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Abstract Recent observations indicate that many marine-terminating glaciers in Greenland and
Antarctica are currently retreating and thinning, potentially due to long-term trends in climate forcing. In
this study, we describe a simple two-stage model that accurately emulates the response to external forcing
of marine-terminating glaciers simulated in a spatially extended model. The simplicity of the model permits
derivation of analytical expressions describing the marine-terminating glacier response to forcing. We find
that there are two time scales that characterize the stable glacier response to external forcing, a fast time
scale of decades to centuries, and a slow time scale of millennia. These two time scales become unstable
at different thresholds of bed slope, indicating that there are distinct slow and fast forms of the marine
ice sheet instability. We derive simple expressions for the approximate magnitude and transient evolution
of the stable glacier response to external forcing, which depend on the equilibrium glacier state and
the strength of nonlinearity in forcing processes. The slow response rate of marine-terminating glaciers
indicates that current changes at some glaciers are set to continue and accelerate in coming centuries in
response to past climate forcing and that the current extent of change at these glaciers is likely a small
fraction of the future committed change caused by past climate forcing. Finally, we find that changing the
amplitude of natural fluctuations in some nonlinear forcing processes, such as ice shelf calving, changes the
equilibrium glacier state.

Plain Language Summary We develop a very simple mathematical model to explain how change
in climate causes change in marine glaciers. The model shows that this response mostly occurs in two
phases, a fast phase over tens to hundreds of years, and a slow phase over thousands of years. Glaciers have
a larger response when they are on flat bedrock or when changes in the length of their ice shelf occur due
to iceberg detachment. Even though some glaciers have not thinned or retreated significantly in recent
years because they sit on steep downward sloping bedrock, they may experience rapid thinning and retreat
in the future as they continue to respond to past climate change over thousands of years. Noise in climate
and other processes that cause glaciers to be noisy can potentially cause permanent changes in glacier size.
These results indicate that we should include noise when making predictions of glaciers changes so that we
can calculate uncertainty in future projections and the impact of noise on permanent glacier size.

1. Introduction

Marine-terminating glaciers transport ice from the interior of ice sheets toward the ocean where ice melts or
fractures into icebergs. Recent observations indicate that changes are underway in the speed, thickness, and
terminus position of many marine-terminating glaciers in Greenland (Bjørk et al., 2012; Felikson et al., 2017;
Moon et al., 2015) and Antarctica (Pritchard et al., 2009; Scheuchl et al., 2016). These changes are thought to
be caused by long-term trends in climate, which drive surface melting (Fettweis, 2007; Mernild et al., 2011;
Velicogna, 2009), ocean melting (Joughin et al., 2012; Rignot et al., 2010), and accelerated iceberg calving
(Joughin et al., 2008; Nick et al., 2010).

It has long been understood that glaciers act as integrators of external forcing (Nye, 1960, 1963a, 1963b,
1965). Stochastic noise in climate forcing is integrated by glaciers on a characteristic time scale set by glacier
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mass balance and geometry (Harrison et al., 2003; Jóhannesson et al., 1989), causing fluctuations of glacier
thickness, flux, and length that are superimposed on the background glacier state (Lüthi, 2009; Oerlemans,
2000; Roe & Baker, 2014). Glaciers also respond to persistent changes in climate forcing on this characteristic
time scale. Consequently, to evaluate whether recent retreat at individual mountain glaciers is caused by cli-
mate change or interannual variability, studies have compared the amplitude of stationary glacier variability
(i.e., variability drawn from a distribution whose properties do not change in time) to the magnitude of non-
stationary glacier changes caused by persistent trends in climate (Marzeion et al., 2014; Oerlemans, 2000; Roe
& O’Neal, 2009; Roe et al., 2017). However, such comparisons are inherently difficult where records of glacier
change are short compared to the slow response of glaciers to climate change.

In practice, complex numerical ice sheet models are used to calculate the discharge of ice from glaciers and
predict the long-term response of marine-terminating glaciers to future climate change (e.g., Favier et al.,
2014; Pattyn et al., 2012; Seroussi et al., 2017). However, recent studies have provided simple analytical expres-
sions for the dependence of ice discharge on local topographic and glaciological conditions, derived from
asymptotic analysis of glacier flow at the grounding line (Haseloff & Sergienko, 2018; Hindmarsh, 2012; Pegler,
2016; Schoof, 2007a; Schoof et al., 2017; V. C. Tsai et al., 2015). The balance between ice input from snowfall and
ice discharge to the ocean sets the equilibrium glacier state and determines the stability of marine ice sheet
grounding lines (Schoof, 2012). Consequently, these simple approximations for ice discharge are potentially
useful tools for simulating marine-terminating glacier change without using a complex ice sheet model.

Simulations of nonstationary change in marine-terminating glaciers often neglect the station-
ary, high-frequency variability in climate forcing. However, Mantelli et al. (2016) showed that in
marine-terminating glaciers with internally generated variability, the inclusion of realistic noise in accumu-
lation and surface temperature forcing may cause variability at decadal to centennial time scales that do
not arise in the absence of noise. Mulder et al. (2018) showed that noisy forcing can cause grounding lines
to transition across reverse-sloping beds, with the likelihood of unstable retreat found to be greater than
the likelihood of unstable advance. Such studies raise the possibility that together, noisy forcing and the
internal dynamics of glacier flow produce glacier variability that should be considered when interpreting
and simulating glacier change due to climate forcing.

In this study, we show that a simple model of ice fluxes in a marine-terminating glacier can accurately emulate
the most significant components of stochastic and nonstationary variability that appear in a flowline model
(section 2). We show (section 3) that stable marine-terminating glaciers respond to forcing on two charac-
teristic time scales separated by 1 to 2 orders of magnitude. These time scales vary with equilibrium glacier
state (which is set by internal dynamics) and become unstable at different thresholds of bed slope. We derive
(section 4) the glacier sensitivities to step, trend, and stochastic fluctuations in external forcing. These expres-
sions for the glacier sensitivity provide a first-order approximation of the glacier response to forcing without
the need for a complex numerical model. We show that these sensitivities depend on equilibrium glacier state
and the strength of nonlinearity in forcing processes. Finally, we show (section 5) that under certain circum-
stances, equilibrium glacier state depends on the strength of noisy forcing, indicating that marine-terminating
glaciers are nonlinear, state-dependent integrators of external forcing. We conclude (section 6) with a discus-
sion of the relevance of the time scales and sensitivities of the two-stage model, to observed variability of
marine-terminating glaciers in Greenland and Antarctica. We also suggest approaches for simulating future
marine-terminating glacier behavior that considers the role of noise in climate forcing and ice sheet processes.

2. Two-Stage Marine-Terminating Glacier Model

High-order numerical models are typically used to simulate the response of marine-terminating glaciers to
external forcing (e.g., Favier et al., 2014; Pattyn et al., 2012; Seroussi et al., 2017). In this section, we show
that a simple, two-stage model of a marine-terminating glacier (i.e., two stages of adjustment) can accurately
emulate the forced variability simulated in a more complex model. This two-stage model clearly shows the
role of different physical processes in the glacier response to forcing and is also simple enough to permit
derivation of the characteristic time scales (section 3) and sensitivities to different types of forcing (section 4).
We begin with the derivation of the two-stage model.

2.1. Model Derivation and Assumptions
The organizing principle of our two-stage model is tracking how ice enters, moves through, and then exits
a marine-terminating glacier. We consider a marine-terminating glacier with length L and spatially averaged
thickness H (schematic in Figure 1b). The length L spans the entire glacier domain from the ice divide (where
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Figure 1. (a) Example of an ice thickness and velocity profile simulated by a flowline model of a marine-terminating
glacier. See section 2.2 for model description. (b) Schematic of two-stage model. The bed geometry shown in schematic
is purely illustrative.

there is no horizontal ice flow) to the grounding line. Consequently, we can take the total glacier ice volume
to be V = HLW where W is spatially averaged glacier width. The only way ice enters the glacier is through
accumulation due to spatially averaged surface mass balance, P (the sum of accumulation and melting on the
glacier surface). Ice leaves the glacier through a grounding line flux (Qg),

dV
dt

= W
(

PL − Qg

)
. (1)

Carrying through the derivative, we rearrange to arrive at an equation for the evolution of spatially averaged
glacier thickness

dH
dt

= P −
Qg

L
− H

L
dL
dt

. (2)

where physically, the terms on the right-hand side are as follows: ice input due to spatially averaged surface
mass balance, ice output due to divergence of ice flux through the grounding line (

Qg

L
), and stretching due to

changes in overall glacier length ( H
L

dL
dt

).

In this study, we only consider scenarios where the time-averaged and spatially averaged surface mass balance
(P̄) is greater than zero, leading to a finite glacier length at steady state. We note however, that this does not
exclude the possibility that the glacier can lose ice (P < 0) during transient time periods when surface melting
exceeds accumulation through snowfall. We also note that climatological feedbacks may cause the surface
mass balance to be dependent on variations in glacier geometry (as in Harrison et al., 2003), though we do
not include such effects here under the assumption that they are small compared to ice flux feedbacks. If the
width of the glacier in the grounding zone is different from the average width of the upstream catchment area
of the glacier, we could also include a geometric multiplier on the surface mass balance term (i.e., PWUP∕WGZ),
which accounts for the fact that wide catchment areas may be funneled into narrow glacier outlets near the
grounding zone. We do not consider such geometric complications in the idealized analyses in this study,
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since the primary effect is to multiply the surface mass balance term. However, in using this simple model to
approximate specific glaciers, such geometric considerations may be important.

The grounding zone is the region upstream of the grounding line (Figure 1b), with length Lgz, thickness hg,
and volume Vgz = hgLgzW . The grounding line is, by definition, the location where ice is sufficiently thin to
float in seawater. Thus, the grounding line ice thickness is exactly at hydrostatic equilibrium with the local
water depth,

hg = −𝜆b(L), (3)

where 𝜆 = 𝜌w∕𝜌i is the ratio between the densities of seawater and glacial ice, and b(L) is the depth of the
bed below sea level at the grounding line. Thus, our model implicitly assumes that the glacier always remains
marine-terminating. In order to consider a glacier terminus that is not at flotation, we would need to substitute
this condition with another dynamical equation for terminus ice thickness and calving rate (as in Amundson,
2016). The length of the grounding zone is typically a few kilometers (for flat ice streams it may be tens of
kilometers), which is much shorter than the length of the entire glacier (Lgz ≪ L). Considering a local conser-
vation of ice mass in the grounding zone, we assume that ice is advected into the grounding zone from the
interior (Q) and is discharged by flux through the grounding line (Qg),

dVgz

dt
= W(Q − Qg), (4)

where the additional flux from local surface mass balance (PLgz) is assumed to be negligible. Carrying through
the derivative on the left-hand side, as we did for the large-scale glacier evolution equation (equation (2)),
we have

hg

dLgz

dt
+ Lgz

dhg

dt
= Q − Qg. (5)

Since the grounding zone length is included within the full ice stream length (L = Lint+Lgz where Lint is a quan-
tity that we assume changes negligibly compared to the grounding zone, where most longitudinal stretching
occurs in marine-terminating glacier), stretching and shrinking of the grounding zone length results in an
equal change in glacier length (i.e., dL∕dt = dLgz∕dt). We can then rewrite equation (5) as(

hg − 𝜆bxLgz

) dL
dt

= Q − Qg, (6)

where bx is the local bed slope. Since bx typically has the scale hg∕L (as assumed in Schoof, 2007a), we
can generally say that 𝜆bx Lgz ≪ hg. Consequently, we can write the evolution equation for grounding line
position as

dL
dt

= 1
hg

(
Q − Qg

)
. (7)

Since the grounding zone is very short, the grounding line flux in equation (7) has the form of a moving flux
boundary condition that sets the grounding line position. Changes in grounding line position are directly
caused by changes in the grounding zone flux balance (Q−Qg), which may be influenced by far-field changes,
such as fluctuations in upstream surface mass balance.

Equation (7) is combined with equation (2) to produce an evolution equation for the spatially averaged glacier
thickness (H)

dH
dt

= P −
Qg

L
− H

hgL

(
Q − Qg

)
(8)

Equations (7) and (8) form a complete two-stage dynamical model for the temporal evolution of a
marine-terminating glacier. In this two-stage marine-terminating glacier model, ice enters through a pre-
scribed surface mass balance, flows through the ice sheet interior toward the grounding zone, and then leaves
as a grounding line flux. The first equation tracks the bulk mass flows through the marine-terminating glacier
and the corresponding evolution of the glacier thickness. The second equation tracks the moving boundary
condition at the downstream edge of the glacier that controls the magnitude of ice flux out of the glacier.
The primary difference then, between this marine-terminating glacier model and previous simple models of
mountain glaciers (e.g., Harrison et al., 2003; Jóhannesson et al., 1989; Lüthi, 2009; Oerlemans, 2000; Roe &
Baker, 2014), is that mass loss occurs primarily through ice flux, rather than through negative surface mass
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balance. If these two equations have a stable solution, they must be associated with, at most, two distinct
time scales of glacier evolution (as we will see in section 3).

In marine-terminating outlet glaciers, ice in the glacier interior flows due to a combination of sliding at the
base and deformation in the ice column. In this study, we will assume a very general form for interior ice flux

Q = 𝜈
H𝛼

L𝛾
. (9)

This form generally holds when ice flux is occurring through a balance between gravitational driving stress
(𝜌igH 𝜕H

𝜕x
) and some resistive or shearing stresses within the ice or at the ice bed interface. For example, when

there is a leading order balance between gravitational driving stress (where 𝜕H
𝜕x

≈ H
L

) and basal shear stress

set by a Weertman-style friction law (e.g., Cu
1
n Weertman, 1957), the vertically -averaged ice flux is

Q =
(𝜌ig

C

)n H2n+1

Ln
, (10)

which gives 𝛼 = 7, 𝛾 = 3, and 𝜈 =
(

𝜌i g

C

)n
for the commonly assumed value of the Glen’s flow law exponent,

n = 3. However, if we instead wanted to capture interior ice flux though vertical shear deformation within the
ice column, then we would pick 𝛼 = 8 and 𝛾 = 3 (Cuffey & Paterson, 2010). By picking such a general form
of the interior ice flux, we admit a wide array of possible choices for the processes driving interior ice flow.
In this study, we use 𝛼 = 7 and 𝛾 = 3 to aid comparison between our simple model and more complicated
models of marine-terminating glacier flow, many of which assume that ice flows through sliding in the glacier
interior (e.g., Schoof, 2007a). In both cases, the H and L represent either global or spatially averaged quantities.
The resulting flux from the interior (Q) represents the scale of interior ice flux that is purely a function of the
large-scale glacier geometry. The advection of ice from upstream occurs through a spatially averaged flux,
which does not resolve localized anomalies of ice geometry that may result in localized anomalies of ice flux.
In section 6, we further discuss the consequences of such a spatially averaged ice flux.

Ice exits the grounded glacier by discharge through the grounding line or terminus. Various approximations
for the ice flux through the grounding line have been developed, with different assumptions regarding basal
friction and controls on ice shelf buttressing. However, regardless of particular assumptions, it is generally the
case that the flux of ice through the grounding line or terminus (Qg) is a function of the local ice thickness (hg)

Qg = Ωh𝛽

g , (11)

where 𝛽 is an exponent that can be derived from asymptotic boundary layer analysis of the grounding line
(Haseloff & Sergienko, 2018; Schoof, 2007a; Schoof et al., 2017; V. C. Tsai et al., 2015), other mathematical
approaches (Hindmarsh, 2012; Lingle, 1984) or estimated empirically for tidewater glacier termini (Pelto &
Warren, 1991). The Ω is a scalar parameter which incorporates the various factors (besides ice thickness) that
can influence ice flux in the grounding zone or near the terminus. In this study, we primarily (except in section
2.2) use two versions of the grounding line flux derived in Haseloff and Sergienko (2018), which both assume
strong buttressing by an ice shelf. In the limit that the ice shelf primarily loses mass through calving

Ω = (n∕2)n(n + 1)−(n+1) [𝜌ig
(

1 − 𝜆−1
)]n

AgL−n
s Wn+1

s , (12)

where n is the Nye-Glen flow law exponent, Ag is the Nye-Glen flow law coefficient, Ls is the length of the
buttressing ice shelf, and Ws is the width of the ice shelf. In this grounding line flux approximation, 𝛽 = n+1 =
4 and thus Qg has a strongly nonlinear dependence on local ice thickness. In the limit that the ice shelf primarily
loses mass through basal melting

Ω = (n + 1)−
1

n+1
[
𝜌ig

(
1 − 𝜆−1

)] n
n+1 A

1
n+1

g Ws

(
− ṁ

2

) n
n+1

, (13)

where ṁ is the basal melt rate (with the convention that ṁ < 0 indicates melting) and 𝛽 = 1. These particular
forms of the Qg(hg) relationship allow us to understand how changes in the ice shelf cause changes in the
thickness and grounding line position of a marine-terminating glacier (see section 4). However, we can equally
well use the Qg(hg) relationships derived in other studies (Schoof, 2007a; Schoof et al., 2017; V. C. Tsai et al.,
2015). This flexibility of assumptions is one of the benefits of using a low-order model.

Asymptotic approximations for Qg are not only valid for steady state glaciers but also describe the leading
order time-dependent evolution of a bulk glacier (as in equation (1)) when the grounding region is close to
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a steady state. This condition will be satisfied most of the time, because the grounding region adjusts on a
very fast time scale when compared to the rest of bulk glacier. Mathematically, these adjustment terms enter
as higher-order correction terms in the evolution equation of the grounding region (see, e.g., equation 3.37
in Schoof, 2007a). Indeed, previous studies (Drouet et al., 2013; Schoof, 2007b) and section 2.2 of this paper,
show that when the ice sheet is reasonably close to a steady state, such quasi-steady approximations to the
grounding line flux compare favorably to high-order numerical models of transient grounding line evolution.
That being said, the very fast adjustment time scale described in Schoof (2007a) is not necessarily resolved by
the two-stage model in this study.

2.2. Comparison to Flowline Model
In this section, we compare the simulated response of a marine-terminating glacier to external forcing in
our two-stage model with a spatially extended glacier model. This comparison is helpful in determining how
well the simplified dynamics of the two-stage model emulate a more complex model in terms of predicting
response to a range of different forcing amplitudes and time scales. We use a flowline model (similar to what is
described in Robel et al., 2014) with buttressing, a Weertman basal sliding law and fine horizontal resolution
(∼100 m) near the grounding line. Velocity is solved from the following momentum balance and boundary
conditions:

𝜕

𝜕x

(
2hA

− 1
n

g

||||𝜕u
𝜕x

||||
1
n
−1

𝜕u
𝜕x

)
= 𝜌igh

𝜕h
𝜕x

+ Cum (14)

u(x = 0) = 0 (15)[
2A

− 1
n

g h
||||𝜕u
𝜕x

||||
1
n
−1

𝜕u
𝜕x

]
x=L

= 1
2
𝜌ig

(
1 −

𝜌i

𝜌w

)
𝜃h(L)2, (16)

where 𝜃 is a dimensionless buttressing parameter. In this spatially extended model, ice flux is not prescribed
at the grounding line but arises from the formation of the grounding zone boundary layer, as described by
Schoof (2007a). The ice shelf is not explicitly simulated, but the buttressing effect is reproduced through
modification of the stress boundary condition at the grounding line by buttressing parameters 𝜃 (Haseloff &
Sergienko, 2018; Schoof, 2007b). Ice thickness changes through advection and surface mass balance,

𝜕h
𝜕t

+ 𝜕

𝜕x
(uh) = P, (17)

and reaches flotation at the grounding line

h(L) = −𝜆b(L). (18)

This numerical approach has been shown to accurately simulate marine-terminating glacier velocity and
grounding line dynamics in previous studies (Robel et al., 2014; Schoof, 2006, 2007b).

To facilitate comparison to this flowline model, we use a grounding line flux expression in the two-stage model

given in Schoof (2007a), where 𝛽 = m+n+3
m+1

and Ω =
[

Ag

(
𝜌ig

)n+1 (
𝜃(1 − 𝜆−1)

)n (4nC)−1
] 1

m+1
. We bring both

models to a stable equilibrium state on a downward sloping (prograde) bed, with a constant surface mass
balance and other parameters specified in Table 1. In both the two-stage and flowline models, the result-
ing equilibrium is a glacier of approximately 2,200-m average thickness (H) with a grounding line 445 km
from the ice divide (L). We then perform simulations (Figure 2) where stochastic interannual variability (P′) is
added to the time-averaged surface mass balance (P̄). The random year-to-year variations in surface mass bal-
ance are drawn from a Gaussian normal distribution with mean zero and standard deviation that is 1/3 of the
time-average surface mass balance. In both the two-stage and flowline models, we simulate the glacier vari-
ability forced by the same time series of noisy surface mass balance (Figure 2a), over 3 × 106 years, to obtain
stationary statistical measures of the glacier variability. These stochastic-forcing simulations are a useful way
to sample the response function for the marine-terminating glacier across a large range of frequencies.

White-noise forcing is the application of random perturbations to a model, drawn from a Gaussian distribu-
tion, and not depending on previous system state or perturbations. White-noise forces a system equally at
all time scales greater than or equal to the time scale at which the perturbations are applied. We use such
white-noise forcing (Figure 2a) to perturb the two-stage and flowline glacier systems at every yearly time step,
and integrated using the Euler-Maruyama method. Thus, in our system, white-noise forces the glacier at time
scales ranging from a year to tens of millennia. Figure 2 compares the simulated stochastic grounding line
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Table 1
Parameters Used in Comparison Simulations in Section 2.2

Parameter Description Value

Ag Nye-Glen law coefficient (Pa−n ⋅ s−1) 4.22 × 10−25

b0 Ice divide bed height (m) −100

bx Prograde bed slope 1 × 10−3

C Basal friction coefficient (Pa ⋅ m−1∕n ⋅ s1∕n) 7.624 × 106

g Acceleration due to gravity (m/s2) 9.81

m Weertman friction law exponent 1/3

n Nye-Glen law exponent 3

P̄ Time-averaged accumulation rate (m/year) 0.3

𝜎P Accumulation rate variance (m/year) 0.1

𝛼 Interior ice flux thickness exponent 7

𝛾 Interior ice flux length exponent 3

𝜃 Buttressing parameter 0.6

Δt Time step (year) 1

𝜌i Ice density (kg/m3) 917

𝜌w Seawater density (kg/m3) 1,028

response across these time scales in the flowline model (black line) and the two-stage model (red line). The
two-stage model simulates departures of the grounding line from its equilibrium position (y = 0 in Figure 2b)
that are within 10% of the flowline model. Without having to tune any parameters, the structure of the auto-
correlation function, power spectrum, and phase (Figures 2c–2e) are broadly similar between the two-stage
and flowline models. Perhaps the most notable difference is that the two-stage model simulates less variability
at very short time scales (a few decades) than the flowline model (Figure 2d). In the flowline model, variabil-
ity in the surface mass balance near the grounding zone propagates to the grounding line on time scales of
years to decades and the grounding zone adjusts on a similarly fast time scale (as shown in Schoof, 2007a and
discussed in section 2). Since advection can only occur between the two zones in the two-stage model (which
has a time scale of decades to centuries, see section 3), the fastest advection time scales are not well repre-
sented in the power spectral density and lagged autocorrelation function of the two-stage model (Figures 2c
and 2d). This lack of variability at short time scales also leads to a lower standard deviation of fluctuations in
the two-stage model than in the flowline model (by about 20%, see discussion in section 4.3). Additionally,
the phase of the grounding line response at high frequencies (Figure 2e) is closer to 180∘ (indicating that sur-
face mass balance forcing precedes the grounding line response) in the two-stage model than the flowline
model, which remains between 90∘ and 120∘ at these frequencies. The phase of stochastic variations in the
flowline model at high frequencies are the superposition of signals arriving at the grounding line from vari-
ous locations throughout the glacier, and thus we should expect the combined grounding line response to
be less than exactly out of phase (180∘). In the two-stage model, the phase lag of signals at the grounding line
are the result of a single advective time scale from the interior zone to the grounding zone. In practical terms,
the two-stage model appears as a low-pass filter of the flowline model, with small interannual fluctuations in
grounding line positions smoothed out relative to the flowline model. Despite these discrepancies, it is readily
apparent in both models that the amplitude of variability at long time scales greatly exceeds variability occur-
ring at subcentennial time scales (Figure 2d). Indeed, more than 99% of the total variability (measured as the
integral over the power spectral density in Figure 2d) occurs at frequencies in which the two-stage and flow-
line models are consistent. Consequently, we conclude that the two-stage model successfully emulates the
dynamics which produce the largest amplitude excursions of grounding line position in the flowline model.

The choice of a two-stage model is also indicated by fitting the time series of simulated grounding line position
from the flowline model with an autoregressive model of arbitrary order (the Box-Jenkins method, see Box
et al., 2015). We find that the flowline model can be well described by a second-order (AR(2)) regressive process
governed by two widely separated time scales, 8300 years and 70 years, for the parameters in Table 1 (and
for a range of other parameters, as we will show in section 3). Increasing the number of stages in the simple
model (i.e., an arbitrary AR(p) model with p> 2) does improve the fit to the full flowline model by less than
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Figure 2. Comparison between two-stage (red line) and flowline (black line) simulations of grounding line variability due to white noise in surface mass balance.
(a) Surface mass balance forcing (same for both models). (b) Simulated grounding line deviation from stable equilibrium position. 30-kyr time series taken from a
3000-kyr simulation. (c) Autocorrelation as a function of time lag. (d) Spectral power density as a function of frequency calculated via Welch’s method with a
window 1/30 the length of the total time series (105 years in this case). (e) Phase of grounding line position with respect to forcing in surface mass balance as a
function of frequency.

1% (as judged by the Akaike Information Criterion for evaluating model quality). However, such an increase
in complexity of the simple model does not improve our understanding of the dynamics of grounding line
variability and hinders the straightforward analytical characterization of system dynamics that we describe in
the coming sections.

3. Characteristic Time Scales

A complex numerical model can predict the response of a marine-terminating glacier to forcing under
a variety of assumptions that are specific to that single glacier. Instead, with a simple model and fewer
glacier-specific assumptions, we can derive the generic response of marine-terminating glaciers to forc-
ing and understand the processes which control this response. This generic response is characterized by
time scales and magnitudes of glacier change (or sensitivities). A system, such as our two-stage model for a
marine-terminating glacier that is linearized about a stable equilibrium can be described more succinctly (and
physically) by considering the time scales and sensitivities that govern the transient response to perturba-
tions away from equilibrium. Such an approach is considerably more difficult in systems with many degrees
of freedom.

We start by assuming that the two prognostic variables in the two-stage model, spatially averaged ice thick-
ness H, and grounding line position L, are composed of a stable equilibrium state (H̄, L̄) and departures from
this state (H′, L′) that are not necessarily stochastic fluctuations (rather deterministic functions of time)

H = H̄ + H′ (19)

L = L̄ + L′. (20)
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We assume that the departures are small compared to the stable equilibrium states (H′ ≪ H̄, L′ ≪ L̄). We
can then substitute these expressions into the two-stage model (equations (7) and (8)), expand, and drop all
terms that are higher than first order in H′ and L′

𝜕H̄
𝜕t

+ 𝜕H′

𝜕t
= P −

Q̄g

L̄
− H̄

h̄gL̄

(
Q̄ − Q̄g

)
+ AH(H̄, L̄)H′ + AL(H̄, L̄)L′ (21)

𝜕L̄
𝜕t

+ 𝜕L′

𝜕t
= 1

h̄g

(
Q̄ − Q̄g

)
+ BH(H̄, L̄)H′ + BL(H̄, L̄)L′, (22)

where AH, AL, BH, and BL are the strengths of linearized feedbacks in the glacier system (expressions given in the
supporting information). The strengths of these individual feedbacks are a function of the equilibrium glacier
state (H̄, L̄). AH is the magnitude of changes in interior ice flux due to changes in average ice thickness (H). AL is
the magnitude of changes in grounding line ice flux (Qg) and grounding zone ice flux difference (Q − Qg) due
to changes in grounding line position (L). BH is the magnitude of changes in interior ice flux due to changes in
grounding line ice thickness ( Q

hg
). BL is the magnitude of changes in grounding zone ice flux divergence (

Q−Qg

L
)

due to changes in grounding line position (L).

When a stable equilibrium exists for a given glacier, 𝜕H̄
𝜕t

and 𝜕L̄
𝜕t

are by definition zero and the equilibrium terms
(not involving departures from equilibrium) on the right-hand side of equations (21) and (22), which reflect
the balance of stable equilibrium, sum to zero. This leaves a linear system of equations for departures in ice
thickness (H′) and grounding line position (L′) and their associated feedbacks

𝜕H′

𝜕t
= AH(H̄, L̄)H′ + AL(H̄, L̄)L′ (23)

𝜕L′

𝜕t
= BH(H̄, L̄)H′ + BL(H̄, L̄)L′. (24)

Generally, the solution to such a linear system of equations (23) and (24) is

L′(t) = CSe
− t

TF + CLe
− t

TS (25)

where the eigenvalues of the system of equations are −T−1
F and −T−1

S . These two exponential functions cor-
respond to two characteristic time scales of adjustment in the marine-terminating glacier. Put another way,
the eigenvalues of the linearized system quantify the adjustment rate and their sign determines the stability
of the two-stage model (as in a linear stability analysis). If at least one of these eigenvalues is positive, there
is no stable equilibrium, causing perturbations to grow rather than dissipate on at least one time scale. We
discuss the nature of this instability in section 3.3.

After some further approximation (detailed in the supporting information), we can analytically derive the two
time scales of the two-stage model

TF =
L̄h̄g

Q̄ (𝛼 + 𝛾)
−

h̄2
g

Q̄g𝛽𝜆b̄x

(26)

TS = −
H̄h̄gL̄2

𝛼TF Q̄

[
Q̄ +

(
𝛽𝜆bxL̄

hg

)
Q̄g

]−1

. (27)

We calculate these time scales for a range of values of surface mass balance and bed slope (Figure 3). In gen-
eral, there is a slow time scale (TS) that is 1 to 2 orders of magnitude greater than the other time scale (TF),
which we call the fast time scale. For typical marine-terminating glacier thickness and time-averaged surface
mass balance, the fast time scale ranges from decades to centuries and the slow time scale ranges from cen-
turies to millennia (Figure 3a). Furthermore, as Figure 3 shows, these analytically derived time scales (solid
lines) agree well with those determined from fitting the stochastic variability simulated in a spatially extended
flowline model (crosses; described in section 2.2) with an autoregressive model through the Box-Jenkins fit-
ting method (Box et al., 2015). As we discuss in section 2.2, there are other, even faster time scales of years to
decades that contribute to advective adjustment of the glacier and grounding zone to external forcing and
which are related to the fast adjustment time scale in the asymptotic analyses of Schoof (2007a) and Haseloff
and Sergienko (2018). However, as we show these, very fast time scales play a lesser role in setting the transient
glacier adjustment to external forcing.
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Figure 3. Characteristic time scales of the marine-terminating glacier response to external forcing. Thick lines are
analytic predictions of fast (red) and slow (black) time scales from linearized two-stage model (equations (26) and (27)).
Crosses are corresponding time scales calculated from an autoregressive-moving average (ARMA) fit to flowline model
simulations using the Box-Jenkins method (Box et al., 2015). (a) Varying time-averaged surface mass balance (P̄).
Constant bed slope, b̄x = −3 × 10−3. (b) Varying bed slope at equilibrium state (b̄x ). Constant time-averaged surface
mass balance, P̄ = 0.5 m/year. Black dashed line is the instability threshold for the slow time scale (equation (33)). Thin
red dashed line is the instability threshold for the fast time scale (equation (34)). At bed slope greater than the instability
threshold for the slow time scale, there is no longer a stable equilibrium and so a thick dashed red line is based on the
analytic prediction of fast time scale with an unstable fixed point.

3.1. Fast Time Scale
The physical processes that control the fast glacier response to perturbations can be understood from the
form and origin of the terms in TF (equation (26)). The first term on the right-hand side of equation (26) derives
from the interior flux feedback to changes in ice thickness (AH), and corresponds to the rate of interior advec-
tion (Q̄) of anomalies in grounding line ice thickness. The second term is the rate at which ice flux divergence
in the grounding zone changes as the grounding line migrates (BL). At equilibrium, the surface mass balance
is balanced by interior and grounding line flux: P̄L̄ = Q̄ = Q̄g. We can then simplify the fast time scale as

TF =
h̄g

P̄

(
𝛼 + 𝛾 + 1 − ST

)−1
. (28)

where

ST = 1 +
𝛽𝜆b̄x L̄

h̄g

, (29)

is a stability parameter that is typically (1) and negative for sufficiently prograde bed slopes (downward
sloping in the direction of flow, or b̄x < 0). On prograde slopes (bx < 0) the terms in TF have the same sign,
and so the fast time scale is set by the largest term, 𝛼 + 𝛾 ≈ 10 (where 𝛼 + 𝛾 ≫ 𝛽𝜆b̄x L̄h̄−1

g ). This implies that
the primary control on the fast time scale is the rate of advective adjustment of grounding zone ice thickness.
Thus, the fast time scale may be approximated as

TF ≈
h̄g

P̄(𝛼 + 𝛾)
. (30)

In a stable equilibrium, this rate of advective adjustment is proportional to
h̄g

P̄
, which is the reservoir time

scale on which ice volume in the grounding zone region is replaced by the surface mass balance. Though
this approximation is not explicitly dependent on processes occurring in the ice shelf, their influence does
enter through the way in which they contribute to setting the equilibrium grounding line ice thickness (h̄g).
The reservoir time scale (generically h

P
) is also discussed in previous studies of the glacier response to forc-

ing (Harrison et al., 2003; Jóhannesson et al., 1989; Nye, 1960, 1963a, 1963b, 1965), which found that even if
we did not know the glacier velocity or internal dynamics all that well (as assumed in Harrison et al., 2003),
we could use the observed geometry to understand the glacier sensitivity through this reservoir time scale.
Fortunately, recent advances in grounding line dynamics have allowed us to explicitly derive the nondimen-
sional parameter that modifies this reservoir time scale (the unknown parameter f in Jóhannesson et al., 1989,
and 𝛼+ 𝛾 ≈ 10 in equation (30). This nondimensional parameter quantifies how the particular glacier dynam-
ics may also play a role (in addition to the geometry) in setting the glacier response time scales. In these
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ways, our approach of studying glacier departures about an equilibrium state explicitly links glacier geom-
etry to ice dynamics and allows us to make progress from previous approaches to understanding glacier
response time scales.

3.2. Slow Time Scale
The slow glacier response to forcing (equation (27)) is a function of the fast time scale, the magnitude
of the interior ice flux feedback, and the grounding zone flux divergence feedback. At equilibrium, the
time-averaged surface mass balance is balanced by interior and grounding line flux (P̄L̄ = Q̄ = Q̄g), and so the
slow time scale simplifies

TS = −
H̄h̄g

𝛼TF P̄2ST

. (31)

When multiplied by the grounding zone ice flux (Qg), the stability parameter ST tracks the difference between
the rates of glacier advective adjustment and extension of the glacier by grounding line migration. For typ-
ical stable grounding lines (where TF is approximation given by equation (30), the slow time scale can be
approximated as

TS ≈
H̄
(

1 + 𝛾

𝛼

)
P̄ST

, (32)

which is millennia for typical accumulation rates and ice thicknesses (see Figure 3). Physically, this slow time
scale corresponds to the rate at which perturbations in ice thickness advected into the grounding zone are
dissipated by differences in advective and extensional adjustment. The slow time scale includes the reservoir
time scale for the entire glacier, H

P
, though the explicit inclusion of glacier velocity in our model leads to modi-

fication by the stability parameter (ST ) and the interior ice flux exponents (𝛼, 𝛾). As a result, the slow time scale
is longer than the fast time scale by 1 to 2 orders of magnitude. Indeed this response time of centuries to mil-
lennia for stable marine-terminating glaciers is more similar to that derived numerically in the idealized outlet
glacier modeling study of van der Veen (2001). As the bed slope becomes shallower, ST decreases, causing the
slow time scale to increase, before eventually becoming negative, as we discuss in the next section.

3.3. Instabilities of Time Scales
Weertman (1974) first established that ice sheet grounding lines are unstable on retrograde bed slopes
(upward sloping in the direction of flow, or b̄x > 0), commonly referred to as the marine ice sheet instability.
Subsequent work has found that this instability extends to flat and shallow prograde beds (Schoof, 2012),
though other factors may play a role in modulating this stability threshold in bed slope (Gomez et al., 2010;
Gudmundsson et al., 2012; Jamieson et al., 2012) and the rate of grounding line migration under instabil-
ity (Brondex et al., 2017). In our model, this instability occurs when the slow time scale becomes negative
(−1∕TS ≥ 0 in equation (25) as bed slope flattens (bx is negative and increasing) and ST becomes positive. This
happens at

b̄∗S
x = −

h̄g

𝛽𝜆L̄
, (33)

which corresponds to a shallow prograde bed slope (black dashed line in Figure 3b). Exactly at this stability
threshold, the slow time scale diverges, which physically corresponds to a glacier at neutral stability where
perturbations to glacier state are neither damped or amplified by the glacier response (on this slow time
scale). This stability threshold is also consistent with the linear stability condition derived by Schoof (2012), in
which grounding lines resting on retrograde and shallow prograde bed slopes are unstable to perturbations.
We have written the stability criterion as a function of equilibrium glacier geometry (instead of surface mass
balance, as in Schoof, 2012), which is, in part, set by the surface mass balance (PL̄ = Q̄g). Past this threshold in
bed slope, the slow time scale is no longer defined since the stable equilibrium glacier state no longer exists.

Conversely, the fast time scale remains finite and defined for bed slopes flatter and more retrograde than b̄∗S
x .

The fast time scale increases until it also diverges (TF → ∞) and then becomes negative at a moderately steep
retrograde slope of

b̄∗F
x =

h̄g

𝛽𝜆L̄
(𝛼 + 𝛾). (34)

Above this threshold, the decay rate associated with the fast time scale is positive (−1∕TF ≥ 0 in equation (25).
As bed slope increases, changes in grounding line position cause less adjustment through grounding line flux
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Figure 4. Grounding line migration from an initially perturbed state (2 km from equilibrium) simulated in two-stage
(solid lines) and flowline (dashed lines) models for a range of bed slopes at the grounding line. The blue line is the stable
grounding line response for a prograde bed slope steeper than the slow stability threshold (b̄x = −5.1 × 10−4). The red
line is the grounding line response for a prograde bed slope shallower than the slow stability threshold
(b̄x = −1.8 × 10−4). The black line is the unstable grounding line response for a retrograde bed slope at the fast stability
threshold (b̄∗F

x = 2.6 × 10−3). (a) Plotted in linear coordinates. (b) Plotted with logarithmic coordinates on the x axis.

(i.e., the third term on the right-hand side of equation (26) decreases in magnitude). Eventually, perturbations
in the grounding line position can no longer be accommodated by changes in ice advection to the grounding
zone and the fast time scale becomes negative.

It is always the case that b̄∗S
x < b̄∗F

x or that as bed slope becomes shallower, slow grounding line dynamics
become unstable before fast grounding line dynamics. This implies that there is a wide range of intermedi-
ate shallow bed slopes (b̄∗S

x < b̄x < b̄∗F
x , the region between the thin black and red dashed lines in Figure 3b)

for which the grounding line is unstable on slow time scales but stable on fast time scales. We demonstrate
the consequence of these distinct stability thresholds in Figure 4, which shows two-stage (solid) and flowline
(dashed) model simulations of the grounding line migration from an initially perturbed state (2 km) for several
different bed slopes. A grounding line on a steep prograde bed slope (blue lines, for which b̄x < b̄∗S

x ) exhibits
stable dissipative behavior (i.e., it returns to equilibrium) at both short and long time scales. For strongly ret-
rograde bed slopes (black lines, for which b̄x = b̄∗F

x ), the grounding line is unstable on both fast and slow
time scales. In such a scenario, even short-lived departures in the glacier state from equilibrium immedi-
ately grow, rather than decay. For shallow prograde or shallow retrograde bed slopes (red lines, for which
b̄∗S

x < b̄x < b̄∗F
x ) the perturbed grounding line position is nearly stagnant or retreating toward equilibrium (at

y = 0) on fast time scales (centuries) but is unstable on long time scales (millennia). When the grounding line is
unstable and the glacier is strongly out of equilibrium, asymptotic approximations for the grounding line flux
(equation (11)) become less accurate (Schoof, 2007b). This is apparent from the increasing departure between
the unstable retreat simulated in the flowline and the two-stage model on time scales of millennia. Nonethe-
less, both models indicate that there is a range of bed slopes for which a perturbed grounding line may exhibit
stable behavior on the short term, but is ultimately unstable in the long term. This nonmonotonic grounding
line response to a perturbation occurs because marine-terminating glaciers have more than one time scale
both in the two-stage and flowline models, which become unstable at different bed slope thresholds. We call
this scenario, when the slow time scale is unstable, but the fast time scale is stable, the slow marine ice sheet
instability. For sufficiently steep retrograde slopes the grounding line is unstable at both slow and fast time
scales. We call this the fast marine ice sheet instability.

Many glaciers in Greenland and West Antarctica are (likely) undergoing an unstable retreat over steep retro-
grade bed slopes at rates of kilometers per year (Joughin et al., 2008; Park et al., 2013; Scheuchl et al., 2016).
In this section, we determined the conditions under which this instability occurs (equations (34) and (33))
and show qualitatively that rapid glacier change may occur due to the fast marine ice sheet instability. How-
ever, we cannot easily extend our linear analysis of marine-terminating glacier response to quantitatively
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determine the transient rate of glacier change on retrograde or shallow prograde bed slopes since the lack of
a stable equilibrium causes the linearity of the glacier response to be a bad approximation. Future work may
consider using nonequilibrium approaches for systems near instabilities (Nicolis & Nicolis, 1981; Suzuki, 1977)
to assess the behavior of marine-terminating glaciers on retrograde bed slopes.

4. Sensitivity to Forcing

Observations indicate that marine-terminating and tidewater glaciers are undergoing strongly heterogenous
changes (Brinkerhoff et al., 2017; Csatho et al., 2014; Felikson et al., 2017; Post & Motyka, 1995). This hetero-
geneity may be caused by factors that vary from one glacier to another, such as forcing rate, glacier state, bed
topography, or time scale of response. Our challenge is to understand how the magnitude and rate of the
glacier response to external forcing is controlled by these various factors. Having derived the characteristic
glacier response time scales, we have already solved half the problem of the time-dependent glacier response
to forcing. In this section, we will solve the second half of the problem, by deriving the total and transient
sensitivity of marine-terminating glacier state to different types of external forcing.

4.1. Total Fractional Sensitivity
In this section, we derive the sensitivity of marine-terminating glaciers to forcing by extending the lineariza-
tion of the two-stage model to time-dependent perturbations in external forcing parameters. To demonstrate
the approach, we start by decomposing P (the spatially averaged surface mass balance) into time-averaged
and perturbed components

P = P̄ + P′ (35)

which leads to an expanded form of linear equation (23)

𝜕H′

𝜕t
= AH(H̄, L̄)H′ + AL(H̄, L̄)L′ + P′ (36)

which now includes glacier feedbacks to perturbations in surface mass balance. For a change in surface mass
balance (P′), we calculate the magnitude of changes in glacier state (H′ and L′) once the system has reached
a new steady state, which occurs when 𝜕H′

𝜕t
= 0 and 𝜕L′

𝜕t
= 0 in equations (25) and (37) (derived in detail in the

supporting information)

H′

H̄
= 1

𝛼ST

(
𝛽𝜆b̄x L̄

h̄g

− 𝛾

)
P′

P̄
(37)

L′

L̄
= − 1

ST

P′

P̄
. (38)

These are the fractional sensitivities of average glacier thickness (H′∕H̄) and grounding line position (L′∕L̄), to
a fractional change in surface mass balance (P′∕P̄).

We can also derive the glacier sensitivity to changes in the observable ice shelf parameters that go into Ω. For
a glacier strongly buttressed by an ice shelf that primarily loses ice through calving (Ω in equation (12), we
derive the fractional glacier sensitivity to a fractional change in the ice shelf length (L′s∕L̄s)

H′

H̄
= −(𝛾 + 1)n

𝛼ST

(
L′s
L̄s

)
(39)

L′

L̄
= − n

ST

(
L′s
L̄s

)
. (40)

These sensitivities show the extent of grounding line retreat and interior ice thinning that would be expected
after, for example, the detachment of an iceberg from an ice shelf that reduces the buttressing ice shelf length
(assuming all parts of the ice shelf contribute equally to buttressing). Alternately, we consider an ice shelf that
strongly buttresses a glacier and loses mass entirely through basal melting (Ω in equation (13). We then derive
the fractional glacier sensitivity to fractional changes in basal melt rate (where ṁ < 0 indicates melting)
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H′

H̄
= (𝛾 + 1)n

𝛼(n + 1)ST

(
ṁ′

̄̇m

)
(41)

L′

L̄
= n

(n + 1)ST

(
ṁ′

̄̇m

)
. (42)

The fractional sensitivities of ice thickness and grounding line position (equations (37)–(42)) indicate some
general rules about the expected magnitude of the glacier response to external forcing. The fractional change
in glacier state from equilibrium can be approximated as proportional to the fractional change in climate
forcing ( P′

P̄
, ṁ′

̄̇m
) or a property of the buttressing ice shelf (

L′s
L̄s

). This proportionality is generally modulated by
the inverse of the stability parameter (ST ), and the strength of the nonlinearity of the forcing process (1 for
surface mass balance, −n for ice shelf length in equation (12), and n

n+1
for basal melting rate in equation (13).

For ice thickness, the strength of the nonlinearity in interior ice flux (𝛼, 𝛾) also enters. As the bed slope becomes
shallower, ST decreases in magnitude, and a given magnitude of external forcing will result in a larger change
in glacier thickness and grounding line position.

We consider an illustrative example of a marine-terminating glacier that is L̄ = 200-km long, h̄g = 1,000 m
thick at the grounding line, and undergoes a 5% decrease in surface mass balance. Using equation (38) we
would predict that on a prograde bed slope of b̄x = −3 × 10−3, the glacier would retreat by 3% of its length.
However, if the prograde bed slope is twice as shallow (b̄x = −1.5×10−3), the glacier would instead retreat by
14% of its length, albeit over a longer time scale. Alternately, for the same glacier, a 5% decrease in buttressing
ice shelf length causes the glacier to retreat by 9% of its length on a b̄x = −3×10−3 prograde slope and 43% of
its length on a b̄x = −1.5 × 10−3 prograde slope. The nonlinear dependence of the grounding line flux on ice
shelf length leads to a more sensitive response to perturbations than is the case for perturbations in surface
mass balance.

Overall, the sensitivities we derive depend only on glacier state, nonlinearity in glacier dynamics, and the
time-averaged value of the forcing parameter. The magnitude of grounding line changes on the slow time
scale alone can also be simulated by a one-stage counterpart of the two-stage model of this study (where we
assume that PL = Q):

𝜕L
𝜕t

= 1
hg

(
PL − Qg

)
. (43)

Equilibrium occurs when surface mass balance is balanced by grounding line flux (P̄L̄ = Q̄g). Since a change
in surface mass balance must be balanced by a change in grounding line flux, the sensitivity of the grounding
line position will be the same in our two-stage model, its one-stage counterpart (equation (43)), and a range
of higher-order models. Indeed, we find that the sensitivities derived in this section match those calculated
in the flowline model described in section 2.2, to the extent that its modeled steady state grounding line flux
matches the grounding line flux expression used in the two-stage model (equation (11)). We similarly expect
that other high-order models that accurately simulate grounding line flux will also match these sensitivities.
In this way, these expressions for glacier sensitivity serve as useful first-order approximations for the glacier
response that can be calculated without use of a complex ice sheet model.

4.2. Transient Response to Trends and Step Changes in Forcing
The glacier response to forcing is not instantaneous, but rather evolves in time. In this section we derive the
transient grounding line migration in response to a trend or step change in external forcing. We then discuss
the relative importance of forcing rate and the characteristic time scales in determining the rate of the glacier
response to forcing.

We assume that the marine-terminating glacier begins at stable equilibrium with initial conditions

L′(t = 0) = 0 (44)

dL′

dt

||||t=0
= 0. (45)

We then apply a trend (Ṗ) in surface mass balance (though the same general approach applies for a trend
in any parameter), P′(t) = Ṗt. We solve for the time-dependent grounding line position in equations (36)
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Figure 5. Response of grounding line position to a trend in surface mass balance (equation (46)) for different ratios
between fast and slow time scales (TS∕TF ). Grounding line position (y axis) is nondimensionalized with L′∕ṖLP . Time
(x axis) is also nondimensionalized with t

TS
. (a) Shape of grounding line trend. Dashed black line is the long-term rate of

grounding line migration forced by a trend in surface mass balance (equation (48)). (b) Zoomed version of panel (a),
meant to highlight the different initial responses to a trend on the fast glacier time scale (TF ).

and (37) (linearized form of the two-stage model) using the method of undetermined coefficients (complete
derivation in supporting information)

L′(t) = ṖLPTS

⎡⎢⎢⎣1
2

⎛⎜⎜⎝1 −
TS − 2TF(

T 2
S − 4TSTF

) 1
2

⎞⎟⎟⎠ e
− t

TF + 1
2

⎛⎜⎜⎝1 +
TS − 2TF(

T 2
S − 4TSTF

) 1
2

⎞⎟⎟⎠ e
− t

TS − 1 + t
TS

⎤⎥⎥⎦ , (46)

where LP = − L̄
ST P̄

is the grounding line sensitivity to perturbations in surface mass balance (which can be
derived for other parameters from equations (38), (40), and (42). This solution is valid when TS > 4TF , which is
true for a range of glacier conditions (Figure 3).

The transient grounding line evolution forced by a linear trend in surface mass balance and simulated in the
flowline model is well approximated by equation (46) (not plotted). In Figure 5, we show that the shape of the
glacier response only depends on the slow and fast time scales, when normalized by the trend rate in forcing
and the sensitivity to forcing in a specific parameter (ṖLP). Since typically the slow time scale is much longer
than the fast time scale (again, see Figure 3), we can make the simplification that the transient grounding line
response to a trend is only dependent on the slow time scale

L′(t) = −ṖLPTS

[
e
− t

TS − 1 + t
TS

]
. (47)

Figure 5 shows that as TS∕TF increases, the transient response converges quickly to this simplified response
that only depends on the slow time scale.

After a sufficiently long period of time, the grounding line evolves at a constant rate set by the trend in forcing
and the sensitivity (black dashed line in Figure 5a)

𝜕L′

𝜕t

||||t >> TS

= −ṖLP. (48)

However, the grounding line migration rate remains relatively small in the time immediately after the onset of
a trend (t), as long as t ≪ TS (Figure 5b). Any reasonable estimate of TS for a marine-terminating outlet glacier in
Greenland or Antarctica will be at least 1,000 years (Figure 3), whereas the onset of significant anthropogenic
forcing trends is estimated to be around 1880 (Intergovernmental Panel on Climate Change, IPCC, 2013). This
implies that the current stable glacier changes being observed (not including unstable glacier retreat over
retrograde slopes, which are discussed in section 3.3) are still close to the onset of the response functions in
Figure 5. Hence, the initial glacier retreat over a prograde bed that is caused by industrial-era trends in climate
occurs at an approximate rate,

dL′

dt

||||t<<TS

≈ −ṖLP
t

TS
, (49)
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that is, a small fraction ( t
TS

) of the long-term grounding line migration rate expected from a continuation of
the industrial era trend in climate forcing (equation (48)). Put another way, if current rates of climate change
continue, we would expect that the grounding line migration rate of stable marine-terminating glaciers will
eventually accelerate to be many times (perhaps even an order of magnitude if TS > 1,000 years) greater than
current rates, even if the grounding line does not migrate into regions of retrograde or drastically different
bed slope.

The response of the grounding line to a step change in forcing (of magnitude P′) is similarly straightforward
to derive, from equations (36), (37), and initial conditions (44) and (45), the transient solution is

L′(t) = −LPP′
[(

TF

TS − TF

)
e
− t

TF −
(

TS

TS − TF

)
e
− t

TS + 1

]
, (50)

with the fast and slow adjustment time scales mediating the grounding line response.

Observational records of marine-terminating glacier thickness and length tend to be short. Though recon-
structions of local climate may be longer, climate trends can often be difficult to accurately estimate in
the presence of interannual and subannual climate variability. This inability to precisely determine when a
trend started can make it difficult to exactly pinpoint when a change in forcing begins (i.e., when t = 0
in equations (46) and (50). Consequently, uncertainty in the time of climate forcing onset (t = 0) leads to
significant uncertainty in short- to medium-term projections of marine-terminating glacier change.

4.3. Stochastic Variability
Stochastic variability of marine-terminating glaciers will arise in the presence of internal variability in climate
forcing. To identify the response of glaciers to climate changes, it is first necessary to understand the response
of glaciers to stochastic climate variability. In this study, we consider white-noise perturbations in forcing
parameters.

The linearized two-stage model equations (36) and (37) are discretized in time using a forward
Euler-Maruyama method, implying an Itô formulation of the stochastic differential equation. Combining
the two discretized equations, we derive a second-order autoregressive (AR(2)) model for the grounding
line position

Lt =
(

2 − T−1
F Δt − T−1

F T−1
S Δt2

)
Lt−Δt +

(
−1 + T−1

F Δt
)

Lt−2Δt − T−1
F T−1

S Δt2LPP′, (51)

where P′ is a Gaussian, white-noise process representing stochastic variability in surface mass balance
at time scale Δt (throughout this study, we take Δt = 1 year). We then use the analytic variance of
an AR(2) process found in Box et al. (2015) to derive the variance of the grounding line position. After
some approximation (detailed in supporting information), the variance of the grounding line position can
be expressed as

𝜎2
L =

TSΔt

2

[
𝛼TF P̄L̄

H̄h̄g

]2

𝜎2
P (52)

where 𝜎P is the variance of the surface mass balance. All details of the above derivation are given in the
supporting information.

For a typical marine-terminating glacier in Greenland, H̄ ∼ 1 km, Q̄g∕h̄g∼1 km/year, TS ∼1,000 years, and
TF ∼ 50 (Figure 3) and interannual variability in surface mass balance (𝜎P) is in the range 0.1–1 m/year (Fyke
et al., 2014). These parameters suggest a range of 𝜎L ≈ 0.1–5 km. This range is comparable to the few esti-
mates that have been made of natural marine-terminating glacier variability (e.g., Bjørk et al., 2012; Hogg
et al., 2016, though such estimates are typically made from short photographic or satellite records). It should
also be noted that noisy forcing with interannual persistence (e.g., red noise) results in enhanced stochas-
tic glacier variability (Mantelli et al., 2016; Roe & Baker, 2016), and so noise autocorrelation is important to
consider when interpreting observations of glacier variability. Figure 6 demonstrates that, even with the sim-
plifications inherent in the derivation of an analytic approximation of grounding line variability (solid line),
equation (52) agrees with numerically calculated grounding line variability from a flowline model (crosses) to
within 20%. The analytic prediction is systematically below the flowline model, because the two-stage model
has muted fluctuations at high frequencies compared to the flowline model (though these high-frequency
fluctuations typically have amplitude <100 m, see Figure 2b and section 2.2).
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Figure 6. Standard deviation of grounding line position fluctuations in response to white-noise forcing in spatially
averaged surface mass balance (𝜎P = 0.1 m/year). Solid lines are analytic predictions of standard deviation of grounding
line position (𝜎L) from linearized two-stage model (equation (52)). Crosses are corresponding standard deviation
calculated from flowline model simulations forced with white noise (e.g., Figure 2). (a) Varying time-averaged surface
mass balance (P̄). Constant bed slope, b̄x = −3 × 10−3. (b) Varying bed slope at equilibrium state (b̄x ). Constant
time-averaged surface mass balance, P̄ = 0.5 m/year. Black dashed line is the instability threshold for the slow time scale
(equation (33)).

Stochastic grounding line variability (equation (52)) is dependent on both the short and fast time scales. Thus,
as bed slopes become shallower and approach the slow time scale instability (equation (33)), the variance of
grounding line position increases rapidly along with the slow time scale (Figure 6b). This increasing variance
and decreasing rate of dissipation of fluctuations are hallmarks of critical slowdown, which is a generic feature
of dynamical systems smoothly approaching bifurcations to instability (e.g., Lenton, 2011).

5. Nonlinearity of Noisy Processes Causes Grounding Line Retreat

In our two-stage model of a marine-terminating glacier, noise in surface mass balance (P′) is additive because
it directly perturbs the glacier thickness, but does not depend on the glacier state. On the other hand, noise in
the coefficient of grounding line flux (Ω′) is multiplicative because it perturbs the grounding line flux, which
also depends on the grounding line position. In this section, we show that nonlinearity in a multiplicative
noise process changes the time-averaged equilibrium state of a marine-terminating glacier.

In Figure 7, we compare the response of the two-stage glacier model to white-noise forcing in four different
environmental parameters: surface mass balance (P), coefficient of grounding line flux (Ω), ice shelf length (Ls),
and basal melt (ṁ). In each of these 60-kyr simulations, we simulate the grounding line response to forcing
without noise in the first 20 kyr, with white noise of magnitude equal to 10% of the mean in the next 20 kyr, and
with white noise of magnitude equal to 20% of the mean in the final 20 kyr. As we have seen previously in this
study, when there is white noise in the spatially averaged surface mass balance (Figure 7a), the time-averaged
grounding line position remains constant regardless of the magnitude of noise.

We also vary the magnitude of noise in the coefficient of grounding line flux (Ω′; Figure 7b). However, even
though this is a multiplicative noise process, the time-averaged glacier state does not appear to depend sig-
nificantly on the magnitude of the noise. This is because the state variable in the grounding line flux term,
hg, does not strongly vary when ice is thick at the grounding line, leading to rather weak state dependence.
If instead ice was thinner at the grounding line (such as in a tidewater glacier), grounding line flux would be
more sensitive to small changes in system state, thus leading to stronger state dependence.

In reality, noise does not occur in Ω directly, but rather in the various processes that contribute to Ω. The
grounding line flux of a glacier buttressed by a calving-dominated ice shelf is a function of L−n

s (equation (12)).
We consider a scenario where the calving of icebergs from an ice shelf causes white-noise fluctuations in Ls

(Bassis, 2011). The corresponding time-averaged grounding line position (Figure 7c, note the different y axis
scale) is strongly a function of the magnitude of the forcing. Of all the forcing processes considered here, this
shift in the time-averaged state is by far the largest (by more than 2 orders of magnitude). We can explain why
this shift occurs by noting that when ice shelf length increases from its equilibrium value by 10%, grounding
line flux decreases by 25%, and when ice shelf length decreases from its equilibrium value by 10%, grounding
line flux decreases by 37%. Thus, though the distribution of noisy ice shelf length is symmetric, the correspond-
ing distribution of noisy grounding line flux is asymmetric, leading to a shift in the time-averaged grounding
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Figure 7. Grounding line deviation from equilibrium simulated in the two-stage model due to noise in different forcing
parameters. Black line in all panels is year-to-year grounding line position simulated in two-stage model. Blue line is
1,000-year running average. Red line in all panels is average over time period of constant noise magnitude. 0-20 kyr in
all simulations have no noise in forcing. In all simulations 20–40 kyr have noise with standard deviation equal to 10% of
mean forcing value. In all simulations 40–60 kyr have noise with standard deviation equal to 20% of mean forcing value.
(a) Noise in surface mass balance (P′). (b) Noise in grounding line flux coefficient (Ω′). (c) Noise in ice shelf length (L′s). (d)
Noise in ice shelf basal melt (ṁ′).

line flux and glacier state. Though we have assumed that the noise forcing of ice shelf length includes no
persistence in time (white noise), it would be more realistic to simulate ice shelf calving with autocorrelation
in time. This would lead to greater stochastic glacier variability (Mantelli et al., 2016; Roe & Baker, 2016) and
perhaps an even larger shift in the time-averaged glacier state.

Such a dependence of the mean state on the magnitude of noise forcing is typically termed noise-induced drift
and has been explored extensively (e.g., Penland, 2003). Noise-induced drift has also been noted previously
in other nonlinear glacier models with other types of forcing (Hindmarsh & Le Meur, 2001; Mikkelsen et al.,
2017). Our simulation of noisy calving-induced drift suggests that the character of calving events (i.e., size
and recurrence time) may have a strong influence on the time-averaged glacier state. Consequently, ice sheet
models may be strongly biased by parameterizing calving as a deterministic flux or by misrepresenting the
nature of calving-induced noise in ice shelf length. Flexible stochastic approaches to simulate calving, such
as Bassis (2011), are better suited to capturing the noise-induced retreat that we have identified here.

Haseloff and Sergienko (2018) have also derived a more general relationship between flux and ice thickness
at the grounding line

ṁΩ
1
n Lsh

n+1
n

g = (Qg + ṁLs)
n+1

n − Q
n+1

n
g (53)

which includes the effect of both sub-ice shelf basal melting and ice shelf length on buttressing. We use this
formula to find the grounding line flux in the presence of interannual noise in the ice shelf basal melt (similar
to what is predicted by ocean models, e.g., Schodlok et al., 2012; Sciascia et al., 2013). We find that the white
noise in basal melt has only a small effect on the time-average grounding line position (Figure 7d). This is likely
due to the much weaker nonlinearity in basal melt rate ( n+1

n
= 4

3
).
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6. Discussion

6.1. Observed Marine-Terminating Glacier Change
Observations indicate that many marine-terminating glaciers have retreated and thinned over the last sev-
eral decades (Joughin et al., 2010; Moon et al., 2015; Pritchard et al., 2009; Scheuchl et al., 2016; Wouters
et al., 2015). However, there are large glacier-to-glacier variations in recent changes. Even adjacent glacier that
have experienced similar rates of ocean and atmospheric warming, have not retreated and thinned uniformly
(Larsen et al., 2016; Motyka et al., 2017). In this study, we have shown that the response of glacier thickness
to surface mass balance and ocean forcing (section 4.1) becomes weaker for steeper prograde bed slopes.
These findings are in agreement with Felikson et al. (2017), who show that almost all thinning observed at
marine-terminating glaciers in West Greenland occurs downstream of steep regions of prograde bed slope.
Additionally, through analytic expressions for marine-terminating glacier sensitivity to forcing, we show that
stronger nonlinearity in forcing processes make glaciers more sensitive to external forcing. As we argue in
section 4.2, the timing of forcing onset may also have a significant influence on the current magnitude and
rate of glacier response, even for glaciers that are otherwise identical.

The observed retreat and thinning of marine-terminating glaciers in recent decades is striking, but should
be interpreted within the context of expected glacier variability forced by stationary stochastic variability in
ocean and atmospheric forcing. A few longer records of marine-terminating glacier variability (up to 150 years)
have been constructed from airborne and field observations (e.g., Bjørk et al., 2012; Csatho et al., 2008; Lea
et al., 2014; Leclercq et al., 2012, 2014; Weidick et al., 2012; Yde & Knudsen, 2007). Though such records are still
not long enough to capture the slow time scale of marine-terminating glacier variability (TS > 1,000 years),
detectable changes in atmospheric and ocean warming and the associated terminus retreat only began in
the last few decades at most calving glaciers (Bjørk et al., 2012; Leclercq et al., 2014). Even if natural variability
of these glaciers is large, it is only expressed on long time scales. Forced change on shorter time scales may
exhibit a faster rate of change than what can be reliably attributed to natural variability. We intend to explore
such questions of detection and attribution in future work.

The lack of observed thinning and retreat at some glaciers (e.g., Petermann Glacier and ice streams in the
western Ross Sea region, see Fountain et al., 2017; Hogg et al., 2016) does not necessarily preclude future
thinning and retreat occurring on the slow time scale of hundreds to thousands of years. Indeed, as we have
shown (section 4.2), recent changes at these stable marine-terminating glaciers are just a small fraction of the
total committed retreat expected in the future in response to climate change that has already occurred. If the
trend in climate forcing continues over the next century, there will be many marine-terminating glaciers where
the speed of glacier change will accelerate significantly. Even past changes in climate that do not continue into
the future cause a commitment to future changes in marine-terminating glaciers that persists for hundreds to
thousands of years.

6.2. Model Flexibility and Simplicity
The flexibility of the two-stage model has allowed us to analyze the physical processes controlling the
response of marine-terminating glaciers to forcing. This flexibility is premised on the assumptions that mass
enters the glacier through a spatially averaged surface mass balance and leaves via flux through the ground-
ing line, where that flux is a function of the local ice thickness at flotation. Most of our analysis does not
require any further assumptions regarding the physical processes in the grounding zone. Thus, the two-stage
model and the associated linear analysis can accommodate a variety of different types of marine-terminating
glaciers, including those with strong lateral shear stresses (Hindmarsh, 2012), Weertman basal sliding (Schoof,
2007a), Coulomb plastic failure near the grounding line (V. C. Tsai et al., 2015) or strong buttressing by ice
shelves (Haseloff & Sergienko, 2018).

There are some drawbacks to the simplicity of the two-stage model. Our model formulation implicitly assumes
that the glacier is marine terminating and always remains marine terminating. Also, as we have shown in
section 2.2, the two-stage model emulates the transient behavior of a flowline model at time scales longer
than a few decades. However, the flowline model is itself a simplification of real marine-terminating glacier
processes, for which there are very few observations. It is difficult to compare the two-stage model directly to
observations, since we have shown that the largest changes in stable marine-terminating glaciers occur on
time scales that are much longer than the length of available observational time series. We have also shown
that the two-stage model may not be entirely reliable for reproducing glacier fluctuations on time scales
shorter than a few decades, though the magnitude of glacier response at these short time scales is small (and
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it is unclear how well fast glacier fluctuations are simulated in the flowline model). Furthermore, the flux for-
mulation we use (from Haseloff & Sergienko, 2018) integrates the effects of buttressing over the entire ice
shelf by assuming that it is at a steady state, and so neglects time-dependent adjustment processes occurring
within the ice shelf. A fully coupled model of an ice sheet and ice shelf would likely have an additional time
scale associated with ice shelf adjustment processes.

One possible future extension of the two-stage model would be to formulate the linear response problem
outlined in section 3 for the spatially extended shelfy-stream equations (what is solved by the flowline model
described in section 2.2). One could then find the spatially dependent glacier response to external forcing
with a generic spatial structure (rather than the spatially uniform forcing used in the two-stage model), which
may include very rapid glacier responses (i.e., shorter than the fast time scale TF) to spatially localized forcing.

There are also clear limits to the use of a linear theory to capture the complexity of bed topography. In our
linearized analysis, we assume that the width-averaged depth and slope of the bed at the grounding line
remains relatively unchanged under changes in glacier state. This may be most appropriate for beds with
relatively weak topographic variation such as those in West Antarctica, and less appropriate for beds with
strong topographic variation, such as those in parts of Greenland. We can, however, still use the two-stage
model to calculate the grounding line migration over these bumpy beds. We may also use an average depth
and bed slope over the region of bed that we expect the grounding line to migrate, which will improve the
linear prediction of grounding line migration over bumpy beds on long time scales.

We have also left out other processes, such as isostatic bedrock adjustment, that may be important on the
long time scales over which marine-terminating glaciers respond to forcing. Feedbacks between surface mass
balance and geometry, such as the height-mass balance feedback, may also play a role. To incorporate such
effects (as does Harrison et al., 2003), we might replace the surface mass balance term (P) in equation (8),
with a term that depends on H and L. In this study, we consider the limit where the sensitivity of ice fluxes
to changes in ice sheet geometry (e.g.,

𝜕Qg

𝜕L
and 𝜕Q

𝜕H
) is much more important to glacier evolution than the

sensitivity of surface mass balance to changes in geometry ( 𝜕P
𝜕H

). However, we do not rule out the possibility
that when the vertical gradient in surface mass balance gradient is large (due to orographic or other local
climate effects), this effect may be important. The virtue of the two-stage model presented here is that the
essence of the dynamical system can be identified and explored. These essential dynamics will also operate
in more complicated numerical models, in addition to the real glacier system.

7. Conclusions

We have shown that a simple two-stage model can emulate the transient response of a marine-terminating
glacier simulated in a spatially extended model, particularly at time scales longer than a few decades. In both
the two-stage and spatially extended models, the response of a marine-terminating glacier to forcing is dom-
inated by two time scales. The fast time scale is controlled by the rate of advective adjustment to changes in
ice thickness and is typically decades to centuries. The slow time scale is controlled by the rate at which ice
thickness perturbations are dissipated by differences in advective and extensional adjustment in the ground-
ing zone and is typically millennia. The slow time scale becomes unstable on shallow prograde slopes and the
fast time scale becomes unstable on steep retrograde slopes, producing two distinct forms of the marine ice
sheet instability.

We have derived simple expressions for the magnitude of glacier response to different types of forcing that
can be calculated without resorting to use of a complex numerical glacier model. The strength of the response
depends on the glacier state, the time-averaged forcing, and the strength of nonlinearity in ice dynamical
processes. A stable marine-terminating glacier responds slowly to the onset of a trend in forcing and will only
begin to approach the long-term expected rate of change on the slow time scale of centuries to millennia.
We expect that the current level of stable marine-terminating glacier retreat is a small fraction of the commit-
ted retreat that can be expected as the rate of glacier change accelerates in coming centuries (as has been
shown for many mountain glaciers, e.g., Rupper et al., 2012). Even stable glaciers which have not yet under-
gone detectable change may undergo such change in the future as the glaciers catch to the forcing. The slow
glacier response to stochastic external forcing suggests that the rate, rather than the absolute level, of glacier
change caused by trends in forcing are potentially more easily discernible from background noise. Finally, we
have shown that the equilibrium state of a marine-terminating glacier depends on the magnitude of noise in
nonlinear forcing processes, such as ice shelf length variations that occur through calving.
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One important conclusion of this study is that the slow time scale of marine-terminating glacier change
ensures that uncertainties in climate forcing (either in the past or future) influence glacier change for hundreds
to thousands of years. To account for the uncertainties associated with future climate forcing in simulating ice
sheet change will require large ensembles of stochastic ice sheet model simulations that result in probabilistic
forecasts of future sea level rise. Though studies such as the SeaRISE project consider uncertainties in ice sheet
physics through small multimodel ensembles with common forcing (Bindschadler et al., 2013), they do not
capture the uncertainty in future projections associated with the forcing itself (e.g., C. Y. Tsai et al., 2017). As we
have shown, considering noise is not just important for constraining the background envelope of variability
but also for accurately simulating the time-averaged glacier state. For one, if the magnitude of noise in certain
ice sheet processes changes over time (e.g., as the style of iceberg calving from an ice shelf changes), this may
drive glacier retreat that would not be predicted in the absence of noise. Also, model spin-up and calibration
performed without natural sources of noisy forcing (or forcing with a truncated spectrum of variability due
to asynchronous model coupling) may lead to unrealistic glacier states. As a new generation of fully coupled
climate and ice sheet models are used to produce projections of future ice sheet change, it is important to
consider the ice sheet response to high-frequency climate variability through nearly synchronous coupling.
To exclude the noise of climate when predicting future ice sheet change misses an important piece of the
glaciological puzzle.

References
Amundson, J. M. (2016). A mass-flux perspective of the tidewater glacier cycle. Journal of Glaciology, 62(231), 82–93.
Bassis, J. N. (2011). The statistical physics of iceberg calving and the emergence of universal calving laws. Journal of Glaciology, 57(201),

3–16.
Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., et al. (2013). Ice-sheet model sensitivities to

environmental forcing and their use in projecting future sea level (the SeaRISE project). Journal of Glaciology, 59(214), 195–224.
Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., Andresen, C. S., et al. (2012). An aerial view of 80 years of climate-related

glacier fluctuations in southeast Greenland. Nature Geoscience, 5(6), 427–432.
Box, G., Jenkins, G., Reinsel, G., & Ljung, G. (2015). Time series analysis: Forecasting and control. Hobokin, New Jersey: Wiley Series in

Probability and Statistics, Wiley.
Brinkerhoff, D., Truffer, M., & Aschwanden, A. (2017). Sediment transport drives tidewater glacier periodicity. Nature Communications,

8(1), 90.
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., & Durand, G. (2017). Sensitivity of grounding line dynamics to the choice of the friction law.

Journal of Glaciology, 63(241), 854–866.
Csatho, B., Schenk, T., Van Der Veen, C. J., & Krabill, W. B. (2008). Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little

Ice Age. Journal of Glaciology, 54(184), 131–144.
Csatho, B. M., Schenk, A. F., van der Veen, C. J., Babonis, G., Duncan, K., Rezvanbehbahani, S., et al. (2014). Laser altimetry reveals complex

pattern of Greenland ice sheet dynamics. Proceedings of the National Academy of Sciences, 111(52), 18,478–18,483.
Cuffey, K., & Paterson, W. (2010). The physics of Glaciers (3rd ed.). Amsterdam, Boston: Pergamon.
Drouet, A.-S., Docquier, D., Durand, G., Hindmarsh, R., Pattyn, F., Gagliardini, O., & Zwinger, T. (2013). Grounding line transient response in

marine ice sheet models. The Cryosphere, 7(2), 395–406.
Favier, L., Durand, G., Cornford, S., Gudmundsson, G., Gagliardini, O., Gillet-Chaulet, F., et al. (2014). Retreat of Pine Island glacier controlled

by marine ice-sheet instability. Nature Climate Change, 4, 117–121.
Felikson, D., Bartholomaus, T. C., Catania, G. A., Korsgaard, N. J., Kjær, K. H., Morlighem, M., et al. (2017). Inland thinning on the Greenland ice

sheet controlled by outlet glacier geometry. Nature Geoscience, 10, 366–369.
Fettweis, X. (2007). Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. The

Cryosphere, 1(1), 21–40.
Fountain, A. D., Glenn, B., & Scambos, T. A. (2017). The changing extent of the glaciers along the western Ross Sea, Antarctica. Geology, 45,

927–930. https//doi.org/10.1130/G39240.1
Fyke, J. G., Vizcaíno, M., & Lipscomb, W. H. (2014). The pattern of anthropogenic signal emergence in Greenland ice Sheet surface mass

balance. Geophysical Research Letters, 41, 6002–6008. https//doi.org/10.1002/2014GL060735
Gomez, N., Mitrovica, J. X., Huybers, P., & Clark, P. U. (2010). Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature

Geoscience, 3(12), 850–853.
Gudmundsson, G., Krug, J., Durand, G., Favier, L., & Gagliardini, O. (2012). The stability of grounding lines on retrograde slopes. The

Cryosphere, 6(4), 2597–2619.
Harrison, W. D., Raymond, C. F., Echelmeyer, K. A., & Krimmel, R. M. (2003). A macroscopic approach to glacier dynamics. Journal of

Glaciology, 49(164), 13–21.
Haseloff, M., & Sergienko, O. V. (2018). The effect of buttressing on grounding line dynamics. Journal of Glaciology, 64(245), 417–431.

https//doi.org/10.1017/jog.2018.30
Hindmarsh, R. C. (2012). An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. Journal of Glaciology,

58(208), 375–387.
Hindmarsh, R., & Le Meur, E. (2001). Dynamical processes involved in the retreat of marine ice sheets. Journal of Glaciology, 47(157),

271–282.
Hogg, A. E., Shepherd, A., Gourmelen, N., & Engdahl, M. (2016). Grounding line migration from 1992 to 2011 on Petermann glacier,

North-West Greenland. Journal of Glaciology, 62(236), 1104–1114.
Intergovernmental Panel on Climate Change, IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge, United Kingdom and New York, NY,
USA: Cambridge University Press. https//doi.org/10.1017/CBO9781107415324

Acknowledgments
Source code and documentation of
the two-stage and flowline models
used in this study are freely available
as public repositories on GitHub:
https://github.com/aarobel/. Thanks to
Olga Sergienko, Martin Truffer, Jeremy
Bassis, and Elisa Mantelli for helpful
comments on the manuscript. This
work was initially conceived through a
series of conversations at the 2014
Advanced Climate Dynamics Course,
which is coordinated by the Norwegian
Research School in Climate Dynamics
(ResClim). Thanks to Nicholas Beaird,
Bradley Markle, and Andreas Vieli for
taking part in those initial
conversations. The authors also thank
Christian Schoof, Victor Tsai, Georgy
Manucharyan, John Christian, Denis
Felikson, and Ian Joughin for
subsequent conversations and
suggestions. A. A. R. was supported by
the NOAA Climate and Global Change
Postdoctoral Fellowship during part of
this project. G. H. R. acknowledges
support from NSF PLR-1643299. M. H.
was supported by the Princeton AOS
Postdoctoral and Visiting Scientist
Program.

ROBEL ET AL. 2225

file:https//doi.org/10.1130/G39240.1
file:https//doi.org/10.1017/jog.2018.30
https://github.com/aarobel/


Journal of Geophysical Research: Earth Surface 10.1029/2018JF004709

Jamieson, S., Vieli, A., Livingstone, S., Cofaigh, C., Stokes, C., Hillenbrand, C., & Dowdeswell, J. (2012). Ice-stream stability on a reverse bed
slope. Nature Geoscience, 5(11), 799–802.

Jóhannesson, T., Raymond, C., & Waddington, E. (1989). Time-scale for adjustment of glaciers to changes in mass balance. Journal of
Glaciology, 35(121), 355–369.

Joughin, I., Alley, R. B., & Holland, D. M. (2012). Ice-sheet response to oceanic forcing. Science, 338(6111), 1172–1176.
Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., et al. (2008). Continued evolution of Jakobshavn Isbræ following its

rapid speedup. Journal of Geophysical Research, 113, F04006. https//doi.org/10.1029/2008JF001023
Joughin, I., Smith, B. E., Howat, I. M., Scambos, T., & Moon, T. (2010). Greenland flow variability from ice-sheet-wide velocity mapping. Journal

of Glaciology, 56(197), 415–430.
Larsen, S. H., Khan, S. A., Ahlstrøm, A. P., Hvidberg, C. S., Willis, M. J., & Andersen, S. B. (2016). Increased mass loss and asynchronous behavior

of marine-terminating outlet glaciers at Upernavik Isstrøm, NW Greenland. Journal of Geophysical Research: Earth Surface, 121, 241–256.
https//doi.org/10.1002/2015JF003507

Lea, J., Mair, D., Nick, F., Rea, B., Van As, D., Morlighem, M., et al. (2014). Fluctuations of a Greenlandic tidewater glacier driven by changes in
atmospheric forcing: Observations and modelling of Kangiata Nunaata Sermia, 1859–present. The Cryosphere Discussions, 8, 2031–2045.

Leclercq, P. W., Oerlemans, J., Basagic, H. J., Bushueva, I., Cook, A., & Le Bris, R. (2014). A data set of worldwide glacier length fluctuations. The
Cryosphere, 8(2), 659–672.

Leclercq, P., Weidick, A., Paul, F., Bolch, T., Citterio, M., & Oerlemans, J. (2012). Brief communication: Historical glacier length changes in West
Greenland. The Cryosphere, 6, 1339–1343.

Lenton, T. M. (2011). Early warning of climate tipping points. Nature Climate Change, 1(4), 201–209.
Lingle, C. S. (1984). A numerical model of interactions between a polar ice stream and the ocean: Application to ice stream E, West

Antarctica. Journal of Geophysical Research, 89(C3), 3523–3549.
Lüthi, M. P. (2009). Transient response of idealized glaciers to climate variations. Journal of Glaciology, 55(193), 918–930.
Mantelli, E., Bertagni, M. B., & Ridolfi, L. (2016). Stochastic ice stream dynamics. Proceedings of the National Academy of Sciences, 113(32),

E4594—E4600.
Marzeion, B., Cogley, J. G., Richter, K., & Parkes, D. (2014). Attribution of global glacier mass loss to anthropogenic and natural causes.

Science, 345(6199), 919–921.
Mernild, S. H., Mote, T. L., & Liston, G. E. (2011). Greenland ice sheet surface melt extent and trends: 1960–2010. Journal of Glaciology,

57(204), 621–628.
Mikkelsen, T. B., Grinsted, A., & Ditlevsen, P. (2017). Influence of temperature fluctuations on equilibrium ice sheet volume. The Cryosphere

Discussions, 2017, 1–16. https//doi.org/10.5194/tc-2017-47
Moon, T., Joughin, I., & Smith, B. (2015). Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice

mélange in northwest Greenland. Journal of Geophysical Research: Earth Surface, 120, 818–833. https//doi.org/10.1002/2015JF003494
Motyka, R. J., Cassotto, R., Truffer, M., Kjeldsen, K. K., Van As, D., Korsgaard, N. J., et al. (2017). Asynchronous behavior of outlet glaciers

feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia’s retreat in SW Greenland. Journal of Glaciology, 63(238),
288–308.

Mulder, T. E., Baars, S., Wubs, F. W., & Dijkstra, H. A. (2018). Stochastic marine ice sheet variability. Journal of Fluid Mechanics, 843, 748–777.
https//doi.org/10.1017/jfm.2018.148

Nick, F., Van der Veen, C. J., Vieli, A., & Benn, D. (2010). A physically based calving model applied to marine outlet glaciers and implications
for the glacier dynamics. Journal of Glaciology, 56(199), 781–794.

Nicolis, C., & Nicolis, G. (1981). Stochastic aspects of climatic transitions–additive fluctuations. Tellus, 33(3), 225–234.
Nye, J. (1960). The response of glaciers and ice-sheets to seasonal and climatic changes. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 256(1287), 559–584.
Nye, J. (1963a). On the theory of the advance and retreat of glaciers. Geophysical Journal International, 7(4), 431–456.
Nye, J. (1963b). The response of a glacier to changes in the rate of nourishment and wastage. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 275(1360), 87–112.
Nye, J. F. (1965). The frequency response of glaciers. Journal of Glaciology, 5(41), 567–587.
Oerlemans, J. (2000). Holocene glacier fluctuations: Is the current rate of retreat exceptional?Annals of Glaciology, 31(1), 39–44.
Park, J., Gourmelen, N., Shepherd, A., Kim, S., Vaughan, D., & Wingham, D. (2013). Sustained retreat of the Pine Island glacier. Geophysical

Research Letters, 40, 2137–2142. https//doi.org/10.1002/grl.50379
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R., Bueler, E., Fleurian, B. d., et al. (2012). Results of the marine ice sheet model intercompari-

son project, MISMIP. The Cryosphere, 6(3), 573–588.
Pegler, S. S. (2016). The dynamics of confined extensional flows. Journal of Fluid Mechanics, 804, 24–57.
Pelto, M. S., & Warren, C. R. (1991). Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals of

Glaciology, 15, 115–118.
Penland, C. (2003). A stochastic approach to nonlinear dynamics: A review. Bulletin of the American Meteorological Society, 84(7), 925–925.
Post, A., & Motyka, R. J. (1995). Taku and Le Conte glaciers, Alaska: Calving-speed control of late-holocene asynchronous advances and

retreats. Physical Geography, 16(1), 59–82.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., & Edwards, L. A. (2009). Extensive dynamic thinning on the margins of the Greenland and

Antarctic ice sheets. Nature, 461(7266), 971–975.
Rignot, E., Koppes, M., & Velicogna, I. (2010). Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geoscience,

3(3), 187–191.
Robel, A., Schoof, C., & Tziperman, E. (2014). Rapid grounding line migration induced by internal ice stream variability. Journal of Geophysical

Research: Earth Surface, 119, 2430–2447. https//doi.org/10.1002/2014JF003251
Roe, G. H., & Baker, M. B. (2014). Glacier response to climate perturbations: An accurate linear geometric model. Journal of Glaciology,

60(222), 670–684.
Roe, G. H., & Baker, M. B. (2016). The response of glaciers to climatic persistence. Journal of Glaciology, 62(233), 440–450.
Roe, G. H., Baker, M. B., & Herla, F. (2017). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience,

10(2), 95–99.
Roe, G. H., & O’Neal, M. A. (2009). The response of glaciers to intrinsic climate variability: Observations and models of late-Holocene

variations in the Pacific Northwest. Journal of Glaciology, 55(193), 839–854.
Rupper, S., Schaefer, J. M., Burgener, L. K., Koenig, L. S., Tsering, K., & Cook, E. R. (2012). Sensitivity and response of Bhutanese glaciers to

atmospheric warming. Geophysical Research Letters, 39, L19503. https//doi.org/10.1029/2012GL053010

ROBEL ET AL. 2226

file:https//doi.org/10.1017/jfm.2018.148
file:https//doi.org/10.1002/grl.50379


Journal of Geophysical Research: Earth Surface 10.1029/2018JF004709

Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., & Khazendar, A. (2016). Grounding line retreat of Pope, Smith, and Kohler
glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data. Geophysical Research Letters, 43, 8572–8579.
https//doi.org/10.1002/2016GL069287

Schodlok, M. P., Menemenlis, D., Rignot, E., & Studinger, M. (2012). Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape
measured by NASA IceBridge in Pine Island glacier, West Antarctica. Annals of Glaciology, 53(60), 156–162.

Schoof, C. (2006). A variational approach to ice stream flow. Journal of Fluid Mechanics, 556, 227–251.
https//doi.org/10.1017/S0022112006009591

Schoof, C. (2007a). Marine ice-sheet dynamics. Part 1. The case of rapid sliding. Journal of Fluid Mechanics, 573, 27–55.
https//doi.org/10.1017/S0022112006003570

Schoof, C. (2007b). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 112, F03S28.
https//doi.org/10.1029/2006JF000664

Schoof, C. (2012). Marine ice sheet stability. Journal of Fluid Mechanics, 698, 62–72.
Schoof, C., Davis, A. D., & Popa, T. V. (2017). Boundary layer models for calving marine outlet glaciers. The Cryosphere Discussions, 11, 1–30.

https//doi.org/10.5194/tc-2017-42
Sciascia, R., Straneo, F., Cenedese, C., & Heimbach, P. (2013). Seasonal variability of submarine melt rate and circulation in an East Greenland

fjord. Journal of Geophysical Research: Oceans, 118, 2492–2506. https//doi.org/10.1002/jgrc.20142
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., & Khazendar, A. (2017). Continued retreat of Thwaites

glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 44, 6191–6199.
https//doi.org/10.1002/2017GL072910

Suzuki, M. (1977). Scaling theory of transient phenomena near the instability point. Journal of Statistical Physics, 16(1), 11–32.
Tsai, C.-Y., Forest, C. E., & Pollard, D. (2017). Assessing the contribution of internal climate variability to anthropogenic changes in ice sheet

volume. Geophysical Research Letters, 44, 6261–6268. https//doi.org/10.1002/2017GL073443
Tsai, V. C., Stewart, A. L., & Thompson, A. F. (2015). Marine ice-sheet profiles and stability under Coulomb basal conditions. Journal of

Glaciology, 61(226), 205–215.
van der Veen, C. (2001). Greenland ice sheet response to external forcing. Journal of Geophysical Research, 106(D24), 34,047–34,058.
Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research

Letters, 36, L19503. https//doi.org/10.1029/2009GL040222
Weertman, J. (1957). On the sliding of glaciers. Journal of Glaciology, 3(21), 33–38.
Weertman, J. (1974). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13, 3–11.
Weidick, A., Bennike, O., Citterio, M., & Nørgaard-Pedersen, N. (2012). Neoglacial and historical glacier changes around Kangersuneq fjord in

southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 27, 68.
Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J., Ligtenberg, S., et al. (2015). Dynamic thinning of glaciers on the

Southern Antarctic Peninsula. Science, 348(6237), 899–903.
Yde, J. C., & Knudsen, N. T. (2007). 20th-century glacier fluctuations on Disko Island (Qeqertarsuaq), Greenland. Annals of Glaciology, 46(1),

209–214.

ROBEL ET AL. 2227

file:https//doi.org/10.1002/jgrc.20142

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


