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‡Coordinates and structure factors have been deposited in the Protein Data Base under 
accession numbers 6CIC, 6CID, 6CIE, and 6CIF.
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Abstract
The over production of nitric oxide in the brain by neuronal nitric oxide synthase (nNOS) 

is associated with a number of neurodegenerative diseases.  Although inhibiting nNOS 

is an important therapeutic goal, it is important not to inhibit endothelial NOS (eNOS) 

owing to the critical role played by  eNOS  in maintaining vascular tone.  While it has 

been possible to develop nNOS selective aminopyridine inhibitors, many of the most 

potent and selective inhibitors  exhibit poor bioavailability properties. Our group and 

others have turned to more biocompatible thiophene-2-carboximidamides (T2C) 

inhibitors as potential nNOS selective inhibitors. We have used crystallography and 

computational methods to better understand how and why 2 commercially developed 

T2C inhibitors exhibit selectivity for human nNOS over human eNOS. As with many of 

the aminopyridine inhibitors, a critical active site Asp residue in nNOS  vs Asn in eNOS 

is largely responsible for controlling selectivity. We also present thermodynamic 

integration results to better understand the change in pKa and thus charge of inhibitors 

once bound to the active site. In addition,  relative free energy calculations  underscore 

the importance of enhanced electrostatic stabilization of inhibitors bound to the nNOS 

active site compared to eNOS. 
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Introduction

Humans and other mammals have three nitric oxide synthase (NOS) isoforms 

that convert L-arginine to L-citrulline and the potent signaling molecule, NO.1 Neuronal 

NOS (nNOS) participates in neural transmission,  endothelial NOS (eNOS) regulates 

blood pressure, and NO generated by inducible NOS (iNOS) is part of macrophage host 

immune defense system. Given the potency of NO and its ability to cause oxidative 

damage, the overproduction of NO is associated with various pathological conditions, 
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especially neurodegenerative diseases,2 so nNOS is an important therapeutic target. 

However, a major problem in NOS inhibitor design is selectivity. It is especially important 

not to block eNOS, owing to its central role in maintaining vascular tone. This is a 

challenging problem given that the active site of all three human isoforms is so similar. 

Nevertheless, it has been possible to develop aminopyridine inhibitors that are ~4,000-

fold more selective for nNOS over eNOS.3 Some of these aminopyridine inhibitors 

exhibit remarkable neuroprotective effects in a cerebral palsy rabbit model.4 In these 

studies nNOS-selective inhibitors were found to protect rabbit fetuses from 

experimentally induced ischemic brain damage, which in saline control animal resulted in 

death or severe cerebral palsy symptoms.4 Despite the excellent selectivity of these 

aminopyridine inhibitors, the number of high pKa ionizable groups and the large number 

of rotatable bonds are not optimal for blood-brain barrier penetration and thus limit the 

potential usefulness of these compounds as neurodegenerative drugs.5

Early on in NOS drug development, thiophene-2-carboximidamide (T2C) 

inhibitors showed better biological properties6 and also were found to exhibit in vivo 

efficacy.7,8 Unfortunately, early generation T2C  inhibitors displayed poor isoform 

selectivity, ~100-fold for nNOS over eNOS.6 Further development of T2C inhibitors by 

Page 5 of 31

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

NeurAxon has resulted in inhibitors that are up to 300-400 fold more selective for nNOS 

over eNOS.7,8 Moreover, some of these T2C inhibitors show promise in the treatment of 

migraine headaches8 and neuropathic pain.7 Another potential target for T2C inhibitors is 

melanoma. nNOS is upregulated in various melanoma cell lines9,10, and NO increases 

cell invasiveness while nNOS inhibitors block melanoma cell growth (e.g., 1, Fig. 1). 9,10.  

These studies illustrate that there must be a balance between isoform selectivity (up to 

4,000-fold with some aminopyridines, e.g., 4, Fig. 1) and better drug-like properties of 

the T2C inhibitors, although the best selectivity so far is in the range of 500-fold.  In this 

report we have analyzed two of the best NeurAxon inhibitors (2 and 3, Fig. 1) that show 

promising in vivo properties and compare these with our previous work on T2C 

inhibitors. These analyses, including crystal structures and computational approaches, 

also shed light on general principles of NOS inhibition and isoform selectivity. 
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Figure 1. Structures of thiophene-2-carboximidamide compounds 1-3 and one of our 
more selective aminopyridine inhibitors (4).  The protonation state and charge when 
bound to NOS is shown. The Ki (or IC50) values listed were determined with the human 
enzymes for 1,10  2,7  3,8  and 4.11 

Methods

Computational Approaches

Amber 9 or 14 was used for MM_PBSA and thermodynamic integration (TI) 

calculations.  Inhibitor parameters were assigned using the GAFF force field12 and AM1-

BCC charge scheme,13,14 as implemented in the Antechamber module in Amber.  Heme 

parameters were taken from Shahrokh et al.15 No specific bond parameters were used 

for the tetrahedral Zn2+ site located at the dimer interface and coordinated by pairs of 

symmetry related Cys residues. Instead, the 4 Cys ligands were modeled as Amber 
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CYM residues that have an unprotonated side chain sulfur. The Zn2+ remained quite 

stable with excellent tetrahedral geometry during the simulations. Structures were 

energy minimized in 3 steps: 1)  five hundred cycles of steepest decent followed by 500 

cycles of conjugate gradient with only solvent molecules and H atoms allowed to move; 

2)  the same protocol with all atoms except the inhibitor and heme allowed to move; 3) 

1000 cycles of steepest decent followed by 4000 cycles of conjugate gradient with all 

atoms allowed to move. For molecular dynamics simulations production runs were 

carried out using a time step of 2 fs and coordinates saved every 20 ps and Langevin 

dynamics using a collision frequency of 1 ps-1. Periodic boundary conditions were used 

with a Particle Mesh Ewald implementation of the Ewald sum for the description of long-

range electrostatic interactions.16 In all simulations crystallographically identified ordered 

water molecules were included. 

The relative free energy of binding of various NOS inhibitors was estimated with 

MM_PBSA17 as implemented in Amber 9 and 14 using procedures developed in our 

earlier studies with NOS inhibitors.18  In this method the total free energy of the NOS-

inhibitor complex is taken as the sum of the following energy terms,

G = EMM + Gsolv + Gnp - TSsolute
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where EMM = the total molecular mechanics energy computed with the Sander module in 

Amber, Gsolv is the solvation free energy estimated from the  Poisson-Boltzman equation, 

Gnp = the nonpolar solvation energy estimated from the solvent accessible surface area, 

and TSsolute = the solute entropy. G was computed for the NOS-inhibitor complex 

(Gcomplex), NOS alone with the inhibitor removed (Greceptor), and the inhibitor alone 

(Ginhibitor).  The overall free energy of binding was computed from the following equation:

Gbind = (Gcomplex - Greceptor - Ginhibitor)

As others have done19 the change in solute entropy was ignored. Given that we are 

comparing exactly the same inhibitor bound to different active sites, ignoring solute 

entropy introduces little error, although only relative and not absolute free energies can 

be compared. Similar to what others have found,20 using a single energy minimized 

structure rather than molecular dynamics averages gives better agreement with 

experimental data.11,18  This is especially true for inhibitors where the electron density is 

well defined. 

The change in pKa of the inhibitors bound to the enzyme was estimated using 

thermodynamic integration (TI) procedures developed by Simonson et al.21 In this 
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method the charge of the inhibitor in the protonated state is changed in incremental 

steps from  = 0 to  = 1 to the charge in the unprotonated state. Integration of the 

potential energy as a function of  gives the G in moving from one state to the other. 

The potential energy, U, was assumed to vary linearly with 

U() = ( - )UA + UB

where UA is starting  protonated state and UB unprotonated. Part of the  program output 

is       U/ =UB-UA = U∂ ∂

The overall G was computed in most cases using 5  steps together with the 

associated weights provided in the Amber manual. 

G = 0.11846(U=..04691) + 0.23931(U=0.23076) + 0.28444(U=0.5) + 0.23931(U=0.95308) +  

0.11846(U=0.76923)

To help speed the calculations by taking larger time steps, hydrogen mass repartitioning 

using parmed.py22 was used to modify the Amber topology file. Parmed.py also was 

used to change the charges on inhibitor atoms as needed and set the Lennard Jones 

terms to 0 for the titrating H atom.  The NOS dimer with crystallographic waters with no 

additional solvent  was first energy minimized followed by 1 ns simulation with no 

periodic boundary. Heavy atoms were restrained with 5 kcal/mol weight.  We also 
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carried out periodic boundary simulations with counterions to maintain neutrality.  There 

was no significant difference in the results very likely because both periodic and 

nonperodic simulations had the same  crystallographically identified active site solvent 

structure. Therefore, the  results reported here are for simulations with no additional 

solvent or periodic boundary which substantially decreases computational time. 

However, for the inhibitors alone a fully solvated periodic boundary 2 ns simulation were 

carried out. The pKa when bound to the protein was obtained by the following equation:

pKaprotein = pKamodel  + (1/2.303RT)*G 

The pKa of the inhibitor free in solution was estimated using ChemAxon software 

(http://www.chemaxon.com)

Inhibitor Complex Crystal Preparation. 

The sitting drop vapor diffusion methods were used to grow crystals at 4 °C for the heme 

domains of human nNOS R354A/G357D mutant (10 mg/mL) and human eNOS (7 mg/mL). The 

mutations used for nNOS are located on the surface far from the active site, either to provent 

additional trypsin cleavage (R354A) or to improve crystal quality (G357D).23 The crystal growth 

conditions are as described previously24 except that the pH for human eNOS was mistakenly 

reported as 6.5 rather than 7.5 as in the original report.23  Fresh crystals were first passed stepwise 

through cryoprotectant solutions and then soaked with 10 mM inhibitor for 3−4 h at 4 °C before 

being flash cooled with liquid nitrogen and stored until data collection. The high concentration of 
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magnesium acetate in the human eNOS growth conditions may also introduce an acetate ion near 

the active site, as was previously observed in some of the bovine eNOS structures. The presence 

of this acetate ion can influence the binding mode of inhibitors. To avoid having this acetate ion 

in the structure, the magnesium acetate (250 mM) in the cryoprotectant solution was replaced 

with MgCl2 (100 mM).

X-ray Diffraction Data Collection, Data Processing, and Structural Refinement. 

Cryogenic (100 K) X-ray diffraction data were collected remotely at the Stanford Synchrotron 

Radiation Lightsource (SSRL) through the data collection control software Blu-Ice25 and a 

crystal-mounting robot. When a CCD detector was used data were typically collected with 0.5° 

per frame. If a Pilatus pixel array detector was used fine-sliced data were collected with a 0.2° per 

frame. Raw CCD data frames were indexed, integrated, and scaled using iMOSFLM,26 but the 

pixel array data were processed with XDS27 and scaled with Aimless.28 The binding of inhibitors 

was detected by initial difference Fourier maps calculated with REFMAC.29  The inhibitor 

molecules were then modeled in Coot30 and refined  using REFMAC or PHENIX.31 The crystal 

packing of the MgCl2 soaked heNOS crystals was changed slightly, resulting in a symmetry 

change from the orthorhombic P212121 reported  previously23 to monoclinic P21,  with a β angle 

only 0.6−0.7° off compared to the original 90°. Therefore, a molecular replacement calculation 

with PHASER-MR32 was needed to solve the structure. In the P21 space group, there are two 

heNOS dimers in the asymmetric unit. Water molecules were added in PHENIX and checked by 

Coot. The TLS33 protocol was implemented in the refinements with each subunit as one TLS 

group. The Polder map facility in PHENIX was used to calculate the omit density map for the 

bound inhibitors.34 The refined structures were validated in Coot before deposition in the Protein 

Data Bank.  Data collection and structure refinement statistics are summarize in Table S1 

(supporting information).
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Synthesis – Compounds 2 and 3 were synthesized according to published procedures.7,8

Results and Discussion

Crystal Structures  

The crystal structures of nNOS complexed to 2 and 3 were solved to a resolution 

of 1.75Å while the structures of eNOS complexed to 2 and 3 were solved to a resolution 

of 1.95Å and 2.20Å, respectively (Table S1).  The electron density for both 2 and 3, with 

the exception of the tail end of 2,  is very clear, enabling an unambiguous positioning of 
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both inhibitors. As in our previous structures of T2C inhibitors, the T2C group is in 

position to form ionic interactions with the active site Glu (Fig. 2). 

Figure 2. 2Fo-Fc electron density maps contoured at 1.0  for 2 and 3 bound to human 
enzymes. A) nNOS-2; B) eNOS-2; C) nNOS-3; D) eNOS-3. 

The central tetrahydroquinoline ring of 2 and the indoline ring of 3 occupy nearly 

identical positions in human nNOS.  The tail end tertiary amine of 2 is 3.7Å from heme 

propionate A, while the N atom of the tail piperidine of 3 is 5.7Å from heme propionate A.  
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Since neither of them form a good H-bonding interaction, this difference appears not to 

be very significant, as the reported IC50 values for both compounds with nNOS are very 

similar, 0.097 M for 27 and 0.11 M for 3.8   Figure 3 shows the previously published 

structures of 1 bound to rat nNOS. 1 is a potent nNOS inhibitor (Ki ~ 0.005 M) with an 

e/n selectivity of ~ 540. 10 In 1 this central bridging amine is situated between both 

propionates at distances of 3.4 Å and 3.8 Å (Figure 3B). 

Figure 3. Comparison of binding modes for 1 (A and B in two different views, PDB code 
4KCL) bound to rat nNOS, and 2 (C) and 3 (D) bound to human nNOS. In panel C the 
distance from the tetrahydroquinoline N atom to propionate A is 4.3 Å, from tail amine to 
propionate A is 3.7Å (not shown), and to Asp602 is 7.3Å; in panel D the distance from 
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the indoline N atom to propionate A is also 4.3 Å, from the piperidine N atom to 
propionate A is 5.7Å (not shown), to Asp602 is 9.6Å. 

With 1, propionate D is able to move “up” toward the inhibitor for better interactions with 

the inhibitor central amine. This cannot happen with 2 and 3 since the central 

tetrahydroquinoline or indoline ring would cause steric clashes with propionate D. These 

differences and the better interactions between the bridging amine could possibly 

account for why 1 is about 20-fold better as an inhibitor than either 2 or 3.

Estimating Inhibitor pKas Using Thermodynamic Integration

Previous work from our labs has shown that many inhibitors bind more tightly to 

nNOS than eNOS owing primarily to a single amino acid difference: nNOS has Asp597 

where eNOS has Asn368 at that location (Fig. 3).3,35 A majority of this effort centered on 

rat nNOS and bovine eNOS, and while we expect the human isoforms to behave 

similarly, there are far fewer data probing the Asp/Asn difference (Asp602 in human 

nNOS and Asn366 in human eNOS) in the human isoforms. We therefore probed the 

influence of this single amino acid difference using the MM_PBSA method that proved 
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quite useful in our previous studies.18  However, given that NOS inhibitors have at least 

one and usually more titratable groups, it is important to know if there is a significant 

change in pKa once bound to the active site so that the correct charge can be assigned 

to the inhibitor for free energy calculations. Thermodynamic integration methods, where 

the energy change in moving from the protonated state to the un-protonated state in 

solution vs. in the protein, most often is used to estimate the change in pKa of amino 

acid side chains in proteins.21 In principle it should be possible to use the same 

computational methods to estimate the pKa by comparing  the G (protonated to un-

protonated) free in solution and bound to the protein. Both 2 and 3 have 3 titratable N 

atoms whose pKa could change once bound to the protein. The ring nitrogens of the 

tetrahydroquinoline of 2 and indoline of 3 have estimated pKa values of ~1.9 and 3.2, 

respectively. The tail end tertiary N atom of 2 and the piperidine N atom of 3 give 

estimated pKa values of 9.2 and 9.8, respectively.  Therefore, neither of these groups is 

expected to change protonation state once bound to NOS. The only pKa in question 

when bound to the NOS active site is the T2C group with an estimated pKa ~ 6.98 in 

both 2 and 3. Since the T2C group is buried in the active site near the conserved Glu, 

the pKa could increase substantially. The results of the thermodynamic integrations are 
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shown in Table 1 and Tables S2 and S3. Two simulations were carried out. One for the 

nNOS-2 complex using a 3-step integration and the second for the eNOS-3 complex 

with a 5-step integration. The titrating H atom is the large H atom shown in Table 1 and 

Tables S2 and S3. In both cases there is a substantial increase in pKa when bound to 

NOS, indicating that T2C group is fully protonated when bound to the active site. The 

increase in pKa in nNOS is substantially more than in eNOS. Since this is probably due 

to the Asn vs Asp difference, we generated the Asn366Asp mutant in silico and reran the 

TI calculations for eNOS-3 complex.  The pKa increases even further, which indicates 

that the Asp in nNOS vs. Asn in eNOS contributes to additional stability of the T2C group 

buried in the active site. We also carried out a TI run for the nNOS D602N mutant. As 

expected, the pKa of 2 drops relative to wild type nNOS again illustrating the important 

role the Asp vs. Asn difference has on the pKa of the T2C group. Therefore, any 

functional group with a pKa near neutrality that is buried in the NOS active site and 

interacts with the conserved Glu will be fully protonated in both nNOS and eNOS.

As a basis for comparison, we carried out TI calculation on other N atoms. The 

tetrahydroquinoline N atom of 2 has an estimated pKa ~ 2, while the indoline ring N 

atom of 3 has an estimated pKa ~ 3. Both of these atoms are within ~ 4.3 Å of the heme 
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propionate A (Figure 3), so there could potentially be an increase in pKa. However, TI 

calculations indicate that the tetrahydroquinoline N atom of 2 does experience a 

significant shift in pKa when bound to nNOS (Table S4). This part of the inhibitor extends 

out toward solvent and is near two Arg residues at a distance of 5.7 Å and 6.4 Å. It thus 

appears that the proximity of the tail end of the inhibitors near both a heme propionate 

and Arg residues results in no net change in pKa.

Table 1. Results of thermodynamic integration calculations to determine pKa for 2 and 3 
free in solution and bound to nNOS or eNOS. The large H atom is the one that titrates.

G 
kcal/mol

G 
kcal/mol

pKa

2 free ligand   10.145 6.98

nNOS-2 56.056 45.911 18.86
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Relative Binding  Free Energy

For the MM_PBSA calculations, we used only 3 since the tail end of 2 is not well 

ordered in eNOS, while with 3, the electron density is well ordered in both isoforms. 

When bound to the protein, 3 was modeled as carrying a net +2 charge since the 

calculations summarized in Table 1 show that the T2C group is fully protonated. 

However, free in solution the T2C group is about 50% protonated since the estimated 

pKa is ~ 6.98. Therefore, free in solution 3 was modeled as carrying a net +1.5 charge. 

The partially protonated state was modeled by averaging the charges of  the +1 and +2 

models. Results from the MM_PBSA calculations are shown in Table 2. 

nNOS-2 D602N 40.688 30.522 14.88

3 free ligand 8.016 6.98

eNOS-3 33.406 25.309 13.55

eNOS-3 N366D 64.200 56.184 21.52

S

H
N

N
R

HH +
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Table 2. MM_PBSA calculations for 3 bound to human eNOS and nNOS, and to the in 
silico generated mutants. Gexp was derived from the published Ki values.8 In order to 
place the calculated values on the same scale as experimental, the Gcalc  and ELECcalc 
for wild type nNOS were normalized to Gexp for nNOS. These normalized values are in 
parentheses.
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Enzyme Gcalc 

kcal/mol 
ELECcalc 

kcal/mol
Gexp 

kcal/mol

nNOS wt -3 -63.31 -433.17 -8.96 to -9.20

eNOS N366D -3 -65.03 (-9.70) -360.49 (-

7.87)

eNOS wt -3 -56.46 (-8.43) -331.27 (-

7.23)

-5.46 to -6.48

nNOS D602N -3 -56.89 (-8.49) -409.10 (-

8.92)

In addition to Gcalc, also shown in Table 2 is the change in just the electrostatic 

component ELECcalc. The normalized calculated values are quite close to the range of 

experimental values derived from Ki measurements, although ELECcalc agrees best. 

This is probably due to the dominance of electrostatics as the key component in 

controlling isoform selectivity and shows that the Asp/Asn difference accounts for nearly 

all of the selectivity for nNOS over eNOS. 
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The distance between the Asp or Asn from the closest inhibitor N atom is too far, 

~ 7 - 9 Å (Figure 3), for direct ionic or H-bonding interactions. Nevertheless, charge-

charge interactions depend on the dielectric milieu, and in the confines of the active site, 

these interactions are expected to be substantially stronger than in solvent. 

Figure 4.  A comparison of the 3 bound to human nNOS (panel A) and 4 bound to rat 
nNOS (panel B, PDB code 3JWS). Key distances between the active site Asp and 
charged groups on the inhibitor are indicated. The unlabeled dashed lines are potential 
H-bonds ranging from 2.5 - 3.4 Å. 

Conclusions
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A comparison between NeurAxon inhibitors 2 and 3 with our inhibitor 1 illustrates 

the critical role that electrostatic and ionic interactions play in inhibitor potency. The 

better electrostatic interactions between 1 and the active site account for why 1 is a 

better inhibitor.  These properties of good NOS inhibitors also present a challenge. The 

NOS active site is charged owing to the conserved buried Glu residue, the heme 

propionates, and several Arg residues lining the entrance to the active site. As might be 

expected, the best inhibitors have charged groups that strongly interact primarily with the 

conserved active site Glu and heme propionates. As we have shown, subtle electrostatic 

differences between eNOS and nNOS can be exploited for enhanced selectivity. The 

key here is Asp602 in nNOS vs. Asn366 in eNOS. Although the Asp/Asn does not 

directly contact any inhibitor atom, the long-range electrostatic effects in the confines of 

the active site apparently has a large effect. Another new insight from the present study 

is the change of pKa of the inhibitor when free or bound. An ideal inhibitor should be 

unprotonated when free in solution for bioavailability but once bound becomes 

protonated for optimal interactions with active site groups. Our current results coupled 

with previous studies make it clear that nNOS vs eNOS selectivity is greatest for those 

inhibitors with multiple charged groups that exploit the Asp/Asn difference. It thus 
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appears that in the design of nNOS selective inhibitors a balance must be achieved 

between selectivity and bioavailability. 

Supporting Information

A summary of crystallographic and refinement statistics (Table S1). Charges used for 

inhibitors (Table S2) and results of thermodynamic integrations (Tables S3 and S4).
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