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Abstract: Optical-resolution photoacoustic microscopy (OR-PAM) has become a popular 
tool in small-animal hemodynamic studies. However, previous OR-PAM techniques 
variously lacked a high imaging speed and/or a large field of view, impeding the study of 
highly dynamic physiologic and pathophysiologic processes over a large region of interest. 
Here we report a high-speed OR-PAM system with an ultra-wide field of view, enabled by an 
innovative water-immersible hexagon-mirror scanner. By driving the hexagon-mirror scanner 
with a high-precision DC motor, the new OR-PAM has achieved a cross-sectional frame rate 
of 900 Hz over a 12-mm scanning range, which is 3900 times faster than our previous motor-
scanner-based system and 10 times faster than the MEMS-scanner-based system. Using this 
hexagon-scanner-based OR-PAM system, we have imaged epinephrine-induced 
vasoconstriction in the whole mouse ear and vascular reperfusion after ischemic stroke in the 
mouse cortex in vivo, with a high spatial resolution and high volumetric imaging speed. We 
expect that the hexagon-scanner-based OR-PAM system will become a powerful tool for 
small animal imaging where the hemodynamic responses over a large field of view are of 
interest. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical-resolution photoacoustic microscopy (OR-PAM) has been playing an increasingly 
important role in small animal studies [1], taking advantage of its rich optical absorption 
contrast [2], high spatial resolution [3], and intrinsic volumetric imaging capability [4]. The 
traditional OR-PAM systems usually employ a confocal and coaxial configuration of the 
optical excitation beam and acoustic detection beam, maximizing the detection sensitivity and 
optimizing the spatial resolutions [5–7]. Volumetric imaging is typically achieved by point-
by-point raster scanning of the optical and acoustic beams using stepper motor scanning 
stages [8–18]. Because of the fine scanning step size required by the micron-level lateral 
resolution [8], the scanning speed of OR-PAM is traditionally low (about 1-Hz B-scan rate 
over a 1-mm scanning range) [19, 20]. Such a low imaging speed has long prevented OR-
PAM from obtaining tissue’s dynamic information, such as transient drug responses and brain 
functions. 

Many efforts have been attempted to speed up OR-PAM, which can be grouped into two 
major categories: (1) fast mechanical scanning of both optical and acoustic beams, and (2) 
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fast optical scanning of the optical beam only [21]. While mechanical scanning is more 
convenient to maintain the confocal and coaxial alignment of the optical and acoustic beams 
over a large scanning range, optical scanning can achieve a much higher scanning speed over 
a small scanning range. To improve the mechanical scanning speed, Ma et al. used a piezo 
linear translation stage, providing a B-scan rate of ~9 Hz over a 1-mm scanning range [5]; 
Wang et al. employed a voice-coil linear translation stage to improve the B-scan rate to 40 Hz 
over a 1-mm scanning range [22]. Compared to mechanical scanning, optical scanning can 
further improve the imaging speed by at least 10 times [23–25]. Xie et al. were the first to use 
a two-dimensional (2D) Galvo scanning mirror with a flat ultrasonic transducer, providing a 
B-scan rate of 17 Hz over a 6-mm scanning range [25]. Later, Rao et al. used the same 
scanning approach with a focused ultrasonic transducer, and achieved a B-scan rate of 60 Hz 
over a 0.3-mm scanning range [24]. The high-speed scanning of only the optical beam leads 
to a relatively low signal-to-noise ratio (SNR) and scanning range, limited by either the 
unfocused ultrasound detection or the small acoustic focal area. Several hybrid-scanning 
approaches combining 1D optical scanning and 1D mechanical scanning were reported with 
concurrent scanning of focused optical and acoustic beams [26, 27]. Kim et al. used a 1D 
Galvo-mirror immersed in non-conducting liquid hydrofluoroether, providing a B-scan rate of 
60 Hz over a 4-mm scanning range [26]. However, the low acoustic impedance of 
hydrofluoroether resulted in significant PA signal attenuation. Xi et al. recently employed a 
rotatory scanning of cylindrically focused ultrasound detection to enlarge the field of view, 
which, however, has inferior detection sensitivity than the spherically focused ultrasound 
detection [28, 29]. We previously developed high-speed OR-PAM using a customized 1D 
water-immersible MEMS scanning mirror [30], with a B-scan rate of 400 Hz over a 3-mm 
scanning range. However, when the MEMS mirror is not driven at its resonant frequency, the 
scanning range is substantially reduced to less than 1 mm. The limited scanning range of the 
MEMS mirror prevents OR-PAM imaging a large field of view, such as the entire mouse 
brain cortex (~10 mm in length and width). Therefore, a novel scanning method is highly 
desired for OR-PAM that can simultaneously achieve (1) a high imaging speed for dynamic 
imaging, (2) a large scanning range for a wide field of view, and (3) confocal scanning of 
optical and acoustic beams for high detection sensitivity. 

Here, we present a wide-field high-speed OR-PAM system based on a novel water-
immersible hexagon-mirror scanner, or HM-OR-PAM. Using the hexagon scanning mirror 
steered by a water-immersible high-precision DC motor, HM-OR-PAM has achieved a 
maximum B-scan rate of 900 Hz over a 12-mm scanning range, while maintaining confocal 
alignment of the optical and acoustic beams. The volumetric imaging speed of the HM-OR-
PAM over a 1 × 1 cm2 region is 3900 times faster than that of the second-generation OR-
PAM [31], 300 times faster than the voice-coil-based OR-PAM [22], and at least 10 times 
faster than our MEMS-based OR-PAM [30]. To demonstrate the dynamic imaging of 
biological activities in vivo, we monitored the epinephrine-induced vasoconstriction in the 
entire mouse ear, and the blood reperfusion after ischemic stroke in the entire mouse cortex. 
These results have collectively demonstrated the high-speed widefield imaging capability of 
HM-OR-PAM for preclinical applications. 

2. Methods 

2.1. The HM-OR-PAM system 

Figure 1(a) shows the schematic of the HM-OR-PAM system. A pulsed Nd: YAG laser 
(VPFL-G-20, V-gen, Tel Aviv, Israel) is the optical excitation source with a wavelength of 
532 nm and a pulse repetition rate of up to 800 kHz. The collimated laser light is focused by a 
plano-convex lens with a focal length of 75 mm (AC127-075-A, Thorlabs, Newton, USA), 
and directed by a right-angled prism through the center aperture of a focused ring-shaped 
ultrasonic transducer, and then steered by a lab-made hexagon-mirror scanner towards the 
sample surface. The resultant photoacoustic signals are reflected by the hexagon mirror and 

                                                                      Vol. 9, No. 10 | 1 Oct 2018 | BIOMEDICAL OPTICS EXPRESS 4690 



received by th
MHz, a −6-dB
aligned coaxi
sensitivity. 

Fig. 1
PAM
mirror
scann

We have 
sound beams 
Visualization 
with protectiv
diameter of 1
ultrasonic tran
brushed micro
the hexagon m
voltage from 
to 150 Hz. Sin
(B-scan), the 

For each l
by the hexago
of sound (150
movement of
received by th
card at 500 M
is achieved by
scanning alon
firing, hexag
synchronized 

2.2. Scannin

One major ad
is the consiste
DC motor). T
voltage, as sh
mm at all te
revolution rat
signal, i.e., th

he ultrasonic tr
B bandwidth o
ially and conf

1. Hexagon-mirr
). (a) Schematic 
r; UST, ultrasoni
ing mirror driven b

developed the
under water, e
1). The hexag

ve aluminum 
1 cm and a len
nsducer’s detec
o-DC motor (A
mirror’s centra
0.2 V to 5 V, t
nce each revol
hexagon mirro
laser pulse, on
on mirror and 
00 m/s in water
f the hexagon 
he ultrasonic t

MHz (ATS9350
y the fast hexa
ng the y-axis 

gon scanner ro
by an FPGA c

ng speed and 

dvantage of the
ent scanning ra
The measured 
hown in Fig. 2
ested DC moto
te of the DC m
he effective sca

ransducer. The
of 70%, and a 
focally with th

ror based optica
of the HM-OR-P
ic transducer. (b)
by a high-speed D

e hexagon-mir
enabling high-s
gon mirror was
for wideband 

ngth of 8 mm. 
ction aperture.
A-max 12, Ma
al aperture (Fi
the DC motor’
lution of the D
or scanner can a
ne time-resolve
detected by th

r) is much faste
mirror during

transducer is a
0, AlarzarTech
agon-mirror sc

(PLS-85, Phy
otating, steppe
card (myRIO, N

scanning ran

hexagon-mirr
ange, regardles
revolution rat

2(a). The scann
or speeds. Wi

motor only affec
anning step size

e ultrasonic tran
focal length o

he ultrasonic tr

al-resolution phot
PAM system. AC,
) 3D drawing an

DC-motor. 

rror scanning s
speed imaging
s made of BK-7

optical and a
Each facet is 

 To actuate the
axon Motor, S
g. 1(c)). By ad
s revolution ra
C motor provi
achieve a B-sc
ed A-line signa
he focused ultr
er than the rota
g each A-line 
amplified by 5
h, Pointe-Clair
anning along t

ysik Instrumen
er motor scan
National Instru

nge 

or scanner ove
ss of the scann
te of the DC 
ning range of t
ith a laser pu
cts the spatial s
e along the x-a

nsducer has a 
of 14 mm. The
ransducer to m

toacoustic micro
, aluminum coatin

nd (c) photograph

system that ca
g with a large f
7 glass and the

acoustic reflect
5 mm by 8 m

e hexagon mirr
Swiss) was co-
djusting the am
ate can be flexi
ides six repeate
can rate of up to
al along the ac
rasonic transdu
ating speed of 
signal is neg

51 dB and sam
re, QC, Canada
the x-axis and 
nte, Karlsruhe
nning, and th

uments, Austin,

er our previous
ning speed (i.e
motor is prop

the hexagon m
ulse repetition 
sampling densi
axis. The total 

central frequen
e focused light
maximize the 

 

oscopy (HM-OR-
ng; HM, hexagon
h of the hexagon

an steer both 
field of view (F
e six facets we
tion. The mirr

mm, which ma
ror, a water-im
-axially assemb
mplitude of th
ibly adjusted fr
ed cross-sectio
o 900 Hz. \ 
coustic axis is 
ucer. Because t
the hexagon m

gligible. The P
mpled by a 12-
a). Volumetric
the slow stepp
, Germany). T

he DAQ samp
, TX, USA). 

s MEMS-mirro
e., revolution ra
portional to th
mirror is consis

rate of 600 
ity between ea
data acquisitio

ncy of 40 
t beam is 
detection 

-
n 
n 

light and 
Fig. 1(b); 

ere coated 
ror has a 
atches the 
mmersible 
bled with 

he driving 
from 1 Hz 
onal scans 

reflected 
the speed 

mirror, the 
PA signal 
-bit DAQ 
c imaging 
per-motor 
The laser 
pling are 

or scanner 
ate of the 
e driving 
stently 12 
kHz, the 
ch A-line 

on time of 

                                                                      Vol. 9, No. 10 | 1 Oct 2018 | BIOMEDICAL OPTICS EXPRESS 4691 

https://doi.org/10.6084/m9.figshare.6859526


a volumetric image is determined by the slow motor scanning speed and range along the y-
axis. 

 

Fig. 2. The scanning characteristics of the hexagon-mirror scanner. (a) The revolution rate 
and the scanning range of the hexagon-mirror scanner as a function of the driving voltage 
applied to the DC motor. (b) Schematic of the usable scanning zone (yellow) and unusable 
zone outside the detection region of the ultrasonic transducer (red). 

The 12-mm scanning range of the hexagon mirror scanner is jointly determined by the 
size of the hexagon (or the maximum scanning angle of each hexagon facet), the focal length 
and focal zone of the optical focusing lens, and the focal length of the ultrasonic transducer. 
Because of the continuous rotation of the hexagon mirror, about 60% of the laser pulses 
steered by each facet fall on the sample surface, while the remaining 40% laser pulses are 
directed either on the surface of the ultrasonic transducer or outside the detection zone, as 
shown in Fig. 2(b). When the laser beam is steered closer to the edges of each hexagon facet, 
the sample surface gradually falls out of the focal zone of the laser beam and the ultrasonic 
transducer, resulting in a low detection sensitivity. As the rotation of the hexagon mirror 
driven by the DC motor is independent of the laser firing, we use the strong PA signals 
generated by the ultrasonic transducer surface as the ‘start-of-scan’ markers to align each B-
scan. 

2.3. Spatial resolutions 

During the rotational scanning of the hexagon mirror, the size of the laser spot on a flat 
sample surface depends on the scanning angle. Thus, the lateral resolution of the HM-OR-
PAM system changes along the fast scanning x-axis. We quantified the lateral resolutions at 
different scanning angles (Fig. 3), by measuring the full width at half maximum (FWHM) of 
the corresponding line spread functions (LSF), which were derived from the edge spread 
functions of the USAF resolution target (58-198, Edmund Optics, Barrington, NJ, USA). The 
initial laser spot position (x = 0 mm) was defined as the position with a zero-degree beam 
angle. 

Due to the geometrical divergence of the optical focusing over a flat sample surface, the 
lateral resolution within the scanning range changes from 8.8 µm (x = 0 mm) to 31.9 µm (x = 
8 mm), as shown in Fig. 3(a). The maximum positive and negative scanning ranges are not 
the same because part of the negative scanning is blocked by the ultrasonic transducer, as 
shown in Fig. 2(b). Eventually, at the far ends beyond the scanning range, the optical path 
length changes quickly with the scanning angle, leading to a large increase in the laser spot 
size on the sample surface. Figure 3(b) shows the measured LSFs at a representative position 
of x = −4 mm, providing a lateral resolution of 10 µm. The theoretical lateral resolution is 8.2 
µm at 532 nm with an effective optical NA of 0.033, which is close to the best lateral 
resolution measured at x = 0 mm. Unlike the lateral resolution, the axial resolution of the HM-
OR-PAM system is determined only by the bandwidth of the ultrasonic transducer and the 
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speed of sound in water [32], which is around 33 µm and is consistent across the scanning 
range. As the diameters of microvessels in small animal models generally fall in the range of 
10–100 µm [33], HM-OR-PAM can still meet the need of high-resolution imaging. 
 

 

Fig. 3. The lateral resolution of HM-OR-PAM over the 12-mm scanning range. (a) Lateral 
resolution as a function of the laser spot position along the x-axis. (b) The measured FWHM of 
the LSF at a representative position of x = −4 mm. 

2.4. Fast-scanning step size 

The fast-scanning step size along the x-axis was jointly determined by revolution rate of the 
DC motor (or the B-scan rate), the scanning angle (or the lateral position of the laser spot), 
and the laser pulse repetition rate (PRR). The average scanning step size across the scanning 
range is proportional to the DC-motor rotational rate and inversely proportional to the laser 
PRR, as shown in Fig. 4(a). Thus, there is a tradeoff between the fast-scanning speed and the 
scanning step size. The PRR and DC-motor revolution rate can be readily adjusted to change 
the step size, according to the required imaging quality. Similar to the lateral resolution, for 
each B-scan with a fixed laser PRR, the step size of the hexagon scanning also changes over 
the 12-mm scanning range. Here, we only consider the variation of the scanning step size on a 
flat surface. The large scanning angle towards the ends of the scanning range leads to an 
increased step size. Figure 4(b) illustrates the gradual increase in the normalized step size 
with the scanning angle (or the lateral position of the laser spot), in which the step size is 
normalized by that at x = 0 mm. For instance, with a B-scan rate of 420 Hz and a laser PRR of 
600 kHz, the scanning step size varies from 8.8 µm at x = 0 mm to 30 µm at x = 8 mm within 
the 12-mm scanning range. The computed scanning step sizes in Fig. 4(b) are in turn used for 
rescaling the acquired B-scan images. In practice, we also need to convert the rotational 
scanning coordinate into linear scanning coordinate, as detailed in our previous work [34], 
considering the scanning geometry and applying a 2D linear interpolation. 
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Fig. 4. The fast-scanning step size of the hexagon-mirror scanner. (a) Average fast-
scanning step size over the 12-mm scanning range as a function of the laser PRR and B-scan 
rate. (b) The relative scanning step size normalized by that at x = 0. 

3. Validating the system performance on phantoms and in vivo 

To demonstrate the high-speed widefield imaging of the HM-OR-PAM system, a leaf 
phantom was imaged in clear medium with a B-scan rate of 420 Hz and 900 Hz, as shown in 
Fig. 5(a). All the following experiments were performed with a laser PRR of 600 kHz, unless 
otherwise noted. A leaf area of 20 × 12 mm2 was imaged, and each volumetric imaging took 
16 seconds. The PA signal strength within the 12-mm fast scanning range was approximately 
consistent, due to the relatively large depth of focus of the optical and acoustic beams. While 
the major branches of the leaf phantom were clearly resolved at both B-scan rates, the B-scan 
rate of 420 Hz expectedly resulted in better imaging quality due to the smaller fast-scanning 
step size, which is consistent with the estimation in Fig. 4. 

In vivo imaging was performed on the ear of a female Swiss Webster mouse (10 weeks 
old and 25 grams in weight), with the protocol approved by the Institutional Animal Care and 
Use Committee (IACUC) of Duke University. All methods were performed in accordance 
with the relevant guidelines and regulations. The hair of the mouse ear was removed before 
imaging. During the imaging, the temperature of the mouse was held at 37 °C via a heating 
pad and the mouse was anesthetized via isoflurane (1.5% v/v). The laser PRR and the B-scan 
rate were the same as the above leaf phantom imaging. The imaging region of the entire 
mouse ear was 12 × 15 mm2, and each volumetric imaging took 12 seconds. The in vivo 
images of the mouse ear vasculature were shown in Fig. 5(b), with a B-scan rate of 420 Hz 
and 900 Hz. Both images show microvasculature of the mouse ear. The image acquired at the 
B-scan rate of 420 Hz shows a higher resolution and more small vessels than that at the B-
scan rate of 900 Hz. 
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Conclusion and discussion 

We have developed a high-speed widefield OR-PAM system, based on a novel water-
immersible hexagon-mirror scanner. Driven by a DC motor, the hexagon-mirror scanner has 
demonstrated fast-rotational scanning with a B-scan rate up to 900 Hz and a consistent 
scanning range of 12 mm, which have never been achieved by previous photoacoustic 
microscopy systems. Taking advantage of the high-speed high-resolution widefield imaging 
capability of HM-OR-PAM, we monitored epinephrine-induced vasoconstriction on the entire 
mouse ear and vessel reperfusion after ischemic stroke on the entire mouse cortex. The B-
scan rate of HM-OR-PAM can be adjusted by controlling the DC-motor driving voltage, 
providing different scanning step size and imaging speed. The imaging results shown in Fig. 5 
have demonstrated that even with a B-scan rate of 900 Hz and an average fast-scanning step 
size of ~20 µm, HM-OR-PAM can be adjusted by controlling the DC-motor driving voltage, 
providing different scanning step size and imaging speed. The imaging results shown in Fig. 5 
have demonstrated that even with a B-scan rate of 900 Hz and an average fast-scanning step 
size of ~20 µm, HM-OR-PAM was able to resolve microvessels in vivo. By reducing the B-
scan rate, HM-OR-PAM can improve its effective spatial resolutions with smaller scanning 
step sizes, as demonstrated in Figs. 6 and 8. 

Nevertheless, there are several limitations in the current HM-OR-PAM system. Firstly, the 
data acquisition time for each time-resolved A-line signal is approaching the physical limit. 
With a laser PRR of 600 kHz, each A-line signal acquisition time cannot exceed 1.6 µs to 
avoid signal overlapping, which corresponds to a maximum depth range of 2.5 mm. 
Increasing the laser PRR will further reduce the maximally allowed data acquisition time, 
which may pose a challenge for imaging targets with an uneven surface. This limitation 
ultimately determines the maximum A-line rate of HM-OR-PAM. Secondly, the revolution 
rate of the DC-motor limits the maximum B-scan rate. The current DC motor has a maximum 
speed of 150 revolutions per second with a 5-volt driving voltage, providing a 900-Hz B-scan 
rate. The B-scan rate can be doubled by using a 12-faced polygon mirror driven by the same 
DC motor, at the price of halving the scanning range. In this case, the fast-scanning step size 
can be reduced than that with the hexagon mirror, which can improve the imaging quality. It 
is also possible to use a more powerful DC motor with a higher revolution speed. However, 
without fundamentally increasing the laser PRR, a higher B-scan rate would eventually lead 
to a larger scanning step size and thus a degraded imaging quality. 

In conclusion, HM-OR-PAM has overcome the dilemma of imaging speed and field of 
view in previous OR-PAM systems. The in vivo imaging results suggest that HM-OR-PAM 
can be potentially applied for a wide range of preclinical and clinical research in dermatology, 
neurology, and cancer biology. 
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