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A Additional figures 1

Figure A. Average spectral clustering ARI
for nine clusters for DCSS, count, variance,
and index of dispersion thresholding on the
data matrix from the mouse cortex
scRNA-Seq experiment [1] and the clustering
workflow of [2]. We vary the error tolerance ε
with k = 5 for DCSS. Increasing the error
tolerance decreases the agreement between
clusters.

Figure B. Average spectral clustering ARI
for nine clusters for DCSS, count, variance,
and index of dispersion thresholding on the
data matrix from the mouse cortex
scRNA-Seq experiment [1] and the clustering
workflow of [2]. We vary the dimension k with
fixed error tolerance ε = 0.1 for DCSS.
Increasing the dimension increases the
agreement between clusters.

January 10, 2019 1/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216294727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B Brief linear algebra review [3] 2

The singular value decomposition (SVD) of any complex matrix A is A = UΣV†, 3

where U and V are square unitary matrices (U†U = UU† = I,V†V = VV† = I), Σ is 4

a rectangular diagonal matrix with real non-negative non-increasingly ordered entries. 5

U† is the complex conjugate and transpose of U, and I is the identity matrix. The 6

diagonal elements of Σ are called the singular values, and they are the positive square 7

roots of the eigenvalues of both AA† and A†A, which have eigenvectors U and V, 8

respectively. U and V are the left and right singular vectors of A. 9

Defining Uk as the first k columns of U and analogously for V, and Σk the square 10

diagonal matrix with the first k entries of Σ, then Ak = UkΣkV
†
k is the rank-k SVD 11

approximation to A, and Tk = AVk = UkΣk is a rank-k SVD truncation of A. 12

Furthermore, we refer to matrix with only the last n− k columns of U,V and last 13

n− k entries in Σ as U\k,V\k, and Σ\k. 14

The Moore-Penrose pseudo inverse of a rank r matrix A is given by 15

A+ = VrΣ
−1
r U†r. 16

The Frobenius norm ||A||F of a matrix A is given by ||A||F =
√

tr (AA†). Recall 17

that the trace has a cyclic property. The spectral norm ||A||2 of a matrix A is given by 18

the largest singular value of A. 19

The Eckart-Young-Mirsky theorem [4] states that, for A = UΣV† the SVD of A, 20

and B any complex matrix with compatible dimension to A and rank ≤ k, 21

Ak = argminrank(B)≤k||A−B||F
min

rank(B)≤k
||A−B||F =

√
tr (Σ\kΣ

T
\k). (S1)

The minimizer Ak is unique if and only if σk+1 6= σk, where σi are the respective 22

non-increasingly ordered singular values in Σ. 23

A square complex matrix F is Hermitian if F = F†. Symmetric positive semi-definite 24

(S.P.S.D) matrices are Hermitian matrices. The set of n× n Hermitian matrices is a real 25

linear space. As such, it is possible to define a partial ordering (also called a Loewner 26

partial ordering, denoted by �) on the real linear space. One matrix is “greater” than 27

another if their difference lies in the closed convex cone of S.P.S.D. matrices. Let F,G 28

be Hermitian and the same size, and x a complex vector of compatible dimension. Then, 29

F � G ⇐⇒ x†Fx ≤ x†Gx ∀x 6= 0. (S2)

A few simple consequences of the Loewner partial ordering are as follows. If F is 30

Hermitian and S.P.S.D., then 0 � F, where 0 is the zero matrix. 31

If F is Hermitian with smallest and largest eigenvalues λmin(F), λmax(F), 32

respectively, then, 33

λmin(F)I � F � λmax(F)I. (S3)

Let F,G be Hermitian and the same size, and let H be any complex rectangular 34

matrix of compatible dimension. The conjugation rule is, 35

If F � G, then HFH† � HGH†. (S4)

In addition, let λi(F) and λi(G) be the non-decreasingly ordered eigenvalues of F,G. 36

Then, 37

If F � G, then ∀i, λi(F) ≤ λi(G). (S5)
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Since the trace of a matrix F is the sum of its eigenvalues, tr F =
∑
i λi(F), and the 38

Loewner ordering implies the ordering of eigenvalues (Eq S5), the Loewner ordering also 39

implies the ordering of their sum, 40

If F � G, then tr F ≤ tr G. (S6)

Let F1,G1,F2,G2 be Hermitian and the same size. Then if F1 � G1 and F2 � G2, 41

then 42

F1 + F2 � G1 + G2. (S7)

As a simple consequence of Eq S2, consider the real matrices FFT and GGT , and 43

the vector x which has a one in row i and a minus one in row j, and zeros elsewhere. 44

The Euclidean distance between rows i, j with respect to G is di,j(G): 45

di,j(G) = xTGGTx. (S8)

Thus, if FFT � GGT , by Eq S2 with appropriate vectors, di,j(F) ≤ di,j(G)∀i, j. 46

Furthermore, let F be Hermitian and dimension n, Uk be a semi-orthogonal 47

rectangular matrix (U†kUk = I) of compatible dimension n× k, 1 ≤ k ≤ n, and λi(M) 48

refer to the non-decreasingly ordered eigenvalues of a matrix M. Then the upper bound 49

of the Poincaré separation theorem states, 50

λi(U
†
kFUk) � λn−k+i(F) i = 1, . . . , k. (S9)

We will also use the von Neumann trace inequality. Let F,G be complex matrices of 51

compatible dimension and minimum dimension n. Let σi(F), σi(G) be the respective 52

non-increasingly ordered singular values. Then 53

Re(tr FG†) ≤
n∑
i=1

σi(F)σi(G). (S10)

C Proof of Eq 2 54

Eq 2 is a generalization of Lemma 2 in [5]. The proof is as follows. The minimum norm 55

solution to the least-squares minimization problem minx ||Akx− ai||22 is, 56

x̂ = A+
k ai = VkΣ

−1
k U†kai. (S11)

And, by definition, 57

||x̂||22 = aTi UkΣ
−1
k V†kVkΣ

−1
k U†kai = aTi UkΣ

−2
k U†kai = τi(Ak). (S12)

D Proof of Eq 9 58

The upper bound (Eq 9) in Theorem 1 follows from the fact that 0 � I− SST and the 59

conjugation rule (Eq S4), 60

0 � A(I− SST )AT = AAT −CCT . (S13)

This upper bound is true for any column selection of A. A second application of the 61

conjugation rule gives the upper bound in Eq 9. 62

For the lower bound (Eq 9), consider the quantity 63

Y = Σ−1
k UT

kA(I− SST )ATUkΣ
−1
k = Vk

T (I− SST )Vk. By the conjugation rule (Eq 64
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S4) on Eq S13, 0 � Y, so Y is S.P.S.D. By the construction of DCSS (Eq 3) 65

tr Y =
∑
i/∈Θ

∑k
l=1 V

2
il = ε̃ < ε, and because Y is S.P.S.D., λmax(Y) ≤ tr Y. By Eq S3 66

and the previous facts, Y � λmax(Y)I � εI. As a result of the conjugation rule applied 67

to this upper bound, 68

UkΣkYΣkU
T
k = AkA

T
k −UkU

T
kCCTUkU

T
k � εAkA

T
k

(1− ε)AkA
T
k � UkU

T
kCCTUkU

T
k , (S14)

providing the lower bound of Eq 9. 69

For Eq 10, the lower bound of Eq 9 implies, 70

(1− ε)tr AkA
T
k ≤ tr UT

kCCTUk, (S15)

by Eq S6 and the cyclic property of the trace. Similarly, Eq S13 implies 71

tr CCT ≤ tr AAT . Since Uk is semi-orthogonal (UT
kUk = I), by Eq S9, every ordered 72

eigenvalue of UT
kCCTUk is smaller than its counterpart ordered eigenvalue of CCT . 73

Since the trace is the sum of eigenvalues, this implies Eq 10, 74

(1− ε)tr AkA
T
k ≤ tr UT

kCCTUk ≤ tr CCT ≤ tr AAT . (S16)

Note that if A is full rank and k = rank(A) = n, then Eq 9 becomes, 75

(1− ε)AAT � CCT � AAT . (S17)

E Proof of Eq 11 for random sampling 76

The following theorem pertains to a new spectral bound for the square C selected by 77

rank-k subspace leverage scores and the random sampling procedure from [6]). 78

Theorem 1. Let A ∈ Rn×d be a matrix of at least rank k and τi(Ak) be defined as in 79

Eq 1. Construct C by sampling t columns of A, reweighted to 1√
tpi

ai, with probability 80

pi = (τi(Ak) + γ1(τi(Ak) = 0))/(
∑d
i=1 pi), where 1() is the indicator function and γ is 81

a small, positive, non-zero number γ = minτi(Ak)>0(τi(Ak)). Let 82

m =
∑d
i=1 1(τi(Ak) = 0),

∑d
i=1 pi = k +mγ. If the number of selected columns 83

t ≥ 2
ε2 (k +mγ)

(
1 + 1

3ε
)

ln
(

16k
δ

)
, then with probability 1− δ, the matrix C satisfies: 84

(1− ε)AkA
T
k � UkU

T
kCCTUkU

T
k � (1 + ε)AkA

T
k . (S18)

If A is full rank and k = rank(A) = n, then Eq S18 becomes, 85

(1− ε)AAT � CCT � (1 + ε)AAT . (S19)

The proof of Theorem 1 is similar in structure to Theorem 3 in [7]. Theorem 3 in [7] 86

pertains to a different type of leverage score. 87

Consider the quantity Y = Σ−1
k UT

k (CCT −AAT )UkΣ
−1
k . Note the sign change 88

from Section Proof of Eq 9. This can be rewritten as, 89

Y =

t∑
j=1

Σ−1
k UT

k (cjc
T
j − 1

tAAT )UkΣ
−1
k

Y =

t∑
j=1

Xj ,

∀j, (Xj)i = 1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k with categorical probability pi.

(S20)
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If ||Y||2 ≤ ε, then −εI � Y � εI, and Eq S18 follows from this and the definition of 90

Y. Thus, the proof of Eq S18 relies on showing that ||Y||2 ≤ ε. We use an intrinsic 91

dimension matrix Bernstein inequality ( [8] , Theorem 7.3.1), specialized to Hermitian 92

matrices, to show that ||Y||2 is small with high probability. The Bernstein inequality 93

requires that, for a finite sequence Y =
∑t
j=1 Xj of random Hermitian matrices Xj of 94

the same size, 95

1. ∀j,E(Xj) = 0, 96

2. ∀j, ||Xj ||2 ≤ L, 97

3. and that
∑
j E(XjX

T
j ) � V. 98

Then, for ε ≥
√
||V||2 + L/3, 99

P(||Y||2 ≥ ε) ≤ 8 trV
||V||2 exp

(
− ε2/2
εL/3+||V||2

)
. (S21)

Requirement 1 is satisfied because, 100

E(Xj) =

d∑
i=1

pi(Xj)i = 1
tΣ
−1
k UT

k (

d∑
j=1

aia
T
i −AAT )UkΣ

−1
k = 0. (S22)

To show that requirement 2 is satisfied, we need the following fact: 101

Σ−1
k UT

k aia
T
i UkΣ

−1
k � τi(Ak)I. (S23)

Eq S23 follows from the fact that for all y ∈ Rk, 102

yTUkΣ
−1
k UT

k aia
T
i UkΣ

−1
k UT

k y = tr
((

yyT
) (

UkΣ
−1
k UT

k aia
T
i UkΣ

−1
k UT

k

))
≤ τi(Ak)yTy.

where the inequality comes from the Von Neumann trace inequality (Eq S10) applied to 103

the product of two rank 1 matrices. Using Eq S23 in the definition of Xi gives, 104

Xj = 1
tpi

Σ−1
k UT

k aia
T
i UkΣ

−1
k −

1
t I � 1

tpi
τi(Ak)I− 1

t I

= (k+mγ)τi(Ak)
t(τi(Ak)+γ1(τi(Ak)=0))I−

1
t I

� k+mγ
t I, (S24)

and ||Xj ||2 ≤ L = k+mγ
t follows immediately. 105

To show that requirement 3 is satisfied, we compute directly, 106

E(Y2) = tE(XjX
T
j )

= t

d∑
i=1

pi

((
1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k

)
·
(

1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k

))
= t

d∑
i=1

pi

((
1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k

)(
1
tpi

Σ−1
k UT

k aia
T
i UkΣ

−1
k

))
= t

d∑
i=1

pi

(
1

t2p2i
Σ−1
k UT

k aia
T
i UkΣ

−2
k UT

k aia
T
i UkΣ

−1
k

)
− 1

t I

�
d∑
i=1

(
1
tpi

Σ−1
k UT

k aia
T
i UkΣ

−1
k τi(Ak)I

)
− 1

t I
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� k+mγ
t

d∑
i=1

(
Σ−1
k UT

k aia
T
i UkΣ

−1
k

)
= k+mγ

t I = V. (S25)

It follows immediately that ||V||2 = k+mγ
t and tr V = k(k+mγ)

t . 107

Then, for ε ≥
√

k+mγ
t + k+mγ

3t , 108

P(||Y||2 ≥ ε) ≤ 8k exp
(
− tε2/2

(k+mγ)(ε/3+1)

)
≤ 1

2δ. (S26)

Solving for t as a function of ε, δ, and γ gives, 109

t ≥ 2
ε2 (k +mγ)

(
1 + 1

3ε
)

ln
(

16k
δ

)
. (S27)

Eq S18 also holds for C selected by the DCSS algorithm, as a consequence of Eq 9. 110

Thus DCSS selects fewer columns with the same accuracy for power-law decay for Eq 111

S18 when |Θ| < t. 112

References
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