
Constraining the Limiting Brightness Temperature and Doppler Factors for the Largest
Sample of Radio-bright Blazars

Ioannis Liodakis1 , Talvikki Hovatta2 , Daniela Huppenkothen3 , Sebastian Kiehlmann4, Walter Max-Moerbeck5,
and Anthony C. S. Readhead4

1 KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA; ilioda@stanford.edu
2 Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Kaarina, Finland

3 Dirac Institute, University of Washington, Physics and Astrophysics Bldg, 3910 15th Avenue NE Seattle, WA 98195-0002, USA
4 Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA

5 Universidad de Chile, Departamento de Astronomía, Camino El Observatorio 1515, Las Condes, Santiago, Chile
Received 2018 June 5; revised 2018 September 7; accepted 2018 September 16; published 2018 October 23

Abstract

Relativistic effects dominate the emission of blazar jets, complicating our understanding of their intrinsic properties.
Although many methods have been proposed to account for them, the variability Doppler factor method has been
shown to describe the blazar populations best. We use a Bayesian hierarchical code called Magnetron to model the
light curves of 1029 sources observed by the Owens Valley Radio Observatory’s 40 m telescope as a series of flares
with an exponential rise and decay, and estimate their variability brightness temperature. Our analysis allows us to
place the most stringent constraints on the equipartition brightness temperature, i.e., the maximum achieved
intrinsic brightness temperature in beamed sources, which we found to be T 2.78 10 K 26%eq

11á ñ = ´  . Using
our findings, we estimated the variability Doppler factor for the largest sample of blazars, increasing the number of
available estimates in the literature by almost an order of magnitude. Our results clearly show that γ-ray loud
sources have faster and higher amplitude flares than γ-ray quiet sources. As a consequence, they show higher
variability brightness temperatures and thus are more relativistically beamed, with all of the above suggesting a
strong connection between the radio flaring properties of the jet and γ-ray emission.
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1. Introduction

Blazar jets are known to show extremely fast variability,
boosted emission, and apparent superluminal motion of jet
components. These, as well as the other unique features seen in
blazars, are due to the relativistic effects dominating the
emission from the jet. The relativistic effects arise from the
preferential orientation of the jet typically within <20° from
our line of sight (Readhead et al. 1978; Blandford &
Königl 1979; Scheuer & Readhead 1979; Readhead 1980).
Radio emission in blazars is produced by relativistic electrons
accelerated in the magnetic field of the jet-emitting synchrotron
radiation. It is characterized by a flat spectrum from the
centimeter and up to, in some cases, millimeter wavelengths
thought to be the result of the superposition of multiple
synchrotron self-absorbed spectra. Although the radio emission
is considered to be less variable than, e.g., optical or γ-rays, it
can still be exceptionally variable and bright, with some
sources reaching radio core brightness temperatures of >1013 K
(e.g., Kovalev et al. 2016). Since the intrinsic brightness
temperature of a jet is expected to be of the order of
∼5×1010 K (Readhead 1994), this would suggest that the
jets continue to be highly relativistic on very large scales far
from the supermassive black hole. Quantifying the beaming
properties of the jets is then necessary in order to understand
their energetics at large scales. These relativistic effects are
quantified by the Doppler factor (δ), which is a function of the
velocity of the jet and the angle to the line of sight

1 cos 1d b q= G - -[ ( )] , where Γ is the Lorentz factor
( 1 1 2bG = - ), β is the velocity of the jet in units of the

speed of light (β= uj/c), and θ is the viewing angle. The
Doppler factor, although a crucial parameter in the blazar
paradigm dictating all of the observed properties of blazars, is
notoriously difficult to estimate since there is no direct method
to measure either β or θ. For this reason, many indirect methods
have been proposed in order to estimate δ, which usually
involve different energetic (e.g., Ghisellini et al. 1993; Mattox
et al. 1993; Fan et al. 2013, 2014) and/or causality arguments
(e.g., Lähteenmäki & Valtaoja 1999; Jorstad et al. 2005, 2017;
Hovatta et al. 2009) or fitting the spectral energy distribution
(SED; e.g., Ghisellini et al. 2014; Chen 2018) of γ-ray emitting
blazars.
However, different methods often yield discrepant results,

due to either assumptions that do not hold or the incorrect
application of the methods (see e.g., Liodakis et al. 2017c).
Liodakis & Pavlidou (2015b), using blazar population models
(Liodakis & Pavlidou 2015a; Liodakis et al. 2017a), evaluated
a number of these methods and found that the variability
Doppler factor method (Lähteenmäki & Valtaoja 1999; Hovatta
et al. 2009) is the most accurate and can describe both flat
spectrum radio quasar (FSRQ) and BL Lac object (BL Lacs)
populations. The method is based on the assumption of
equipartition between the energy density of the magnetic field
and the energy density of the radiating particles, achieved at the
peak of prominent flares, implying a characteristic intrinsic
brightness temperature (Kellermann & Pauliny-Toth 1969;
Singal 1986; Readhead 1994). By comparing the intrinsic
(equipartition, Teq) to the highest observed brightness temper-
ature, one can estimate δ. The drawback of this method is that it
is limited by the cadence of the observations, which sets a limit
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to the fastest observed flare and consequently a limit to the
observed brightness temperature (Liodakis & Pavlidou 2015b).

In order to mitigate the effects of limited cadence, Liodakis
et al. (2017d) used multiwavelength radio light curves in order
to identify and track the evolution of flares throughout
frequencies that allowed the authors to provide constraints on
the variability brightness temperature and hence the Doppler
factor of 58 sources. However, the number of blazars with
simultaneous multiwavelength radio light curves is extremely
limited compared to single-frequency observations. Then, the
only way to overcome the effects of limited cadence is through
monitoring programs with sufficiently high cadence to resolve
even the fastest flares in radio.

In this work, we explore the radio beaming properties of jets by
analyzing the light curves of 1029 blazars and blazar-like sources
using data from the Owens Valley Radio Observatory’s
(OVRO’s) 40m blazar monitoring program (Richards et al.
2011). We focus on constraining the equipartition brightness
temperature and the variability Doppler factors for the sources in
our sample. In Section 2, we present the sample and tools of the
analysis; in Sections 3 and 4, we estimate the highest brightness
temperature for the sources in our sample and use blazar
population models to constrain Teq. In Section 5, we estimate
the variability Doppler factors, Lorentz factors, and viewing
angles based on our results on Teq, and finally, in Section 6,
we discuss the findings of this work. We have assumed the
standard ΛCDM cosmology with Ωm=0.27, ΩΛ=1−Ωm, and
H0=71 km s−1Mpc−1 (Komatsu et al. 2009).

2. Sample and Analysis

From the OVRO monitored sources (∼1800), we selected
those that showed prominent flares at 15GHz via visual
inspection of the light curves. Our final sample consists of
837 blazars (670 FSRQs, 167 BL Lacs), 58 radio galaxies,
and 134 still unclassified sources, for a total of 1029 sources.
Since 2008, OVRO has been monitoring blazars in support of
the Fermi γ-ray space telescope producing the most densely
sampled radio light curves available to date with a cadence of
about three days. The OVRO data set provides the ideal
opportunity to study the flaring and beaming properties of
blazars since (1) the unprecedented high cadence is able to
resolve even the fastest flares in the most variable sources and
(2) the light curves of most sources are sufficiently long
(8–10 years) to include at least a few major events in each
source.

For the analysis of the radio light curves, we used Magnetron
(Huppenkothen et al. 2015). Magnetron is a Bayesian
hierarchical model implemented in Python that models the
light curves as a superposition of flares characterized by an
exponential rise and exponential decay on top of a stochastic
background. The shape of the flares is allowed to vary (the ratio
of rise to decay time can be different in each flare), and the
number of fitted flares in a light curve is a free parameter. Each
flare is characterized by four parameters, namely position,
amplitude (in Jy), rise time (in days), and skewness (sk; decay/
rise time ratio). The amplitude of a flare is defined as the
difference between the peak flux density and the background
level (see Figure2 in Huppenkothen et al. 2015). The priors for
the flare amplitudes and rise times are exponential, while the
priors for the skewness and the number of flares are uniform
distributions. The mean of the prior amplitude distribution
takes values between [10−10, 150] Jy, while the minimum and

maximum of the uniform prior distribution for the number of
flares is 4100. All of the prior distributions and their
hyperparameters used by Magnetron are listed in Table1 of
Huppenkothen et al. (2015). In this work, contrary to
Huppenkothen et al. (2015), we treat the background with a
stochastic model (Ornstein–Uhlenbeck (OU) process) to
account for intrinsic blazar variability not related to flaring
events. The OU process is a stochastic, stationary Gauss–
Markov process often used to treat active galactic nuclei
(AGNs) variability (e.g., Kelly et al. 2009). The version of
Magnetron used in this work includes two new parameters to
parameterize this stochastic process. The first quantity is the
rate of mean reversion (αOU), which is included in the model
through a parameter L as Lexp 1OUa = -( )/ . The prior for L is
a log-uniform distribution such that log L∼Uniform(0.01∗T,
0.01∗T+1000), where T is the total length of the light curve.
The second parameter is the volatility of the OU process, σOU,
i.e., the average magnitude per square root of time of random
Brownian fluctuations. The prior for σOU is also log-uniform,
such that log Uniform 10 , 10OU

3 3s ~ -( ). While previous
attempts of fitting radio light curves used a constant value for
the background level, using the OU process results in a varying
background across the light curve. We have verified that using
a different background model (such as a constant background
or a simple random walk model) results in �10% difference in
the derived brightness temperatures, thus the choice of the
background model does not affect our results in any significant
way. The joint posterior probability distribution for the number
of flares and the parameters of all flares as well as the
hyperparameters describing the distributions of flares are
sampled using Diffusive Nested Sampling (Brewer et al.
2009; Brewer & Foreman-Mackey 2016),6 allowing for a better
exploration of the parameter space. Once the code has
converged to the “true” posterior distribution, it samples
∼102 sets of flare parameters. These sets are different
realizations of the flares in the observed light curve taking
into account the inherent uncertainty in the parameters of the
flares as well as the uncertainty in the number of flares of each
light curve. A more detailed description of Magnetron can be
found in Huppenkothen et al. (2015), while the code is publicly
available online on GitHub.7

Figure 1 shows the results of the light curve modeling for
four sources in our sample as well as individual flares for one
posterior sample in each source. All of the light curves were
visually inspected to ensure that the simulated light curves are
not affected by either spurious events or observational artifacts.
In addition, we compared the rise times and amplitudes of the
identified flares to test whether we were able to resolve, to
OVRO’s sensitivity, all of the flaring events. For all classes of
sources, there is a lack of flares with high amplitudes and rise
times close to the cadence of OVRO (∼3 days). In the case of
FSRQs and unclassified sources, we detect a mild positive
correlation between the rise times and amplitudes according to
the Spearman correlation test (Spearman ρ≈ 0.3, p-value
<10−5 for both classes). For all sources, we find that for rise
times <14 days, the majority of flares (60%) have amplitudes
lower than the median amplitude of the flares in the light
curve. Out of all the flares that have higher amplitudes than
the median, fewer than 20% have amplitudes higher than half

6 https://github.com/eggplantbren/DNest4
7 https://github.com/dhuppenkothen/magnetron2/tree/blazars
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of the maximum amplitude in the light curve. When we
consider individual populations, we find similar percentages
(±5%–10%). All of the above show that OVRO’s cadence
allowed us to resolve all of the most significant events within
the time span of the observations. A third quality test was to
assess whether Magnetron is overfitting the data, i.e.,
needlessly increasing the number of flares in a model to
account for even the lowest flux-density variations, a common
problem in χ2

fitting routines usually employed. We attempt to
fit four sources used in the calibration of the OVRO
observations where any flux-density fluctuation in the light
curve is expected to be dominated by noise rather than any
flaring activity. Figure 2 shows the observed and posterior
sampled light curves for those calibrator sources. Although one
could visually “detect” a number of apparent flares in each
source (Figure 2), no more than two flares were detected by
Magnetron in any given source for any given posterior sample
of the light curves. This would suggest that the stochastic
model for the background is able to adequately take into
account the intrinsic low amplitude variability.

3. Variability Brightness Temperature

For every source in our sample with an available redshift
estimate (all FSRQs, ∼71% BL Lacs, ∼56% radio galaxies,

and ∼42% of unclassified sources), we estimate the variability
brightness temperature (Tvar) using

T
d S

t z
K1.47 10

1
, 1L

var
13

2
ob

2
var
2 4

n
n

=
D

+
· ( )

( )
( )

where z is the redshift, ΔSob(ν) the amplitude of the flare in Jy,
dL is the luminosity distance in Mpc, ν the observing frequency
in GHz, and tvar the rise time of a flare in days (Liodakis et al.
2017d). We calculate Tvar for every flare in a given posterior
sample and find the maximum Tvar since that provides the
strongest constraint on Teq. We repeat the above process for all
available samples (157 models on average) and create a
distribution for Tvar,max for a given source. From that
distribution, we calculate the median and 1σ confidence
intervals, which we quote as the uncertainty on Tvar,max.
Figure 3 shows four examples of the maximum Tvar
distributions. It is possible for the distributions to be narrower
or wider than the ones shown in Figure 3. The width of the
distribution reflects the ability of the modeling procedure to
constrain the flare parameters’ posterior distributions given the
data set. Thus, the size of the confidence intervals of the
Tvar,max distribution gives a sense of how well we can constrain

Figure 1. Observed (black points) and posterior sampled (red lines) light curves for four sources in our sample, namely J0854+2006 (upper left), J1221+2813 (upper
right), PKS 1510–089 (lower left), and J2345–1555 (lower right). The blue dotted lines show the individual flares of one randomly selected realization of the light
curve having added the background.
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Tvar,max in that source. For simplicity, we refer to Tvar,maxá ñ as
Tvar hereafter.

Figure 4 shows the distribution of Tvar for the different
populations in our sample. The lowest brightness temperature
(∼108K) is detected in a radio galaxy (M81), while the highest
(6.7× 1015) is in an FSRQ (J0449+1121). There is only a
marginal difference between the Tvar distributions of the
BL Lacs and FSRQs according to the Wilcoxon rank-sum test
(WRS test8; p-value 0.0497) with BL Lacs having higher
values on average. BL Lacs and FSRQs also show on average
higher values than the unclassified sources (WRS p-values
0.005 and 0.028, respectively). No other significant difference
between the distributions of the different populations was
detected. It would be interesting to also separately compare the
flaring properties of the sources (i.e., individually comparing
flare amplitude (maximum) and flare rise time (shortest)
distributions). The comparison between the different popula-
tions in our sample showed that although there is no significant
difference in the flare amplitudes between BL Lacs and FSRQs
(WRS p-value 0.76, median ≈0.23 Jy for both populations),
BL Lac flares evolve on faster timescales (WRS p-value

0.00003, median ≈9 days compared to median ≈17 days
for FSRQs). Radio galaxies and unclassified sources have
on average lower flare amplitudes (WRS p-value < 0.0002,
median of ≈0.18 for both classes) than blazars, but their flare
rise times are comparable to BL Lacs.
Another interesting comparison would be between γ-ray

loud and γ-ray quiet sources. We separate our sample using the
ROMA-BZCAT catalog of known blazars (which is based on
the 1FGL and 2FGL catalogs; Massaro et al. 2009, 2015)
according to whether a source has been detected by Fermi, i.e.,
a source showing γ-ray emission. We find that Fermi detected
(382) sources have systematically higher values than the Fermi
non-detected (496) sources (WRS p-value ∼10−18, median
1.27× 1014 K for detected and 1.56× 1013 K for non-detected
sources; Figure 4 bottom panel). Additionally, we compare
their flaring properties as above. The comparison showed
that Fermi detected sources flare on faster timescales and
have higher amplitude flares than non-detected sources (WRS
p-value < 0.0001 in both cases).

4. Equipartition Brightness Temperature

In order to constrain Teq, we use blazar population models
(Liodakis et al. 2017a). The population models are optimized
using only the apparent velocity and redshift distributions from
the MOJAVE survey (Lister & Homan 2005) and can yield

Figure 2. Observed (black points) and posterior sampled (red lines) light curves for the four calibrator sources used by OVRO namely 3C 46 (upper left), 3C 161
(upper right), 3C 286 (lower left), and DR 21 (lower right).

8 The Wilcoxon rank-sum or Mann-Whitney U-test operates under the null
hypothesis that the two distributions are drawn from the same sample while the
alternate hypothesis is that one subsample has systematically higher values than
the other. The p-value threshold we are using is 0.05.
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Doppler factor distributions within flux-limited samples
independent of the assumption of equipartition. We define
three flux-limited samples (0.5 Jy, 1 Jy, and 1.5 Jy) above the
nominal flux limit of the OVRO monitoring program (0.354 Jy)
using the overall mean flux density of each source (Liodakis
et al. 2017b). This allows us to assess how sensitive our results
are to a given flux limit. Using the population models, we
generate Doppler factor distributions for BL Lacs and FSRQs
for every flux limit. From Equation (1), the variability Doppler
factor (δvar) is defined as

z
T

T
1 . 2var

var

eq
3d = +( ) ( )

We assume that Teq has a known distribution. We construct the
Tvar distribution of the sample under consideration using the
estimated Tvar for each source in that sample. We then use
Equation (2) to derive an observed Doppler factor distribution.
Then, we constrain the parameters of the assumed Teq
distribution by minimizing the reduced χ2 between the
expected (population model) and observed Doppler factor
distributions. For the distribution of Teq, we tested a delta
function, and normal, log-normal, and uniform distributions
with a parameter space [1010, 1013 K]. Once the best-fit
parameters of each distribution were determined, we used the

Bayesian Information Criterion (BIC) to select the most
suitable model for Teq.
For FSRQs, we find that the best model for Teq is a normal

distribution for all three flux-limited samples we considered
with very similar means (μ) and standard deviations (σ;
Table 1). All of the other distributions that were tested
(although they yielded worse models according to BIC)
converged to the same range of Teq values. Although the
results of the minimization for the different flux limits are
consistent, the 1.5Jy sample is the flux limit to which the
population models have been optimized and thus where their
strength lies (see discussion in Liodakis & Pavlidou 2015a).
For this reason, we adopt the results from the 1.5Jy sample for
the FSRQs.
For BL Lacs, we also find that the best-fit distribution is

normal for all flux limits; however, the parameters of the inferred
distributions all significantly exceed the inverse-Compton
catastrophe limit (1012K; Kellermann & Pauliny-Toth 1969).
Since we have yet to observe the extreme behavior predicted by
the inverse-Compton catastrophe, such a scenario is unlikely. A
possible explanation is that the maximum Doppler factor
inferred for BL Lacs by the population models is δ≈30 (the
maximum δ in FSRQs is δ≈ 60), which, given the high
variability brightness temperatures seen in BL Lacs, forces the
very high Teq. Liodakis et al. (2017a) discussed that the BL Lac
population (∼16 sources) in the MOJAVE 1.5 Jy flux-limited

Figure 3. Distribution of the logarithm of the maximum Tvar for four sources in our sample, namely J0102+4214 (upper left), J1319–1217 (upper right), J1632+8232
(lower left), and J1813+2952 (lower right). The red dashed line shows the median and the gray shaded areas the 1σ confidence internals in each source.
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sample, to which the population models are optimized, might not
be a representative sample of BL Lacs, but rather a biased
subsample of the brightest BL Lacs at 15GHz. Hence, the
population models cannot adequately describe the entirety of the
BL Lac population present in our sample. Given that
equipartition is determined by the jet processes and synchrotron
physics, we expect the value of Teq to be fairly similar for the
different supermassive black-hole-powered jets. Thus, we adopt
the results from the FSRQs for all populations in our
sample ( T 2.78 10 K 26%eq

11á ñ = ´  ).

5. Variability Doppler Factors

In order to calculate δvar, we draw a random value from the
Tvar,max distribution of each source and a random value for Teq
from a Gaussian distribution with mean T 2.78 10 Keq

11á ñ = ´
and standard deviation 7.2 10T

10
eqs = ´ . Using Equation (2),

we calculate a δvar. By repeating this process 103 times, we
create a distribution of δvar for every source. From the resulting
δvar distribution of each source, we estimate the median and 1σ
confidence intervals. Figure 5 shows the distribution of δvar for
the different populations (top panel) and Fermi detected and
non-detected sources (bottom panel). BL Lacs and FSRQs have
median values of δvar≈10 and δvar≈11, respectively, while
radio galaxies and unclassified sources have median δvar≈5.

As expected, blazars have systematically higher Doppler
factors than radio galaxies (WRS p-value ∼0.03) and
unclassified sources (p-value <0.0002). We find no significant
difference between the δvar distributions of the blazar classes
(BL Lacs and FSRQs; WRS p-value 0.08). Comparing
Fermi detected and non-detected sources, we found that Fermi
detected sources have systematically higher values than non-
detected sources (WRS p-value ∼10−13, median δvar≈ 14
for detected and δvar≈ 8 for non-detected sources). This would
suggest that the γ-ray emission could be, in part, resulting from
the enhanced relativistic effects in these sources.
There are 31 sources (10 FSRQs, five BL Lacs, five radio

galaxies, 11 unclassified sources) that show δvar<1, seven of
which have been detected by Fermi (four BL Lacs, two radio
galaxy, one unclassified source). These sources are either
misaligned AGNs with jets pointing away from our line of
sight, and thus their emission is deboosted, or are mildly
beamed and have not shown any radio-bright flaring events
with Tvar>1011 K during the OVRO monitoring period
(2008–2017).

5.1. Lorentz Factors and Viewing Angles

Using the apparent velocity of the resolved jet components,
we can estimate both Γ and θ as

1

2
, 3var

app
2

var
2

var

b d

d
G =

+ +
( )

arctan
2

1
, 4var

app

app
2

var
2

q
b

b d
=

+ -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where βapp is the apparent velocity. For βapp, we use data from
the MOJAVE survey (Lister & Homan 2005; Lister et al.
2016). For our calculations, we use the maximum observed

Figure 4. Upper panel: logarithm of the maximum Tvar for BL Lacs (black
solid), FSRQs (red dashed), radio galaxies (blue dotted), and unclassified
sources (green dashed–dotted). Lower panel: logarithm of the maximum Tvar
for Fermi detected (black solid) and Fermi non-detected (green dashed)
sources.

Table 1
Parameter Values for the Best-fit Normal Teq Distribution for Different Flux

Limits for the FSRQ Population

Flux Limit Mean Standard Deviation Reduced χ2

0.5Jy 4.72×1011 8.7×1010 0.08
1.0Jy 3.65×1011 4.0×1010 0.07
1.5Jy 2.78×1011 7.2×1010 0.04

Figure 5. Upper panel: variability Doppler factor distribution for BL Lacs
(black solid), FSRQs (red dashed), radio galaxies (blue dotted), and
unclassified sources (green dashed–dotted). Lower panel: variability Doppler
factor distribution for Fermi detected (black solid) and Fermi non-detected
(green dashed) sources.
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apparent velocity in each jet. There are 238 sources with an
available estimate, 160 of which have been detected by Fermi.
Figures 6 and 7 show the Lorentz factor and viewing angle
distributions for the different classes (top panels) and Fermi
detected and non-detected sources (bottom panels). From the
sources with an apparent velocity measurement, FSRQs have
on average faster jets than any other source class (WRS p-value
<0.006, median Γvar≈ 15.6 compared to about 10 for BL Lacs,
6.3 for radio galaxies, and 7.2 for unclassified sources).
Similarly, Fermi detected sources have faster jets (∼10−6,
median Γvar≈ 17) on average than Fermi non-detected sources
(median Γvar≈ 9). There are four sources (namely J0108
+0135, J0948+4039, J1613+3412, and C1724+4004) with a
high Lorentz factor (Γvar> 100). The derived Doppler factors
for these sources are <5, yet the measured βapp,max are >20.
Using the median βapp instead of βapp,max brings the Γvar

estimates to much lower values (<50). However, in all cases,
the components that yielded βapp,max in each source were
ejected prior to the beginning of the observations considered
here. It is then possible that a major flaring event not
considered in this work is associated with these components,
and hence for these sources we are underestimating their
Doppler factors. BL Lacs and FSRQs have similar viewing
angles (WRS p-value 0.13, median θvar≈ 4 for BL Lacs and
median θvar≈ 5 for FSRQs) while those for radio galaxies and
unclassified sources are on average larger (p-value <0.04,
median of 12°, and 9° respectively). Fermi non-detected
sources also have on average larger viewing angles
(p-value∼10−9, median of 7°.2) compared to Fermi detected
sources (median of 2°.7).

A similar comparison of the beaming properties for a smaller
sample (62 sources in total) in Savolainen et al. (2010) found

that there is a lack of small viewing angles in the comoving
frame of the jet for Fermi detected sources. The comoving-
frame viewing angle (θsrc) is defined as

arccos
cos

1 cos
. 5src

var

var
q

q b
b q

=
-

-

⎛
⎝⎜

⎞
⎠⎟ ( )

Based on the fact that Fermi detected sources have on average
higher apparent velocities (Lister et al. 2009) and VLBI core
brightness temperatures (Kovalev et al. 2009), the authors
concluded that if the lack of small θsrc persists in a larger
sample, it would suggest either anisotropy of the rest-frame
γ-ray emission or a dependence of that emission on the Lorentz
factor. Our sample allows us to test whether such lack of small
θsrc exists. Figure 8 shows the θsrc distributions for Fermi
detected and non-detected sources. With the significantly larger
sample considered in this work, we do not find any lack of
small θsrc for Fermi detected sources. Thus, our results disfavor
scenarios involving any dependence on the Lorentz factor or
anisotropic rest-frame γ-ray emission.
Table 2 lists the values for Tvar, δvar, Γvar, and θvar and their

uncertainties. For all sources (with or without a βapp,max

estimate), we use the βapp,max distribution to bracket the
possible range of Γvar and θvar estimates for that source given
the estimated δvar.

5.2. Sources without Redshift

There are 151 sources in our sample without an available
redshift estimate. Out of these sources, 49 are BL Lacs, 25
radio galaxies, and 77 are unclassified sources. We follow the
same procedure for the sources with redshift and calculate Tvar
using Equation (1) without the cosmological correction. We
use the minimum and maximum redshift estimates [0.00014,
5.47] in our sample to calculate lower and upper limits for Tvar

Figure 6. Upper panel: Lorentz factor distribution for BL Lacs (black solid),
FSRQs (red dashed), radio galaxies (blue dotted), and unclassified sources
(green dashed–dotted). Lower panel: Lorentz factor distribution for Fermi
detected (black solid) and Fermi non-detected (green dashed) sources.

Figure 7. Upper panel: viewing angle distribution for BL Lacs (black solid),
FSRQs (red dashed), radio galaxies (blue dotted), and unclassified sources
(green dashed–dotted). Lower panel: viewing angle distribution for Fermi
detected (black solid) and Fermi non-detected (green dashed) sources.
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and δvar using the mean Teq derived in Section 4. Similarly, we
use the βapp,max distribution to bound the possible Γvar and θvar
estimates for these sources. We list all of those values in
Table 3.

5.3. Comparison with Other Doppler Factor
Estimation Methods

There are several methods in the literature for estimating the
Doppler factor in blazar jets, some of which are mentioned in
Section 1. Although a broader comparison study among the
different methods similar to Liodakis & Pavlidou (2015b) and
Liodakis et al. (2017c) could be beneficial, we focus on recent
results from the radio regime and SED modeling. The most
recent attempts in estimating the variability Doppler factor for a
large number of sources are Hovatta et al. (2009) and Liodakis
et al. (2017d; hereafter H09 and L17, respectively). In H09, the
authors used data from the Metsähovi monitoring program at
22 and 37GHz (Teraesranta et al. 1998) and estimated the
variability brightness temperature for 87 sources by modeling
the light curves using the same exponential rise and exponential
decay model as this work. L17 used multiwavelength radio
data (2.64–142.33 GHz) from the F-GAMMA program
(Fuhrmann et al. 2016) to decompose the light curves using
non-parametric models for the flare profiles tailored to the
individual light curves of 58 sources. The cadence of H09 is
weekly, while the cadence for L17 is every two weeks to
monthly. All of the sources in H09 and L17 are also in
our sample. Our results appear to be consistent with both
studies with roughly 50% of the estimates consistent within
1σ. However, both H09 and L17 have assumed that Teq=
5×1010. Once we account for the different Teq, the estimates
derived in this work become larger by a factor of ≈1.85. The
number of sources with consistent estimates drops to roughly
20%, and there is now a significant difference in the Doppler
factor distributions with estimates of this work being system-
atically larger (WRS p-value<0.0002 for both samples). The
higher Doppler factors from this work are most likely due to

OVRO’s faster cadence. However, cadence may not be solely
responsible for the differences between the estimates. The data
set used in H09 includes observations up to roughly 2006.
While there is overlap between the observing periods of L17
and this work, the estimates in both H09 and L17 originate from
a variety of frequencies, which may probe regions not co-spatial
with the one probed at 15GHz due to synchrotron self-
absorption. It is then possible for the differences in the estimates
to also be attributed to either significant flaring events that have
occurred outside the periods considered in H09 and L17 or that
their reported estimates simply corresponds to different regions
of the jet. Additionally, results from the F-GAMMA survey
would suggest a decreasing trend of the brightness temperature
with frequency Tvar∝ν−1.2 (Fuhrmann et al. 2016). From
Equation (2), the Doppler factor should then decrease as
δvar∝ν−0.4 with increasing frequency. Such a trend could
imply that the jets are accelerating from the higher to the lower
radio frequencies, which could explain some of the discrepan-
cies. About 75% of blazars in the MOJAVE survey have indeed
shown at least one accelerating jet feature at 15GHz (Homan
et al. 2015). However, the fact that a significant fraction of the
estimates in L17 are estimated at a lower frequency than
15GHz would suggest that this scenario is unlikely to explain
the discrepancies between the estimates from L17 and
this work.
A more interesting comparison would be with the estimates

in Jorstad et al. (2017, hereafter J17). The method uses the
variability timescales of individual jet components which are
related to the Doppler factor through the observed angular size
of the components derived from VLBI observations at 43GHz
(Jorstad et al. 2005). Although the method is also limited by the
cadence of the observations, it has the advantage of being
independent of the assumption of equipartition. Thus, agree-
ment in the estimates of the two methods (J17 and this work)
provides strong constrains for the Doppler factors of the jets.
All of the sources (36) in J17 are included in the present
sample. The estimates for 11/36 sources are consistent within
1σ. Differences in the estimates between the two samples are
most likely attributed to the different assumptions used in each
method or to reasons described above; however, no systematic
difference is detected between the Doppler factor distributions
according to the WRS test (p-value 0.56). The names and
δ estimates of the sources in agreement between the two
samples are given in Table 4.
SED modeling has also been used to constrain the Γ and θ in

blazar jets in part due to the fact that different γ-ray emission
mechanisms are affected differently by the relativistic effects
(e.g., Dermer 1995). Recent SED modeling of a large number
of sources found that the distribution of the derived Lorentz
factors (a frequent assumption in SED modeling is that δ= Γ)
is narrow, peaking at δ=Γ∼13±1.4 (Ghisellini et al.
2014). Similar results were found in Chen (2018) considering a
larger sample (δ= Γ∼ 14). It is usually assumed in SED
modeling that the γ-ray emission is produced closer to the
supermassive black hole than the radio core of the jet where
most of the radio emission originates. It is then interesting that
we find similar results for δvar for the Fermi detected sources
(median δvar≈ 14). The derived Γvar in this work appears to be
on average larger (median Γvar≈ 17); however, the distribution
is wide enough to prevent us from investigating any potential
discrepancy. Agreement between the two methods could
suggest that there is no significant change in the relativistic

Figure 8. Comoving-frame viewing angle distribution for Fermi detected
(black solid) and Fermi non-detected (green dashed) sources.

8

The Astrophysical Journal, 866:137 (12pp), 2018 October 20 Liodakis et al.



Table 2
Variability Brightness Temperatures and Beaming Properties for the Sources in Our Sample

Name Class z βapp,max app,maxsb Tvar - Tvars Tvars δvar vars- d varsd Γvar Γmin Γmax θvar θmin θmax

J0001−1551 F 2.044 L L 11.15 −1.12 0.64 2.51 −1.44 1.69 L 1.45 >100 L 0.91 23.47
J0001+1914 F 3.100 L L 10.29 −0.25 3.64 1.82 −0.5 30.76 L 1.19 >100 L 2.07 33.24
J0004+2019 B 0.677 L L 11.14 −0.52 3.83 1.37 −0.48 24.59 L 1.05 >100 L 2.88 47.06
J0004+4615 F 1.810 L L 12.78 −0.63 0.2 7.75 −2.75 1.7 L 3.94 >100 L 0.08 7.42
J0005+3820 F 0.229 L L 13.26 −0.31 0.63 5.23 −1.22 2.72 L 2.71 >100 L 0.18 11.02
J0006−0623 B 0.347 7.31 0.33 13.55 −0.5 0.77 6.96 −2.27 5.63 7.39 3.55 >100 8.25 0.1 8.26
J0010+1058 L 0.089 1.58 0.29 12.48 −0.08 1.38 2.51 −0.3 4.24 1.95 1.45 >100 22.1 0.91 23.51
J0010+1724 F 1.601 L L 14.38 −0.48 0.45 24.81 −7.46 12.21 L 12.43 44.18 L 0.01 2.31
J0010+2047 F 0.600 L L 13.18 −1.46 0.45 6.02 −4.05 3.12 L 3.09 >100 L 0.14 9.56
J0011+0057 F 1.492 L L 13.34 −1.37 1.92 11.03 −7.63 33.64 L 5.56 76.98 L 0.04 5.2

Note.Names are as listed in the OVRO website. The values of Tvar and its uncertainties are given in log10. − Tvars , Tvars and − varsd , varsd are the asymmetric uncertainties on Tvar and δvar, respectively. [Γmin, Γmax] and
[θmin, θmax] are the possible minimum and maximum values of each source for a given δvar by marginalizing over the βapp,max distribution. The redshift estimates are taken from Richards et al. (2014), SIMBAD (Wenger
et al. 2000), NASA/IPAC Extragalactic Database (NED; operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration), and the
MOJAVE database (Lister et al. 2018). The table lists only the first 10 sources. It is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)
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effects between the radio and γ-ray emission regions, which
has implications for the different jet acceleration scenarios as
well as the possible location of the γ-ray production site.
However, given the complexity of the SED models and the
covariance between the different parameters involved in these
models, any agreement could be artificial. A dedicated study of
the sources studied in this work could allow us to probe
possible differences in the relativistic effects between radio and
γ-rays.

6. Discussion and Conclusions

By modeling with a superposition of flares on top of a
stochastic background the radio light curves from the OVRO
40 m telescope’s blazar monitoring program, we were able to
estimate the variability brightness temperatures and Doppler
factors for 1029 sources, the largest set of estimates available to
date. OVRO’s high cadence allowed us to resolve even the
fastest flares and set the strongest constraints on the highest Tvar
in each source. The present analysis is, however, limited by the
time span of observations. It is possible for significant flaring
events to have occurred outside the observing time span
considered here as the variability timescales in blazars are
typically long (Hovatta et al. 2007). Thus, for all intents and
purposes, the results from this work should be treated as lower

limits. The fact that roughly 12% of our sources have Doppler
factors as high as δvar>30 would suggest that at least for a
fraction of our sample, we were able to estimate the “true” δvar
of the jet. It would be productive to repeat such analysis with
light curves observed during time intervals (with similar
cadence) different from the one considered here in order to
examine whether the highest Tvar has indeed been estimated for
each source.
The majority of flares with rise times <14 days have lower

amplitudes than the median flare amplitude of the entire light
curve, suggesting that OVRO’s three-day sampling allowed us
to resolve all of the major events within the time span of the
observations used in this work. Although low amplitude
variability is still possible on shorter timescales, it can be
adequately described by a stochastic background process. Intra-
day variability has been found in a handful of the brightest
radio sources so it could be interesting to observe sources at an
even faster cadence than three days; however, such fast
variations are often attributed to interstellar scintillation and not
to intrinsic processes.
Our results show a significant difference between the Tvar

distributions of Fermi detected sources and non-detected
sources. A similar result was obtained by Kovalev et al.
(2009) when comparing the median VLBI brightness temper-
ature of Fermi detected sources and non-detected sources from
the MOJAVE survey. A more in-depth comparison of their
flaring properties showed significant differences between Fermi
detected and non-detected sources, with the former showing on
average faster flares with higher amplitudes. A comparison of
the radio flux-density distributions of Fermi detected and non-
detected sources in Liodakis et al. (2017b) also showed that
γ-ray loud sources are systematically more variable and have
higher flaring ratios (ratio of the flaring to quiescent mean flux
densities) than γ-ray quiet sources. Our findings extend that
result, showing that both the variability and flaring properties in
radio are connected to the γ-ray activity. This would suggest
that the underlying mechanism in the jet that would cause
higher and more energetic flares in radio is, at least in part, also
responsible for the γ-ray emission.
Using population models and the Tvar estimates, we were

able to effectively constrain the equipartition brightness
temperature to T 2.78 10 Keq

11á ñ = ´ (±26%). Previous
attempts on constraining the limiting intrinsic brightness

Table 3
Variability Brightness Temperatures and Beaming Properties for the Sources in Our Sample without a Redshift Estimate

Name Class Tvar,no−z Tvar,min Tvar,max δvar,min δvar,max Γvar,min Γvar,max θvar,min θvar,max

J0004−1148 B 8.03 7.57 14.23 0.05 55.02 9.79 >100 0.0 88.79
J0009+0628 B 8.04 7.58 14.24 0.05 55.42 9.72 >100 0.0 88.79
J0019+2021 B 6.45 6.0 12.66 0.02 16.41 8.24 >100 0.0 88.86
J0022+0608 B 8.26 7.8 14.46 0.06 65.51 8.23 >100 0.0 88.76
J0035−1305 L 7.87 7.42 14.08 0.05 48.78 11.04 >100 0.0 88.81
J0105+4819 L 8.4 7.94 14.6 0.07 73.06 7.39 >100 0.0 88.74
J0106+1300 L 8.89 8.43 15.09 0.1 106.29 5.1 >100 0.0 88.59
J0112+2244 B 9.02 8.56 15.22 0.11 117.52 4.63 >100 0.0 88.53
J0132+4325 L 7.86 7.4 14.06 0.04 48.14 11.18 >100 0.0 88.81
J0202+4205 B 5.14 4.69 11.35 0.01 6.0 3.08 >100 0.0 88.86

Note.Names are as listed in the OVRO website. The values of Tvar are given in log10. Column (3) lists the Tvar estimate for each source without the cosmological
correction (d z1L

2 4+( ) , Equation (1)). [Γmin, Γmax] and [θmin, θmax] are the possible minimum and maximum values of each source for the min and max δvar by
marginalizing over the βapp,max distribution. The table lists only the first 10 sources. It is published in its entirety in machine-readable format. A portion is shown here
for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)

Table 4
List of Sources with Doppler Factors Consistent with J17 within 1σ

OVRO name J17 name δvar δJ17

J0238+1636 0235+164 43.53 11.49
19.79

-
+ 52.8±8.4

J0339−0146 0336−019 23.09 6.08
18.9

-
+ 15.7±4.9

0415+379 0415+379 1.99 0.43
1.55

-
+ 2.0±0.5

J0433+0521 0430+052 4.16 1.09
1.42

-
+ 4.5±2.0

J0830+2410 0827+243 31.97 4.2
5.83

-
+ 22.8±8.5

C1224+2122 1222+216 5.32 1.76
7.84

-
+ 7.4±2.1

J1229+0203 1226+023 3.78 0.55
1.1

-
+ 4.3±1.3

J1310+3220 1308+326 26.35 16.63
13.39

-
+ 20.9±1.2

PKS 1510−089 1510−089 32.14 7.97
8.07

-
+ 35.3±4.6

J1751+0939 1749+096 17.62 3.16
10.1

-
+ 17.7±7.7

J2253+1608 2251+158 26.61 2.97
6.28

-
+ 24.4±3.7

Note.Names are as given in the OVRO website and J17.
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temperature had either estimated Teq to be between 1010 and
1011 K (Readhead 1994; Lähteenmäki et al. 1999; Cohen
et al. 2003) or most recently constrained it to Teq>2×1011 K
(Homan et al. 2006). The very high cadence of the OVRO
program allowed us to resolve even the fastest events pushing
the limit of the highest estimated Tvar and hence provide the
strongest constraints on Teq. Interestingly, our results are
consistent with the theoretical expectations for the limiting
brightness temperature for incoherent synchrotron sources due
to magnetization effects (∼3× 1011 K; Singal 1986). Although
our results are model dependent, the fact that they are in
agreement with both observational (Homan et al. 2006) and
theoretical (Singal 1986) expectations for blazar jets gives us
confidence in our analysis.

Based on the results of the Teq optimization, we estimated
δvar and its uncertainty for the sources in our sample,
significantly increasing the number of available δvar estimates
in the literature. As expected, blazars are highly beamed
sources with larger δvar on average than either radio galaxies or
unclassified sources (median of ≈11 for blazars compared to a
median of ≈5 for radio galaxies and unclassified sources).
Surprisingly, we do not detect any significant difference
between the BL Lacs and FSRQ populations contrary to the
current consensus suggesting that FSRQs are more beamed
than BL Lacs (H09, L17). This, of course, could be due to the
selection of Teq to be the same for all populations. If BL Lacs
were allowed to have the very high Teq found in the above
analysis (although not compatible with our current under-
standing of jet processes), it would lower their δvar estimates by
a factor of ∼2.5. A more plausible explanation for this
discrepancy could be that previous monitoring programs (with
a slower cadence than OVRO’s) were not able to resolve the
BL Lac flares evolving on faster timescales (see discussion in
Section 3), but were still able to detect the more slowly
evolving FSRQ flares. In such a case, it is only natural that
FSRQs would show higher Tvar and hence larger δvar than BL
Lacs. Contrary to previous monitoring programs, OVRO’s fast
cadence allowed us to detect all prominent flares in both BL
Lacs and FSRQs.

Although there is no significant difference between the
viewing angle distributions of the blazar classes (not surprising
if the sources are uniformly distributed and randomly oriented),
FSRQs host faster jets than BL Lacs. This could help explain
differences between the two populations, or at least, differences
between FSRQs and radio-bright BL Lacs. As expected, Fermi
detected sources have on average faster jets pointed at smaller
angles toward our line of sight than Fermi non-detected
sources. Then the relativistic effects could also be partly
responsible for the detected (or not) γ-ray emission in addition
to radio variability and flaring properties (see also Lister et al.
2009). It should be noted that while the flux-density variations
used to estimate the brightness temperature and Doppler factors
originate predominantly in the radio core of the jet and are
believed to be related to ejections of new radio components
(e.g., Savolainen et al. 2002), apparent velocities are measured
downstream from the core. Given that the observations used in
this work and the apparent velocity measurements from the
MOJAVE program are taken at the same radio frequency
(15 GHz, and thus probe the same region for a given source),
we do not expect significant changes in the velocity of the jet
over short distances. However, since both accelerating and
decelerating jet components have been measured at 15GHz

(e.g., Homan et al. 2015), our results for the Lorentz factors and
viewing angles in sources that show large velocity gradients
should be treated as limits. Additionally, to derive the Γvar, θvar
estimates, we have used the maximum observed apparent
velocity in each jet. Although it has been shown that the radio
components of individual jets are ejected at similar velocities
(Lister et al. 2013), using a different measure for βapp (e.g.,
mean, median) could result in differences in the Γvar and θvar
estimates.
A comparison with previous attempts (H09, L17) in

estimating δvar showed that (after accounting for the different
assumed Teq) the estimates from this work are systematically
higher with only 20% of the common estimates to be consistent
within 1σ. This is not surprising given the faster cadence of the
OVRO survey. On the other hand, comparing our estimates
with those from J17 derived using a different approach
independent of equipartition showed that 30.5% of the sources
in the J17 sample are consistent with the estimates from this
work. This agreement allows us to place strong constraints on
the δ estimates for these sources.
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