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ABSTRACT

We introduce data assimilation as a computational method that uses machine learning to combine data with

human knowledge in the form of mechanistic models in order to forecast future states, to impute missing data

from the past by smoothing, and to infer measurable and unmeasurable quantities that represent clinically and

scientifically important phenotypes. We demonstrate the advantages it affords in the context of type 2 diabetes

by showing how data assimilation can be used to forecast future glucose values, to impute previously missing

glucose values, and to infer type 2 diabetes phenotypes. At the heart of data assimilation is the mechanistic

model, here an endocrine model. Such models can vary in complexity, contain testable hypotheses about im-

portant mechanics that govern the system (eg, nutrition’s effect on glucose), and, as such, constrain the model

space, allowing for accurate estimation using very little data.

Key words: data assimilation, Bayesian inverse methods, state space models, self-monitoring data, machine learning, data min-

ing, type 2 diabetes, Gaussian process model, glucose forecasting, precision medicine

INTRODUCTION

Prediction is fundamental to medical practice, both to select treat-

ment and to gauge prognosis. Despite centuries of amassing biomed-

ical knowledge and decades of increasing reliance on computing and

information technologies, predictions in medicine remain imprecise

and generic. For example, knowledge of endocrine physiology and

detailed glucose measurements have not led to precise (ie, quantita-

tive patient-level) predictions in type 2 diabetes. We would like pre-

cise predictions regarding the impact of nutrition on glycemic

control, but instead nutritional therapy in diabetes relies on findings

generated by population-wide studies and consultation with clinical

experts.1 Our physiologic knowledge is sometimes quantitatively

encoded in mathematical models,2 but the models are approximate,

vary significantly by patient, and are not personalized unless

entrained with previous and incoming data. Techniques such as

deep learning3 promise to predict the future without mechanistic

knowledge, learning the structure directly from the data, but they

are limited in settings with sparse, irregular, inaccurate data, and

they do not bring much understanding about the patient or the dis-

ease beyond their predictions.

Data assimilation (DA),4–6 known also as state space models,

point processors,7–10 Kalman filters,11 and linear dynamical systems,
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is a regression method meant to solve inverse problems (estimating

model parameters),12,13 often in the context of solving a forward

problem (issuing a forecast) and was initially developed in contexts

of space travel by Kalman and Brownian motion by Thiele.14 Con-

ceptually, DA (Figure 1) takes a model believed to represent a sys-

tem being studied and synchronizes the model with data by

estimating states and parameters of the system. In this way, DA pro-

vides a bridge between physiology and empirical data, such that im-

perfect models and sparse data can be co-leveraged to overcome

each other’s failings. The physiology constrains the learning process,

minimizing the data required, while the data tailor the model to the

patient and synchronize it with the patient. Furthermore, DA can be

integrated with control algorithms,17 so that instead of predicting

the future under current conditions, it predicts what changes need to

be made today to reach a desired outcome in the future. At its es-

sence, DA is a family of regression methods that project data onto a

physiologically meaningful mechanistic model the way linear regres-

sion projects data onto simpler linear models and the way deep

learning projects data onto more flexible but data-hungry neural

networks. DA has advanced over the decades from its original for-

mulation as a linear, stochastic method to more recently developed

nonlinear approaches.

The purpose of this perspective is to introduce, or re-introduce,

biomedical informatics to the long-standing approach to

prediction—using mechanistic modeling to make data-driven

predictions—because we believe it has application well beyond its

current use in biomedical informatics. There are recent advances in

DA, such as the development of nonlinear filters that allow DA to

be used on problems biomedical informatics focuses on in particu-

lar, including prediction and furthering biological and medical sci-

ence using data collected over the process of giving care.

Forecasting, at its foundation, is about helping people make better

decisions, ie, decision support, and DA has the potential to be able

to make predictions with data collected over the course of current

clinical care, eg, with far less data than are needed for many other

techniques. But DA also requires integration with an informatics

pipeline to be made useful. The raw output of a DA is not useful be-

cause it is generally too complex in its raw from and must be trans-

lated to a user in a way users can understand and use in their

decision workflow. This makes the application of DA an interdisci-

plinary informatics problem. But biomedical informatics is not lim-

ited to clinical care alone because it lives at an interface between

basic science and clinical applications. When DA is used in the in-

verse problems,13,18 its smoothing context, DA addresses another

key goal of biomedical informatics, using clinical data to drive basic

science. The goal of smoothing is to fill in the past and to infer fea-

tures and physiology we cannot directly measure. In atmospheric

science, reanalysis data,19 or the DA output of the past that includes

the entire physics of the atmosphere well beyond what can be mea-

sured, is used to train new models, including non-mechanistic ma-

chine learning type models, to study the physical system. It is easy to

imagine inverse problems approaches to physiology following a sim-

ilar path in translational bioinformatics. Our goal is to inform infor-

matics that new machinery exists to apply DA to these informatics

applications.

Because of the intuitively fundamental nature of DA, there have

been many formulations of the same basic idea. For example, a tra-

ditional Bayesian machine is Dempster–Shafer,20–23 a belief function

for reasoning given uncertainty that is used to fuse empirical sources

of information. The continuous version of Dempster–Shafer can be

formulated as a linear Kalman filter,24 where the DA state space and

the Dempster–Shafer frame of discernment are equivalent. Thus, the

methods in this paper can be framed as a nonlinear, continuous be-

lief network.

DA has transformed fields such as space travel, weather forecast-

ing, flight, and manufacturing. It has seen some use in biomedicine

for decades, usually in data-rich settings and usually in its linear for-

mulation. Early examples of connecting mathematical physiologic

models to data include Hodgkin and Huxley,25 who proposed a

model of neurons, and Mackey and Glass,17 who proposed a model

of physiologic control systems. DA has been used in biomedicine in

several settings: algorithms in implantable defibrillators and pace-

makers to cope with irregular heartbeats,26–29 model construction

and fitting for prostate cancer treatment,30,31 the artificial pancreas

for type 1 diabetes,32–38 pharmacodynamics,39–42 female reproduc-

tive endocrinology,43 sleep modeling,44 ICU glucose forecast-

ing,38,45–47 many uses in epidemiology,48 viral modeling,49 and

inverse physiologic problems in general.13,18

The inavailability of data and previously limited methods for in-

tegrating data with nonlinear physiologic models may have re-

stricted the degree to which DA has permeated biomedicine. This

situation may be improving. For example, we have recently shown

Figure 1. Schematic diagram of how data assimilation synchronizes a model with data by estimating parameters and states. The model equation is drawn from

the ultradian glucose model.15,16
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that we can use sparse, inaccurate data collected in the course of

care paired with a simple glucose-insulin model to produce accurate

postprandial glucose and hemoglobin A1c predictions.15 This

worked despite the relatively complex physiology of type 2 diabetes.

This example demonstrates that recent and continuous development

of nonlinear methods together with the availability of clinical data,

self-monitoring data, etc., provide room for substantial advance-

ment and associated challenges.

The mechanistic model aspect of DA allows it to bear several

novel results. It can produce optimal predictions given the measured

data under the constraints of the physiological model, such as for

post-meal glucose. It can recommend actions needed to produce de-

sired outcomes, such as what meal must I eat to keep my peak glu-

cose below some threshold? The unmeasured but estimated model

parameters may represent useful patient phenotypes, such as de-

creased or changing kidney function and liver function, insulin se-

cretion rates, stress response, etc. The model can produce smoothed

versions of the sparse data, such as interpolating the glucose be-

tween measurements and then using that output to infer an aggre-

gate measurement such as hemoglobin A1c. And the DA can test a

mechanistic physiologic hypothesis by estimating how parameters

change when circumstances change, or by comparing models with

differing physiology.

To understand the power of DA methodologically, consider

what Al Roker, an NBC weatherman, was able to discuss on Octo-

ber 3, 2016, when reporting the path of Hurricane Matthew. In a

short two-minute video segment, Roker showed the size and path of

the hurricane, forecast seven days into the future, using three differ-

ent model-driven DAs. By doing this, the audience was shown not

only a believable, actionable weather forecast, but also how and

why the forecast was uncertain intuitively. One can imagine how

such technology could transform medicine.

We illustrate DA with real data from a type 2 diabetes patient in

Figure 2. Figure 2A has a two-day sample of sparse finger-prick glu-

cose measurements and meal data; Figure 2B adds the point-wise

DA glucose forecasts for the patient using an ultradian glucose

model.50 Figure 2C has the DA’s continuous glucose predictions and

continuous uncertainty estimates, which appear to be over fit.

Figure 2D, however, shows the underlying continuous glucose moni-

tor, whose data were withheld from the DA. The match is uncanny,

yet the oscillations in the glucose level could never have been learned

from the sparse finger-prick data alone. Only by using physiological

knowledge implicit in the ultradian model could those oscillations

have been predicted. Moreover, the second bump in glucose at 85.6

days, which appeared to have been missed by the DA (Figure 2B),

was actually just a several-minute miscalculation (Figure 2D).

Data assimilation inference
There are several ways to frame DA; here we use Bayesian infer-

ence.12 Bayesian inference can be summarized with Bayes formula:

p hjyð Þ / L hjyð ÞpðhÞ

where y are the data, h are the parameters, pðhjyÞ is the posterior dis-

tribution or the model predictions given data, and L is the likelihood

function. The goal of Bayesian inference and prediction is to charac-

terize the posterior distribution. It is determined by our prior knowl-

edge and the likelihood function. The likelihood contains our

understanding of mechanisms and determines how current data, ini-

tial conditions, and parameters are mapped to future states and

parameters. The predictive model determining the likelihood, eg, a

glucose-insulin model, generates forecasts, smooths data, and quan-

tifies uncertainty.

In the simplest situation, the predictive model determining the

likelihood is linear. The linear case formulated by Kalman in the

1960s11 has been applied often with great success, and is the

“optimal” linear filter. Nevertheless, many situations are not, and

cannot be made, linear. When the predictive model determining the

likelihood is nonlinear, meaning the current states are a complex

function of the past, estimating the likelihood is substantially more

difficult. A primary goal of machine learning and related fields is to

infer the nonlinear likelihood using data alone. While DA can be

cast within this framework, it can also incorporate mechanistic

knowledge of the likelihood function using mechanistic equations

that constrain, limit, and probabilistically determine the values the

states can take. Many methods for this computation exist, including

iterative methods, such as dual unscented Kalman filters51,52 and ex-

tended Kalman filters,53,54 and Markov chain Monte Carlo-based

methods,55–57 such as ensemble Kalman filters58,59 and particle fil-

ters.9 Here we use 2 methods, a dual unscented Kalman filter we

previously developed15 and a Metropolis–Hastings-within-Gibbs

Markov chain Monte Carlo method, explained in detail55 and dem-

onstrated in.60

If the system generating the data—an individual’s endocrine

system—changes in time, then the parameters must adapt in time

also. Continuous parameter estimation can be done online or off-

line. Online means the parameters are computed in real time as data

arrive. Offline means the parameters are computed on the whole

data set in retrospect. Filters such as the dual unscented Kalman fil-

ter can continuously adapt parameters in time because they are com-

putationally cheap, whereas computationally intensive techniques,

such as those based on Markov chain Monte Carlo, are usually used

offline. It is also possible to treat parameters as unknown functions

that evolve in time.55

Mechanistic models
At the core of DA lies a mechanistic (physiological) model that enco-

des our knowledge about a given system. The model depends on the

domain area and the goal. We use the ultradian endocrine model2,50

as an example for the rest of the paper; we summarize it here and

note the full description of the model can be found in.15,61,62 The

differential equations for the three state variables are:

dIp

dt
¼ f1ðGÞ � E

Ip

Vp
� Ii

Vi

� �
� Ip

tp

dIi

dt
¼ E

Ip

Vp
� Ii

Vi

� �
� Ii

ti

dG

dt
¼ f4ðh3Þ þ IGðtÞ � f2ðGÞ � f3ðIiÞG

where, eg, Ip is plasma insulin, Ii is remote (non-plasma) insulin, and

G is glucose. Our physiologic understanding is encoded in these

equations. For example, the first equation describes how plasma in-

sulin changes in time as a function of other state variables, parame-

ters, and parameterized physiologic processes. The time rate of

change of plasma insulin is dependent on the rate of insulin produc-

tion minus the rate of exchange between remote and plasma insulin

times the concentration of plasma insulin minus the remote insulin,

all minus the amount of plasma insulin divided by rate at which

plasma insulin degrades. The DA estimates parameters, eg, the ex-

change rate between remote and plasma insulin, E, and estimates,

forecasts and tracks the time evolution of the state variables, eg, Ii as
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far into the future as is desired, being corrected whenever new data

are encountered. Every model represents a computable hypothesis of

how a physiologic system functions and how important variables

interact to represent the system.

Model error, identifiability, and uncertainty

quantification
Model error—the difference between the model and the physical

system—represents both parameter errors and the functional

difference between the model, fit perfectly, and the physiologic sys-

tem it is designed to represent. Identifiability18 is the theoretical

property of a model’s ability to have its parameters estimated given

ideal data. Models can have completely, partially, or un-identifiable

parameter sets. Uncertainty quantification63,64 is the identification,

quantification, and reduction of all error types.

Depending on the application, model error, identifiability, and

uncertainty quantification must be addressed to differing degrees.

When biological fidelity is required, estimated parameters should

have detailed uncertainty estimates and their identifiability proper-

Figure 2. (A) Finger-prick glucose measurements and meal carbohydrates serve as the training data (one segment shown) with a goal to predict glucose in the fu-

ture. (B) DA’s point-wise forecasts seem reasonable but not perfect, predicting one spike but missing another. (C) Underlying continuous DA forecast with uncer-

tainty quantification (which the point-wise forecasts are based on) appears to overfit the data with large glucose swings. (D) Continuous glucose monitoring,

which was hidden from the DA, reveals striking overlap between the continuous DA predictions and the actual glucose levels. Despite insufficient information in

the training set, the DA tracked glucose well based on the combination of its glucose metabolism constraints and the sparse measurements.
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ties must be explained. Figure 2C shows very coarse uncertainty

quantification at forecast points, which can be sharpened con-

siderably with more advanced techniques. Quantified model er-

ror is the primary focus when developing new models, averaging

models, or comparing several models as hypotheses.65–67 When

an accurate clinical forecast is important, uncertainty quantifi-

cation is essential for putting trustworthy bounds on forecast

reliability.

Forecasting the future
To forecast glucose in real time we use a dual unscented Kalman fil-

ter. In previous work we have used that filter to forecast glucose for

people with type 2 diabetes mellitus15 using only sparse, irregular

finger-prick data. In Figure 2, discussed in the introduction, we use

finger-prick glucose and carbohydrate data to estimate continuous

glucose using the dual unscented Kalman filter and compare this

forecast with the output of a continuous glucose monitor.

Figure 3. Continuous glucose monitor data, finger-prick glucose measurements, Markov chain Monte Carlo-based DA smoothing using finger-prick data, and

spline smoothing using only finger-prick data. The spline, with no physiologic constraints, can deviate wildly from the real glucose measurements, while the

physiologically constrained DA glucose inferences closely resemble the continuous glucose monitor data. The spline does not have enough data to infer the

physiology necessary to constrain its inferences. In contrast, the DA, leveraging physiologic knowledge, is able to infer glucose dynamics that are impossible to

infer according to the sampling theorem, because of the hardcoded physiologic knowledge with very little data.
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Completing the past
Sometimes it is important to impute missing data or parameters us-

ing sparse past measurements influenced by noisy external factors—

the essential task of smoothing. Figure 3 compares continuous glu-

cose measurements and continuous glucose estimates from both a

Metropolis-within-Gibbs DA using the ultradian model and a cubic

spline smoother.68,69 Both smoothing techniques use only finger-

prick data to estimate the most probable curve that generated the

finger-prick data from the set of all possible curves available to the

model class. The DA, constrained by physiology, matches the glu-

cose oscillations well. The spline smoother, free to select any curve

that minimizes the error, is unconstrained by physiology and selects

a curve that minimizes error but has non-physical off-data oscilla-

tions. Contrasting the DA with the spline estimates shows the conse-

quences of physiologic constraints: the root mean squared errors

between the continuous glucose data and the continuous DA and

spline glucose estimates were 16 mg/dl and 110 mg/dl, respectively.

The knowledge-based physiologic constraints decrease model flexi-

bility in a way that increases accuracy.

We use a spline here not because it is the best smoother, although

splines are very able smoothers designed to balance goodness of fit

against smoothness based on derivatives, but rather to demonstrate

the problem machine learning faces when not anchored to a me-

chanical model: choosing the most probable curve to represent the

data according to a cost function sans physiologic constraints with

sparse, irregular data may not accurately represent the underlying sys-

tem. While compressed sensing70,71offers some hope of coping with

inference using sparse data, the sampling theorem72,73 still poses a

fundamental limitation of machine learning with sparse data.

Comparing DA to many other regression methods is complex be-

cause DAs often involve iterative estimation of parameters that can

start close to or far from optimality. Moreover, DA carries a contin-

uous simulation of the system, while other methods generally do

not. But comparisons can still be informative. We compare DA in a

next-step prediction task with linear regression and a non-model-

based nonlinear regression, Gaussian process regression. These

methods iterate through the data set estimating model parameters

using the previous N preprandial glucose and carbohydrates to pre-

dict postprandial glucose measurements; they then use that model to

predict the (Nþ1)th postprandial glucose measurement.

The bottom plot in Figure 3 shows DA compared with linear re-

gression forecasts. The linear regression represents the mean glucose

well, but does not capture any oscillatory glycemic behavior, impli-

cating the subtleties of model evaluation. The mean squared error

for linear regression is approximately bounded by r/2, while for DA

it can be greater than 2r, because linear regression approximates

the mean response and DA approximates the oscillating trajectory.

Because of this, evaluation metrics can have different meanings for

different prediction tasks and methods. Table 1 shows forecast

errors for the next-step task for linear and Gaussian process regres-

sion for different training window lengths, N. While DA outper-

forms linear regression and Gaussian processes77 for this

participant, this is not always the case.15 Moreover, the table shows

both mean and root mean squared errors, forecast validation metrics

that emphasize different forecast features in their evaluation. The

MSE places a greater emphasis on outlier errors, while RMSE places

a greater emphasis on approximating the mean. Forecast verification

metrics heavily influence forecast machinery evaluation and must be

selected based on the goal of the forecasting task;74,75 it is common

and recommended in evaluation analyses to use several verification

metrics.

Phenotyping the present
DA can potentially be used for mechanism-based phenotyping, esti-

mating phenotypes composed of features that govern, determine,

and directly correspond to patient physiology. In Figure 4, we see

the posterior probability densities of the Markov Chain Monte

Carlo parameter estimates for the ultradian model for two peo-

ple, one with type 2 diabetes and one with normal endocrine

function. Both Markov chains converge to distinctly different pa-

rameter values, or phenotypes relative to the presence of diabe-

tes. The densities in Figure 4 reveal that parameters affecting

insulin secretion and insulin-dependent glucose utilization are

distinctly different for the diabetic and non-diabetic participant.

Uncertainty quantification for parameter estimates can be de-

rived from the parameter estimate densities; eg, the mean and

variance of the 2 phenotypes do not overlap. This example,

showing only 2 people, is meant only to demonstrate how to use

DA to construct higher fidelity phenotypes78 rooted in physio-

logic mechanics.

The foundational ideas of DA are not new—regression, Kal-

man filters, etc.—but DA has gone mostly unused in biomedical in-

formatics. There are several potential reasons for this, and some

reasons that this should change. DA, especially integrated with

mechanisms, is not really in the mainstream intellectual lineage of

informatics. Similarly, in its linear form—the Kalman filter or lin-

ear dynamical system—while extremely powerful, cf. its use for

the artificial pancreas or in pacemakers, is also relatively limited

and has data requirements that informatics researchers almost

never have. When DA is used in medicine, it is often used with the

goal of circumventing clinicians and patients with a closed-loop

formulation, an approach that is more akin to bioengineering than

bioinformatics; again cf. the artificial pancreas or pacemakers.

These applications, developed and applied in data-rich environ-

ments, did not easily translate to data-poor environment informat-

ics inhabits that include data collected in the course of maintaining

health.

Table 1. Mean squared error and root mean squared error of next

measured glucose for DA, linear regression, and Gaussian process

modeling vs. training set size. Comparing the MSE with the RMSE

highlights the impacts of selecting different forecast validation

metrics.74,75.The MSE places more weight on outlier or excursion

error, whereas the RMSE places more weight on errors associated

with estimating the mean, an interpretation that can be seen by

comparing the formulas of RMSE and MSE. The DA used here was

the unscented Kalman filter without optimizing or carefully select-

ing parameters estimated; it adjusted the model as new data arrive

so the concept of a training set for the DA is not equivalent to the

training set of the other two regressions. While the DA is the best

forecasting engine for this person, this is not always the case.15

Moreover, DA forecasting errors can be further reduced by at least

20% if the parameters estimated are more carefully chosen76

N¼ 5 N¼ 10 N¼ 15 N¼ 20 N¼ 25

Mean Squared Error

DA 340 340 340 340 340

Linear regression 555 425 380 385 380

Gaussian process 505 405 410 480 490

Root MSE

DA 18 18 18 18 18

Linear regression 24 21 19 20 19

Gaussian process 22 20 20 22 22
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Underuse of data assimilation
Similarly, the linear form of DA also lacks the capability to utilize

more realistic modeling, a severe limitation, as most physiologic sys-

tems and models are nonlinear. This lack of realism also reduced the

amount of knowledge incorporated into the system, simultaneously

decreasing the functional flexibility and the functional restrictions of

the models that often restricted their usefulness. The chief innova-

tion that circumvents these problems, the development of nonlinear

filtering techniques, was developed largely away from biomedicine,

and certainly away from informatics, within data-rich environments

such as robotics. The advent of nonlinear filtering opens the door to

methodological innovation, clinical decision innovation, and basic

scientific innovation using clinical data. This innovation does not

mean that all DA methodology problems are solved; they are not, but

DA is in a place now where it can be developed in the informatics con-

text with clinically collected data that were previously believed to be

inadequate, noisy, and generally not useful in the DA context. More-

over, to identify and then overcome DA innovations, the interdisci-

plinary pipeline from bench to machine to bedside is critical. And here

the informatics perspective is special—informatics methodological

innovations are driven by needs identified while integrating and as-

sembling computational machinery for use in clinical and basic sci-

ence contexts. It is this sociologic reason, this lack of siloed research

approaches, that necessitates informatics adoption of DA.

Figure 4. Markov chain Monte Carlo-based mechanistic model parameter estimates the Markov chains that minimized the mean square error for a normal person

and a person with type 2 diabetes mellitus. The plot shows the distributions of 3 parameters, C2, an exponential term affecting insulin-independent glucose utili-

zation, Rm, a linear constant affecting insulin secretion, and Um, a linear constant affecting insulin-dependent glucose utilization. The converged parameters take

distinctly different values for each individual, revealing the type 2 diabetes phenotype as mechanistically different with parameters that are difficult to measure.

While a full external validation of these phenotypic parameter estimates, the parameters are internally validated by minimizing the mean squared error. This plot

shows the potential for DA to produce higher-fidelity, mechanistic-physiology anchored phenotypes.
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Limiting factors and next steps
DA’s use of mechanistic models brings limitations as well as advan-

tages. As a regression, DA’s task is to select the most probable

curve from those restricted by what is mechanically possible

rather than from the set of linear functions or neural networks. If

the mechanistic model is too wrong—if the human knowledge or

insight is wrong—then the model error will prevent accurate ap-

proximation. Furthermore, because the model is created to repre-

sent physiology rather than the data scenario, it can have non-

identifiable parameters and fail to have a unique set of optimal

parameters. And finally, the initial state and parameters matter

for DA performance and affect the data requirements—if the

starting point of the states or parameters is very wrong, the

model will make a poor forecast. In contrast, more flexible meth-

ods such as deep learning can approximate nearly any distribu-

tion.79,80 This universal approximator flexibility comes at a cost

of substantially greater data requirements, an inability to cope

with nonstationary systems, and interpretation difficulties; deep

learning also shares some of DA’s identifiability challenges.

These approaches are not mutually exclusive and can comple-

ment each other.

DA can better serve biomedicine if there are advancements in

several areas. Methodological advancements include incorporating

clinically meaningful constraints and improving initial parameter

seeding, which give DA greater forecasting skill with particularly

small data sets. DA can benefit from integrating with machine learn-

ing to manage external factors with model errors, such as parameter

selection, forecast correction, and model averaging.15,66,67 Physio-

logical models require development, selection, and refinement, and

they may benefit from tailoring to the real-world clinical care data

that are available, and they must be created or adapted to meet prac-

tical intervention needs. And finally, we must advance our under-

standing of how to best integrate DA output into scientific, clinical,

and self-management workflows. For example, it is not enough to

produce a glucose and nutrition-based glucose forecast; the forecast

must be made in a way that enables behavioral adaptation. All of

these advancements are needed to unlock the potential of DA in a

biomedical context.

CONCLUSION

DA is an established way to combine mechanistic knowledge with

empirical data. It constrains the search space so that machine learn-

ing can proceed in the setting of limited data; eg, using 5 to 20 ran-

domly sampled data points to resolve continuous-time physiology.

This is important in medicine because sources of data, such as elec-

tronic health records, are often sparse. It allows us to generate pre-

dictions, recommendations, smoothed measurements, and otherwise

unmeasurable phenotypes. While most mechanistic models may be

imperfect, by anchoring them to empirical data, DA adjusts them

and keeps them tied to the actual state. In this way, relatively simple

models can be highly effective. The ultradian glucose model is very

simple but produces accurate forecasts15 when used within DA.

We present DA here both because it is relatively underused in

biomedicine and to encourage further research. While some forms of

DA may be mature, more research is needed for using DA in the con-

text of biomedicine in order to handle sparse, potentially biased

data and to deliver forecasts and recommendations within clinical

settings.
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