269 

believe that the bridge-kMT interactions in vivo are more stable than previously 270 

appreciated. In support of this notion, single-molecule studies suggested that 271 

Dam1C/DASH oligomers with only one to four heterodecamers, which are not 272 

topologically trapped on a MT, can be pulled by depolymerizing MT plus ends (Gestaut 273 

et al., 2008). Such stable interactions would be consistent with the observation that the 274 

MT-bound Dam1C/DASH pool does not exchange freely with the nucleoplasmic pool 275 

(Dhatchinamoorthy et al., 2017). 276 

 277 
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Dam1C/DASH is sensitive to both tension and attachment 278 

Spindle integrity and tension at the kinetochore are thought to influence kinetochore 279 

structure, leading to SAC signaling. We have experimentally damaged the spindle of 280 

some cells and eliminated tension at the kinetochore of others. Our resultant analysis 281 

reveals that outer-kinetochore is sensitive to both attachment and tension in these 282 

mitotically arrested cells. Dam1C/DASH’s oligomerization state in vivo depends on 283 

attachment but not tension (Fig. 6A and Table S1). The kinetochore’s position along the 284 

kMT’s length is more complicated: they are located near the plus end unless there is no 285 

tension and the Dam1C/DASH ring is a partial one. How might these oligomerization 286 

and positioning differences be related to the SAC? An early fluorescence-microscopy 287 

study showed that in nocodazole-treated cells, kinetochores far from the spindle pole 288 

body, but not those nearby, recruited checkpoint proteins (Gillett et al., 2004). Our 289 

cryotomograms suggest that in nocodazole-treated cells, checkpoint-protein-associated 290 

kinetochores have detached partial Dam1C/DASH rings while the “checkpoint-silent” 291 

kinetochores are still attached to short kMTs in the spindle remnant and have complete 292 

rings. The causal relationship between the SAC and the Dam1C/DASH phenotypes in 293 

vivo remain to be determined. 294 

 295 

The yeast kinetochore is not a monolithic structure 296 

Dam1C/DASH interacts with the KMN (Knl1, Mtw1, Ndc80) outer-kinetochore network 297 

and other kinetochore proteins, many of which have long coiled-coil domains (Caldas 298 

and DeLuca, 2014; Wang et al., 2008; Westermann et al., 2005). Such extended 299 

structures are skinny and would have been missed in our cryotomograms. However, 300 
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globular domains such as the Ndc80 calponin-homology domain may account for some 301 

of the small densities protruding from kMT plus ends (Fig. 3E). In the vicinity of the kMT, 302 

there are also many nucleosome-sized densities, some of which may account for the 303 

centromeric nucleosome or the center of the hub-shaped MIND (Mtw1, Nnf1, Nsl1, 304 

Dsn1) complex (Dimitrova et al., 2016; Gonen et al., 2012; Tachiwana et al., 2011). Of 305 

these complexes, the centromeric nucleosome is expected to be coaxial with the kMT 306 

(McIntosh et al., 2013), but we did not observe any enrichment of nucleosome-size 307 

densities along this axis. Instead, the majority of the kinetochores probably bind kMTs 308 

off-axis in vivo, which is a phenotype of purified kinetochores (Gonen et al., 2012). Our 309 

cryotomograms are consistent with a model in which the yeast kinetochore is a highly 310 

flexible structure and with its mass spread over a large volume (Dimitrova et al., 2016) 311 

(Steve Harrison, personal communication]. 312 

 313 

A model for microtubule-driven chromosome movement 314 

Yeast chromosomes move poleward along kMTs by two different mechanisms. Newly 315 

assembled yeast kinetochores first contact the side of a kMT and slide poleward by 316 

means of the kinesin Kar3 (Tanaka et al., 2005). Eventually, the kMT plus end contacts 317 

the kinetochore, leading to an “end-on” interaction and kMT-driven chromosome 318 

poleward movement (Kitamura et al., 2007; Tanaka et al., 2007; Tanaka et al., 2005). 319 

There are two popular models of kMT-driven chromosome poleward movement. In the 320 

ratchet model (Hill, 1985), kinetochores attach to the spindle by numerous weak 321 

interactions and undergo a random walk along kMTs, but have biased poleward 322 

movement by the receding plus end. In the forced-walk model (Efremov et al., 2007), 323 
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the depolymerizing protofilaments push a strongly bound kinetochore and force it to 324 

slide poleward. We did not observe any instance of Dam1C/DASH in contact with the 325 

protofilaments’ curved tips in any of the three conditions. Contact between 326 

Dam1C/DASH and the protofilaments’ curved tips must therefore be transient. We did 327 

frequently observe contacts between the Dam1C/DASH bridge and the MT’s flat 328 

surface. To explain these observations, we propose a model that incorporates ideas 329 

from both the forced-walk and ratchet models (Fig. 6B). Steps 1 - 2: Once the kMT 330 

surface underneath Dam1C/DASH becomes curved enough, bridge detachment is 331 

triggered. Step 3: If a sufficient number of Dam1C/DASH heterodecamers lose contact, 332 

then the Dam1C/DASH ring can diffuse. Step 4, equivalent to step 1: Once the 333 

Dam1C/DASH ring translates to a position where straight protofilaments are available, 334 

its bridges can reattach. As the kMT shortens, Dam1C/DASH heterodecamers must 335 

cycle between attached and detached states, biased poleward by transient steric 336 

interactions between Dam1C/DASH and protofilament curved tips. Human kinetochores 337 

may also use this kMT-driven segregation mechanism if the functional homolog of 338 

Dam1C/DASH, called Ska1 (Abad et al., 2014; Hanisch et al., 2006; Janczyk et al., 339 

2017; van Hooff et al., 2017; Welburn et al., 2009; Zhang et al., 2017), can switch 340 

rapidly between bound and unbound states.  341 
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MATERIALS AND METHODS 342 

 343 

Cell strains 344 

All strains used in this study are detailed in Table S2. 345 

 346 

Cell culture and metaphase arrest 347 

Strain US1375 was grown in 50 ml YEPG (YEP: 10% yeast extract, 20% peptone, 348 

supplemented with 2% galactose and 2% raffinose) at 30°C, 250 RPM, to mid-log 349 

phase (OD600 = 0.5 - 1.0) before a change of growth medium to YEPD (YEP with 2% 350 

glucose). All growth-medium changes were done by draining YEPG with a vacuum filter, 351 

washing with twice the volume of YEPG, and then resuspending the cells in YEPD. 352 

Next, the cells were kept in YEPD at 30°C for 3 hours to arrest at metaphase. Right 353 

before self-pressurized freezing, the cells were checked by light microscopy for signs of 354 

large buds, which indicates successful metaphase arrest. 355 

 356 

Metaphase arrest without cohesion 357 

Strain US4780 was grown in YEPD without methionine overnight, then arrested in G1 358 

phase by addition of alpha factor to 5 µg/ml. The cells were then washed free of alpha 359 

factor and then arrested at metaphase by incubation in YEP + raffinose + methionine 360 

medium for 4.5 hours. Metaphase-arrested cells were then incubated in YEPG for 1.5 361 

hours to induce TEV protease expression.  362 

 363 

Nocodazole arrest 364 
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Strains US1363 and US8133 were grown overnight in YEPD before arresting at G1 365 

phase by incubation in YEPD containing 0.8 µg/ml alpha factor for 3 hours. The arrested 366 

cells were then washed free of alpha factor and released into YEPD containing 15 µg/ml 367 

nocodazole. Cells were self-pressurized frozen after 4 hours of incubation.  368 

 369 

Immunofluorescence 370 

Yeast cells were collected by pelleting 1 ml of liquid culture at 15,000 x g for 1 minute. 371 

The pellet was then fixed in KPF (100 mM K2HPO4, 4% paraformaldehyde) at 22°C for 372 

1.5 hours. The cells were then washed three times with 1 ml 100 mM K2HPO4, then 373 

once with 1 ml SB (1.2 M sorbitol, 100 mM phosphate-citrate). Next, the cells were 374 

incubated at 30°C in 200 µl SB containing glusulase and zymolase for cell wall 375 

digestion. The resulting spheroplasts were washed with SB and then incubated with 376 

primary antibody (diluted 1:1000) for 2 hours at 22°C. After washing out the unbound 377 

primary antibody with BSA-PBS (1% BSA, 40 mM K2HPO4, 10 mM KH2PO4, 150 mM 378 

NaCl), the spheroplasts were incubated with secondary antibody (diluted 1:2000) for 2 379 

hours at 22°C. After washing out excess secondary antibody with BSA-PBS, the 380 

spheroplasts were suspended in 5 µl of mounting media (Vectashield H-1200, Vector 381 

Laboratories, Burlingame, CA) and imaged using a Perkin Elmer spinning disc confocal 382 

microscope. 383 

 384 

Dam1C/DASH expression, purification and assembly 385 

Dam1C/DASH heterodecamers were expressed and purified using slightly modified 386 

published protocols (Miranda et al., 2005; Westermann et al., 2005). All protein buffers 387 
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contained protease inhibitor (cOmplete, Sigma, St. Louis, MO). The plasmid 388 

pC43HSK3H (Miranda et al., 2005) was transformed into BL21 Rosetta 2 (DE3) pLysS 389 

cells. This plasmid expresses all ten Dam1C/DASH polypeptides (Dam1p, Dad1p, 390 

Dad2p, Dad3p, Dad4p, Duo1p, Ask1p, Spc19p, Spc34p, Hsk3p). Cells were grown to 391 

OD600 = 0.4, then induced by addition of IPTG to 1 mM. After 4 hours of induction at 392 

37°C, the cells were pelleted by centrifugation at 5,000 x g for 15 minutes. The cells 393 

were resuspended in 30 ml sonication buffer (20 mM sodium phosphate pH 6.8, 500 394 

mM NaCl, 1 mM EDTA, 20 mM Imidazole, 0.5% v/v Triton X-100) and lysed by 395 

sonication at 4°C for 5 minutes (power: 500 W, frequency: 20 kHz; amplitude: 35%, 396 

pulse: 0.5 s, elapsed: 0.5 s). The lysates were then centrifuged at 15,000 x g for 30 397 

minutes to remove the debris. Ni-NTA agarose beads (5 ml) were exchanged into 398 

sonication buffer by twice pelleting at 100 x g for 2 minutes, then resuspending in 399 

sonication buffer. The Ni-NTA beads were then mixed with the lysates and incubated at 400 

4°C for 2 hours. Next, the Ni-NTA beads were pelleted by centrifugation at 2,000 x g for 401 

2 minutes and washed with sonication buffer twice. Elution buffer (20 ml) was added 402 

into the Ni-NTA beads and rotated overnight at 4°C at 200 RPM. The eluate was 403 

centrifuged at 100 x g for 2 minutes. The supernatant was dialyzed to SP low-salt buffer 404 

(20 mM sodium phosphate pH 6.8, 150 mM NaCl, 1 mM EDTA) and concentrated to 1 405 

ml. The concentrated eluate was loaded into a 1 ml HiTrap SP sepharose cation-406 

exchange column. The fraction that eluted in 600 mM NaCl was further purified by gel 407 

filtration in a Superose 6 column in Superose buffer, which also functioned as the 408 

Dam1C/DASH storage buffer (20 mM sodium phosphate, pH 6.8, 500 mM NaCl, 1 mM 409 

EDTA). The largest peak was concentrated to 1 ml using a Vivaspin concentrator (2 ml) 410 
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and then aliquoted to 10 µl per tube. The aliquots were snap frozen with liquid nitrogen 411 

and stored at -80°C (Westermann et al., 2005). 412 

 413 

Preparation of control Dam1C/DASH around MTs 414 

Porcine tubulin (5 mg/ml, T240, Cytoskeleton, Denver, CO) was polymerized into MTs 415 

and stabilized with Taxol following a published protocol (Westermann et al., 2005), with 416 

modifications. The incubation time was extended to 2 hours. The purified Dam1C/DASH 417 

heterodecamers (1 mg/ml) were incubated with Taxol-stabilized MTs (5 mg/ml) for 20 418 

minutes at 22°C. For the cryomicrotomy control, purified Dam1C/DASH heterodecamers 419 

(2.3 mg/ml) were incubated with Taxol-stabilized MTs (5 mg/ml) for 30 minutes at 22°C. 420 

Then, an equal volume of 80% dextran (Mr ~ 6,000) was added to the solution and 421 

gently mixed before self-pressurized freezing. 422 

 423 

Plunge freezing and self-pressurized freezing of Dam1C/DASH around MTs 424 

Dam1C/DASH-MT complexes (3 µl) were applied on the carbon side of a Quantifoil 2/2 425 

grid (Quantifoil Micro Tools GmbH, Großlöbichau, Germany). Gold colloids (10-nm, BBI 426 

solutions, Cardiff, UK) were added as tomographic alignment fiducials. The colloids (20 427 

µl) were first pelleted and the supernatant was removed. Dam1C/DASH-MT complexes 428 

(3 µl) were then mixed with the gold pellet and applied to the EM grid. The grid was 429 

blotted for 2 seconds with force 2 and then plunged in liquid ethane using a Vitrobot 430 

(Thermo, Waltham, MA), set to 100% humidity at 4°C. 431 

 432 

Self-pressurized freezing 433 
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Cells and cryomicrotomy control samples were self-pressurized frozen based on a 434 

previous protocol (Yakovlev and Downing, 2011). Arrested cells (50 ml) were pelleted at 435 

5,000 x g, 4°C for 5 minutes. The pellet was then resuspended in 1 ml of YEPD or 436 

YEPG. The cells were re-pelleted at 3,000 x g for 1 minute at 22°C and the supernatant 437 

was discarded. Next, the cell pellet was resuspended gently in an equal volume of 50% 438 

dextran (Mr ~ 6,000). The resulting mixture was drawn into a copper tube (0.45 mm 439 

outer diameter) using a syringe-style loading tool (Part 733-1; Engineering Office M. 440 

Wohlwend, Sennwald, Switzerland). Both ends of the copper tubes were tightly clamped 441 

shut before being dropped into liquid ethane. 442 

 443 

EM grid preparation for cryosections 444 

Parallel-bar grids (G150PB-CU, EMS, Hatfield, PA) with continuous carbon film were 445 

used for serial cryo-ET. The grids were plasma cleaned at 15 mA for 45 seconds. To 446 

coat the grids with gold fiducials, the carbon side of the grids were covered with 4 µl of a 447 

solution containing 0.1 mg/ml BSA and 10-nm gold fiducials in water (BBI). The coated 448 

grids were air dried overnight then stored in a dry box until use. 449 

 450 

Cryomicrotomy 451 

All cryomicrotomy was done with a UC7 / FC7 cryomicrotome (Leica Microsystems, 452 

Vienna, Austria). The frozen copper tubes were trimmed with a diamond trimming knife 453 

(Diatome, Hatfield, PA) until amorphous ice was exposed. The sample was then further 454 

trimmed to produce a 130 µm x 55 µm x 30 µm (length x width x height) mesa. Next, 455 

100-nm-thick cryosections were cut from the mesa using a 35° diamond knife (Diatome) 456 
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to produce a cryoribbon, under the control of a micromanipulator (Ladinsky, 2010). The 457 

ribbon was picked up using a fiber tool and carefully placed onto an EM grid, parallel to 458 

the long bars like in Fig. 1D, and then attached by charging with a Crion device (Leica). 459 

A laser window was sometimes used to flatten the cryoribbon on the grid. The grid was 460 

then stored in liquid nitrogen until imaged. Owing to sensitivity of serial cryotomography 461 

to cell positions being occluded by contaminants, only the grids that had the minimum 462 

amount of ice contamination were used. We also devised new cryotools to further 463 

minimize ice contamination and facilitate cryomicrotomy (Ng, in preparation). 464 

 465 

Electron cryotomography of in vitro Dam1C/DASH + MT 466 

Tilt series of in vitro Dam1C/DASH + MT samples were collected using Tomo4 467 

(Thermo). Tilt series of +60° to -60° with an increment of 2° were collected at cumulative 468 

dose of 100 - 130 e/Å2. For defocus phase-contrast data, the nominal defocus ranged 469 

from -10 µm to -14 µm. For Volta phase-contrast data, the nominal defocus was -0.5 470 

µm. Tomographic reconstructions were done using the IMOD program Etomo (Kremer 471 

et al., 1996; Mastronarde, 1997; Xiong et al., 2009). Sequential cryotomograms were 472 

joined using Etomo. 473 

 474 

Serial electron cryotomography 475 

Serial cryo-ET data was collected using Tomo4. First, cryosections were imaged at low 476 

magnification (2,878 x) to locate positions that showed the nucleus. Next, a single high-477 

magnification (15,678 x) projection image was recorded at a dose sufficient (1 - 2 e/A2) 478 

to determine if that cell position had any spindle MTs. Successive positions centered on 479 
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the same cell were marked out in the sequential cryosections and saved as targets for 480 

tilt series collection. Tilt series of +60° to -60° with an increment of 2° were collected at 481 

a cumulative dose of 100 - 130 e/Å2. For defocus phase-contrast data, the nominal 482 

defocus ranged from -10 to -14 µm. For Volta phase-contrast data, the nominal defocus 483 

was -0.5 µm. See Tables S3 and S4 for more details. Tomographic reconstructions and 484 

CTF compensation were done using the IMOD program Etomo (Kremer et al., 1996; 485 

Mastronarde, 1997; Xiong et al., 2009). Sequential cryotomograms were joined using 486 

Etomo. 487 

 488 

Tomogram 3-D analysis 489 

MTs in each cryotomogram were located manually and then classified by morphology: 490 

plus ends were either blunt, tapered, or had a ram’s horn configuration; the MT 491 

midsections appeared as tubes; the minus ends were conical. All MT plus-ends were 492 

scrutinized for kinetochore structures. To determine the diameter of Dam1C/DASH 493 

rings, tomograms were oriented to present the en face view of Dam1C/DASH before 494 

taking the measurement. To determine distances between kMT plus ends and 495 

Dam1C/DASH rings, the tips of kMT plus ends and Dam1C/DASH rings were first 496 

treated as two circular disks, then the distance between the center of both disks was 497 

taken. 498 

 499 

Rotational symmetry analysis 500 

Rotational power spectra were estimated using the python script ot_rot-ps.py 501 

(https://github.com/anaphaze/ot-tools). This script calls on EMAN2 routines to calculate 502 
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correlation coefficients between the original image and copies of the image that were 503 

rotated in 1° increments (Tang et al., 2007). This correlation function is then subjected 504 

to a 1-D Fourier transform, which can then be inspected for the highest degree of 505 

symmetry. 506 

 507 

Template matching of reconstituted Dam1C/DASH rings 508 

PEET was used to automatically find candidate positions of all ring-shaped 509 

macromolecular complexes in cryotomograms of Dam1C/DASH reconstituted on MTs 510 

(Heumann, 2016). First, a sparse series of model points were seeded in the lumens of 511 

MTs that were encircled by Dam1C/DASH rings. Extra points were then automatically 512 

added with Andrew Noske’s curve tool, implemented in the IMOD program 3dmod. Two 513 

types of reference volumes were tested: 1) a lone featureless 50-nm-diameter ring and 514 

2) this same ring encircling a short featureless 25-nm-diameter tube with 4-nm-thick 515 

walls. To minimize the effects of densities from the buffer and especially the MTs that 516 

protrude beyond the plane of the ring, the subvolumes were masked with a ~ 13-nm-tall, 517 

60-nm-diameter cylinder that completely encloses the Dam1C/DASH ring. To assess 518 

the performance of the template-matching runs, the “save individual aligned particles” 519 

option was enabled in PEET. At the end of the search, overlapping hits were 520 

automatically removed by the PEET removeDuplicates routine. To minimize the number 521 

of false negatives, the correlation-cutoff was set to 0. 522 

 523 

Subtomogram classification and averaging 524 
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Subtomogram analysis was performed using RELION 2.0 and 2.1 with the 2-D and 3-D 525 

classification routines (Bharat and Scheres, 2016; Kimanius et al., 2016). The centers of 526 

mass of each template-matching hit were imported in RELION. A preliminary round of 2-527 

D classification did not reveal any “junk” classes, e.g., ice crystals, contaminants, and 528 

partial rings, probably because the reference model (ring around a short tube) does not 529 

resemble the junk classes found in typical cryo-EM samples (Bharat et al., 2015). All 530 

template-matching hits were then subjected to 3-D classification, using a featureless 50-531 

nm-diameter ring as an initial reference. The influence of buffer, MT, and nearby 532 

Dam1C/DASH densities was minimized by the application of a “soft” edged lifesaver-533 

shaped mask (15-nm thick, with 18- and 30-nm inner and outer radii, respectively). An 534 

initial round of asymmetric 3-D classification revealed complete rings highly tilted to 535 

various degrees around the MT, partial rings, and spirals; the latter two classes of 536 

Dam1C/DASH assemblies were excluded from subsequent analysis. The remaining 537 

classes were very similar and had signs of 17-fold rotational symmetry. Dam1C/DASH 538 

rings belonging to the class with the clearest 17-fold symmetry were subjected to 3-D 539 

autorefinement, using the same mask as before, and with 17-fold symmetry imposed. 540 

For in vivo subtomogram averaging, the two most complete rings with the 541 

strongest 17-fold rotational power were aligned to a featureless 50-nm-diameter ring 542 

using PEET. Seventeen-fold symmetry was then enforced with the Bsoft program bsym 543 

(Heymann and Belnap, 2007). A 12-nm thick ring-shaped mask was applied to eliminate 544 

the MT and nearby nucleoplasmic densities. 545 

 546 

Figures 547 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/299487doi: bioRxiv preprint first posted online Apr. 11, 2018; 

http://dx.doi.org/10.1101/299487
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 

All cryotomographic slices were generated with the 3dmod slicer tool. Isosurface 548 

images were rendered with UCSF Chimera (Pettersen et al., 2004). Cartoons and figure 549 

layouts were composed with Adobe Illustrator and Photoshop (Adobe Systems, San 550 

Jose, CA). 551 

 552 

Data sharing 553 

The 17-fold-symmetrized subtomogram average of reconstituted Dam1C/DASH rings 554 

from Fig. S3A was deposited in the EMDataBank as EMD-6912. The serial 555 

cryotomogram that comprise the metaphase spindle from Fig. 3B were deposited in the 556 

EMDataBank as EMD-6914. The tilt series for all cryotomograms used to make figures 557 

in this paper were deposited in the Electron Microscopy Public Image Archive as 558 

EMPIAR-10159.  559 
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 752 

Figure 1. Dam1C/DASH oligomerizes into partial and complete rings in vitro 753 

(A) Cryotomographic slices (4.6 nm) showing front views of partial (left) and complete 754 

(right) Dam1C/DASH rings assembled around MTs. The lower row shows the same 755 

rings but rotated 90° around the horizontal axis. Green arrowheads: densities of 756 

adjacent Dam1C/DASH oligomers; green rectangles: approximate planes of the partial 757 

or complete ring taken in the upper panels. (B) Three-dimensional models of 758 

Dam1C/DASH and MT complexes corresponding to upper and lower rows in panel A. 759 
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(C) Two examples of Dam1C/DASH rings with bridges (green arrows), in the front (left) 760 

and side (right) views. (D) Asymmetric 3-D class averages of Dam1C/DASH rings 761 

around MTs. Repeat subunits are numbered for class 1. Classes 2 and 3 (not shown) 762 

are very similar to class 4 and were included in the 49%. The upper image is the front 763 

view. The middle and lower panels are sequentially rotated 45° around the horizontal 764 

axis. Green arrowheads: protrusions. Blue arrow: position in class average 4 that 765 

deviates from 17-fold symmetry. All density maps were masked to exclude the MT and 766 

contoured at 0.1 σ above the mean. (E) Enlarged, cutaway view of a 17-fold 767 

symmetrized Dam1C/DASH ring, with landmark motifs labeled. Note that the bridges 768 

appear shorter than in the individual subtomograms because their structures are 769 

extremely heterogeneous.  770 
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 771 

Figure 2. Strategy to find kinetochores in vivo 772 

(A) Schematic of kinetochore states studied in this paper, not to scale. Sister 773 

chromosomes (pale-blue rods) are held under tension (magenta arrows) in metaphase 774 

when kMT (magenta tubes) pulling forces are transmitted by cohesin (curved lines). 775 

Gray vertical bars: spindle-pole bodies. Tension at the kinetochores (green) can be 776 

eliminated either by the disruption of the kMTs with nocodazole or the conditional 777 

cleavage of mutant cohesin with TEV protease. This color scheme is used throughout 778 

the paper. (B) Immunofluorescence image of a Cdc20-depleted cell, with Dam1p-GFP 779 

in green and Tubulin in magenta. Owing to the merged channels, Dam1C/DASH 780 

appears white. (C) Cartoon of a mitotic yeast cell, with organelles drawn to approximate 781 

scale. The nucleus (pale blue circle), spindle (magenta lines), and kinetochores (green 782 
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stars, not to scale) are colored. Cyan lines illustrate at scale a series of seven ~ 100-nm 783 

cryosections. (D) Serial cryotomography strategy. Cryo-EM images of sequential 784 

cryosections of the same cell mounted on a parallel-bar grid are shown enlarged ~ 100-785 

fold on the right.  786 
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 787 

Figure 3. Architecture of metaphase spindles and outer kinetochores 788 
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(A) Cryotomographic slice (18 nm) from a Cdc20-depleted cell. Major features are 789 

annotated: cell membrane (yellow), mitochondria (salmon), endoplasmic reticulum 790 

(white), nucleus (blue). The black dashes outline the spindle. A few spindle MTs are 791 

indicated with magenta arrowheads. (B) Three-dimensional model of a half spindle, 792 

spanning 7 sequential sections. Dark and light blue: inner and outer nuclear 793 

membranes. Magenta tubes: spindle MTs. Green rings: Dam1C/DASH. Inset: schematic 794 

showing the structures that are modeled (saturated shading) and those that are not 795 

(washed-out shading). (C) Left: Enlargement of the spindle modeled in panel B and 796 

rotated to a view perpendicular to the spindle’s axis. Right: Transverse view of the same 797 

spindle; for clarity, polar MTs are omitted. Because the short axis crosses multiple 798 

cryosection interfaces, we are uncertain how long this spindle was in the unsectioned 799 

cell. This particular spindle also has an oval cross section due to microtomy 800 

compression along the X axis of the right panel. Black arrow: one example of a kMT 801 

with two partial rings. (D - F) Cryotomographic slices (6 nm) of Dam1C/DASH rings 802 

around kMTs. Green arrows point to bridges. The lower panels show schematics of the 803 

Dam1C/DASH (green), kMT (magenta), and kMT-associated protein (gray) densities. 804 

Panels D and F show front views of a complete and partial ring, respectively. Panel E 805 

shows a side view of a complete ring. (G) Rotationally averaged density maps of two 806 

individual complete Dam1C/DASH rings in vivo, masked to exclude the kMT, contoured 807 

at 1σ above the mean. Top: front view. The middle and lower rows are sequentially 808 

rotated 45° around the horizontal axis. Green arrowheads: protrusions. The plus and 809 

minus signs indicate the polarity of the encircled kMT. If four or more decamers 810 

(outlined by blue dashes) were absent, there would be a gap > 25 nm.  811 
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 812 

Figure 4. Architecture of spindles in nocodazole-treated cells 813 

(A) Immunofluorescence images of three major spindle morphologies in nocodazole-814 

treated cells. A small minority of the cells had ambiguous morphologies and were not 815 

classified. The percentage belonging to each class is printed in the lower row (n = 227). 816 

(B) Cryotomographic slices (10 nm) of spindle and cytoplasmic MTs. The plus end is 817 

oriented upward in each panel. Green arrows: Dam1C/DASH densities. (C) Model of a 818 
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nocodazole-disrupted spindle with complete Dam1C/DASH rings associated with short 819 

MTs. Part of the bottom-most Dam1C/DASH ring (black arrow) could not be modeled 820 

because it was located near the cryosection’s surface. Green arrow: Dam1C/DASH ring 821 

that is enlarged in panel D. Inset: schematic showing the effect of nocodazole 822 

treatment. (D) Left: cryotomographic slice (8 nm) showing the front view of a complete 823 

Dam1C/DASH ring on a short kMT. Right: the same cryotomographic slice but 824 

annotated with green dashes over the Dam1C/DASH densities and magenta dashes 825 

over the MT densities. (E) Model of unattached Dam1C/DASH oligomers and MT 826 

fragments in the nucleoplasm. Green arrow: partial Dam1C/DASH ring that is enlarged 827 

in panel F. (F) Left: cryotomographic slice (8 nm) showing unattached Dam1C/DASH 828 

partial rings. Right: the same cryotomographic slice but annotated with green dashes 829 

overlaying the Dam1C/DASH densities.  830 
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 831 

Figure 5. Architecture of spindle machinery in mitotic cells without cohesion  832 

(A) Immunofluorescence image of a metaphase-arrested cell (Cdc20 depleted) in which 833 

tension is absent because the cohesin subunit Scc1 is cleaved by TEV protease.  Blue: 834 

DNA. Magenta: MTs. Inset: schematic showing the loss of cohesion. (B) Serial cryo-ET 835 

model of one such cell. The nuclear envelope is colored blue and the spindle MTs 836 

colored magenta. The few Dam1C/DASH rings that were found are colored green. Note 837 

that the discontinuities in the nuclear envelope model are from the interfaces between 838 
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adjacent cryosections, which could not be accurately modeled. (C) Enlargement of the 839 

spindle modeled in panel B, rotated to a view perpendicular to the spindle’s axis. (D) 840 

Cryotomographic slices (6 nm) of front views of complete (left) and partial (right) 841 

Dam1C/DASH rings around kMTs. (E) Box-and-whisker plots and raw values (colored 842 

circles) of the distances between kMT plus ends and Dam1C/DASH ring centers of 843 

mass. Two Dam1C/DASH rings were located in front of kMT plus ends, which gave rise 844 

to negative distance values. Meta: cells arrested in metaphase. TEV: cells arrested in 845 

metaphase and with Scc1 cleaved. Noc: cells treated with nocodazole. ns: not 846 

significant, Student’s t-test p > 0.05. Asterisk: F-test of equal variance p < 0.01.  847 
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 848 

Figure 6. A multi-scale model of the yeast mitotic machinery in vivo 849 

(A) Cartoon of clusters of Dam1C/DASH rings, viewed along the spindle axis. 850 

Dam1C/DASH (green) can only form complete rings when attached to kMTs (magenta). 851 

(B) Inset: cartoon of a single Dam1C/DASH-kinetochore attachment site. The boxed 852 

area is enlarged, showing a schematic of Dam1C/DASH in cross section (green) and 853 

tubulin dimers (magenta rounded rectangles). (1) The bridge is stably engaged with the 854 

flat surface of an MT until (2) the peeling protofilament becomes locally curved enough 855 

to destabilize the bridge’s interaction. (3) If enough Dam1C/DASH bridges are freed, the 856 

ring can diffuse along the kMT axis until it encounters a flat portion of the MT. (4) Here 857 

the bridge makes a stable contact again, attaching Dam1C/DASH to a position closer to 858 

the minus end.  859 
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Supplemental Information 860 

 861 

A multi-scale model of the yeast chromosome-segregation system 862 

 863 

Cai Tong Ng, Li Deng, Chen Chen, Hong Hwa Lim, Jian Shi, Uttam Surana, and Lu Gan  864 
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 865 

Figure S1. Example plunge-frozen MTs with Dam1C/DASH rings 866 

(A) Cryotomographic slice (60 nm) of MTs, encircled by Dam1C/DASH rings. The 867 

amorphous densities below and to the left of the white box are protein aggregates. (B) A 868 

series of cryotomographic slices (5 nm) through the position boxed in white in panel A, 869 

enlarged twofold. The magenta arrowhead and green arrows indicate a MT 870 

protofilament and Dam1C/DASH decamers, respectively.  871 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/299487doi: bioRxiv preprint first posted online Apr. 11, 2018; 

http://dx.doi.org/10.1101/299487
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

46 

 872 

Figure S2. Rotational symmetry analysis of Dam1C/DASH rings in vivo and in 873 

vitro 874 

(A) Left: Manually constructed image with perfect 17-fold (outer) and 13-fold (inner) 875 

symmetries. The radii of the outer and inner arrays and their aspect ratios are to the 876 

approximate scales of a front view of Dam1C/DASH around MTs. Right: Rotational 877 

power spectrum of the densities on the left. The Y axis is the power (arbitrary units) and 878 

the X axis is the rotational symmetry. Seventeen-fold symmetry is indicated by the black 879 

arrowhead. All subsequent plots have the same axes. (B - G) Left: Cryotomographic 880 

slices of Dam1C/DASH ring around MTs in vitro, rotated to the front view. Right: Power 881 

spectra of the cryotomographic slices. Bar = 25 nm for all cryotomographic slices. The 882 
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non-Dam1C/DASH densities were masked prior to power spectrum analysis, but the 883 

mask is not shown. Some rings, such as that in panels D and G, are distorted and do 884 

not produce a strong peak. The 15-fold symmetry peak comes from the MT densities 885 

(many MTs have 15-protofilaments in vitro), which can leak out of the mask due to the 886 

missing-wedge. Note that because these cryotomographic slices were taken coplanar 887 

with the Dam1C/DASH ring, the symmetry signal from the MTs are weak or absent 888 

when the ring is tilted. (H) Left: cryotomographic slice (6 nm) showing the front view of a 889 

Dam1C/DASH ring around a MT in vivo. Right: Rotational power spectrum.  890 
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 891 

Figure S3. Three-dimensional rotational symmetry analysis of Dam1C/DASH in 892 

vitro 893 

(A) Subtomogram averages of Dam1C/DASH rings around MTs, without (C1) or with 894 

17-fold (C17) symmetry imposed. The unsymmetrized densities (C1) and subunit 895 

numbering are reproduced from Fig. 1D. Only the most symmetric complexes, 896 

corresponding to those that resemble Class 1 in Fig. 1, were symmetrized. The upper 897 

row is the front view. Each row below is sequentially rotated 45° around the horizontal 898 

axis. (B) On the basis of the Fourier-shell correlation = 0.143 criterion, the resolution of 899 

the 17-fold symmetrized reconstruction is 32 Å.  900 
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 901 

Figure S4. Dam1C/DASH rings can be visualized in cryosections 902 

Dam1C/DASH rings and MTs were assembled in vitro, high-pressure frozen, and then 903 

cryosectioned. Upper row: cryotomographic slices (6 nm) of Dam1C/DASH rings around 904 

MTs. Lower row: dashed lines corresponding to Dam1C/DASH (green) and MT 905 

(magenta) densities have been superposed on a copy of the upper panel.  906 
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 907 

Figure S5, part 1. Serial cryotomograms 1 - 3 of a metaphase yeast cell.  908 

(Upper left panel) Cartoon of a cell nucleus, bounded by a nuclear envelope (double 909 

blue lines). Seven sequential sections are shown, bordered by vertical gray dashes. 910 

Sections are numbered at the upper left of each panel. (Panels 1 - 3) Cryotomographic 911 

slices (20 nm) of 3 sequential cryosections of a metaphase cell. The outer nuclear 912 
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membrane is outlined in blue dashes in each panel. The plasma membrane is outlined 913 

by a solid yellow line.  914 
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 915 

Figure S5, part 2. Serial cryotomograms 4 - 7 of a metaphase yeast cell.  916 
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 917 

Figure S6. Dam1C/DASH bridges are conformationally heterogeneous in vivo 918 

(A) Cryotomographic slices (5 nm) showing four examples of bridges (green arrows) on 919 

both complete and partial Dam1C/DASH rings (green dashes) attached to kMT walls 920 

(magenta dashes) in metaphase cells. For clarity, the upper and lower panels show the 921 
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same densities but with different sets of annotations. (B) Same structures as in panel A 922 

but rotated 90° around the horizontal axis.  923 
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 924 

Figure S7. Curved protofilaments rarely contact Dam1C/DASH in vitro 925 

(A) Cryotomographic slices (4.6 nm) of the flared ends of MTs assembled with 926 

Dam1C/DASH in vitro. Green arrowheads indicate the Dam1C/DASH density closest to 927 

protofilaments’ curved tip. Scale bar, 25 nm. (B) Same as in panel A but for MTs 928 

showing the ram’s horn tip motifs. Note that some MTs appear narrower than 25 nm in a 929 

subset of slices taken closer to the surface of the MT. Another subset of MTs have 930 

lower contrast because they were oriented almost perpendicular to the tilt axis; this is a 931 

well-known missing-wedge effect that changes the appearance of tubular structures.  932 
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 933 

Figure S8. Loss of tension changes the spindle shape and kinetochore 934 

distribution 935 

(A) A model of a portion of a metaphase spindle. MTs are magenta and the nuclear 936 

envelope membranes are blue. (B) Models of two metaphase spindles with Scc1 937 

cleaved. These models came from single cryosections that were cut almost exactly 938 

transverse to the spindle axis. In metaphase cells without tension (Scc1 cleaved), the 939 

spindle MTs are arranged in isolated bundles surrounding a MT-free core. The spindle 940 

on the right (boxed) includes Dam1C/DASH rings (green) and is enlarged 3.5-fold on 941 

the right inset. Note that Dam1C/DASH rings within the cluster (green brackets) were 942 

spread out along spindle axis (coming out of the image) and were not in contact.  943 
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Table S1. Summary of observations 944 

Condition Spindle Attach Tension SAC Dam1C/DASH rings kMT 
Complete Partial n nm 

Metaphase Intact + + OFF 39% 61% 46 50 - 200+ 

Nocodazole 
treatment 

MT stubs + − ON 86% 14% 7 20 - 50 

absent − − ON 0% 100% 37 n/a 

Metaphase, 
Scc1 cleaved Distorted + − ON 39% 61% 33 50 - 200+ 

 945 

n/a: kMT length unknown because they were not within the same cryosection as the 946 

kinetochore. Note that out of 86 attached Dam1C/DASH rings, kMT-tip-to-947 

Dam1C/DASH distances could be measured for only 56 of them.  948 
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Table S2. Strains used for this study 949 

Strain Genotype Origin Experiment 

US1375 MATa ura3 cdc20D: LEU2 his3 GAL-
CDC20::TRP1 
 

Liang, 
2012 

Metaphase arrest 

US1363 MATa bar1Δ ade2-1 can1-100 leu2-3 
his3-11 ura3 trp1-1 (Wild type) 
 

Krishnan, 
2004 

Nocodazole 
treatment 

US8133 MATa bar1-1, ura3-1, leu2-3,112, his3-
11, can1-100, ade2-1 Dam1-GFP:TRP1 
 

This study 

US4780 MATa, MET3-HA-CDC20: URA3, scc1D: 
HIS3, SCC1TEV268-HA3-LEU2, GAL-
NLS-myc9-TEV protease-NLS2::TRP1, 
tetR-GFP: HIS3 

This study Metaphase arrest, 
Scc1 cleaved 

  950 
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Table S3. Imaging parameters 951 

Sample S. cerevisiae cells Dam1C/DASH + MT, 
cryosections 

Dam1C/DASH + MT, 
plunge frozen 

Grid type CF-42-2C-T; 
continuous carbon 

CF-22-2C-T 
(Protochips) Quantifoil R2/2 

Microscope Titan Krios 

Voltage 300 kV 

Gun type FEG 

Camera Falcon II Direct Detector 

Software TOMO4 

Calibrated 
magnification 15,678 / 19,167 30,369 30,369 

Calibrated pixel 8.93 / 7.3 Å 4.61 Å 4.61 Å 

Defocus -8 to -15 μm 
Volta: -0.5 µm -10 μm -8 to -14 μm 

Volta: -0.5 µm 

Cumulative dose 100 - 130 e/Å2 

Dose fractionation 1 / cosine 

Tilt range ± 60° ± 60° ± 66° 

Tilt increment 2° 
 952 
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