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On Finitely Additive Measures in Boolean Algebras
By W. A. J. Luremburg') at Pasadena (California)

1. Introduction

The present paper is concerned with the theory of positive real and finite measures
on Boolean algebras which are finitely additive but not necessarily countably additive.
The main object of this paper is a recent result of S. Koshi which, stated roughly, reads:
For a special class of Boolean algebras, which includes the class of all measure algebras
of countably additive finite measures, every finitely additive measure is countably additive
if restricted to some suitable ideal. This result was obtained by Koshi by using top-
ological methods. We shall show, however, that a measure theoretic approach to this
problem is possible and that it will yield a slightly stronger result. Furthermore, the
measure theoretic approach seems to be more direct and somewhat simpler.

The paper is divided into 6 sections. Sections 2 and 3 give some preliminaries about
the theory of Boolean algebras and the theory of measures of Boolean algebras respec-
tively. In section 4, the class of Boolean algebras for which Koshi’s result holds is discussed
extensively. Section 5 is devoted to Koshi’s theorem and some related theorems. Finally,
in section 6 we apply the results of section 5 in order to obtain, among other things,
a new proof of a theorem by Kelley which deals with the problem of the existence of
strictly positive countably additive measures on Boolean algebras.

In the summer of 1961, some of the results of the present paper were presented
at a meeting in Oberwolfach on Boolean Algebras and Measure Theory.

2. Some notation and terminology concerning Boolean algebras

For notation and terminology which is not explained in this section and in the
remainder of this paper, we refer the reader to either [3] or [12].

In this paper, B will always denote a non-degenerate Boolean algebra. The elements
of a Boolean algebra will be denoted by a,b, .. .; the zero element by 0 and the unit
element by 1. The Boolean operations of join and meet will be denoted by v and A respecti-
vely. The unique complement of an element a will be denoted by 4, Furthermore, a < b
means a A b = a which is equivalent to avb = b.

If A is a subset of B, then sup A = e and inf A = b will always mean that A has a
least upper bound equal to a and A has a greatest lower bound equal to b respectively.
If 9 is the empty subset of B, then sup @ =0 and inf @ = 1. If A is not empty, then
sup A = inf A.

1) Part of this work was supported by National Science Foundation Grant G—19914.



166 Luxzemburg, On Finilely Additive Measures in Boolean Algebras

A Boolean algebra %8 is said to be (o-) complete if every (countable) subset of B
has a least upperbound. A Boolean algebra B is said to be supercomplete if every subset A
of B contains a countable subset A’ such that sup A = sup A’. It is clear that every
supercomplete Boolean algebra is complete and that every complete Boolean algebra is
o-complete.

A subset J of B is called an ideal if a, b€ implies that avb€J and a €I
and b € B implies that aa b €J. If § is an ideal, then 0 € . An ideal § of a Boolean
algebra is called dense in B if for every a € 8 and a = 0, there exists an element b €
such that b =0 and b < a. An ideal  of a Boolean algebra is called superdense if for
every a € B there exists an increasing sequence {a;: k = 1, 2, ...} of elements of § such
that a = sup; ax.

Two elements a, b € B are called disjoint if aab = 0. A subset A of B is called
disjointed if every pair of different elements of A are disjoint.

A Boolean algebra B is said to satisfy the o-chain condition if every disjointed
subset of B is at most countable.

We shall conclude this section with the following useful theorem. Although this
theorem is not new we shall, for the sake of completeness, include a proof.

Theorem 2. 1. If B is a o-complete Boolean algebra, then B is supercomplete if and
only if B satisfies the o-chain condition.

Proof. We shall first prove that if B is supercomplete, then B satisfies the o-chain
condition. For this purpose, we assume that A is a disjointed subset of B. Since B is
supercomplete, there exists a countable subset A’ of A such that sup A =sup A". If A
is uncountable, then there exists an element a € A such that ¢ + 0 and a ¢ A’. Hence,
sup A =sup A’ va > sup A’ and a contradiction is obtained.

We shall assume now that B is o-complete and satisfies the o-chain condition.
Let A be a non-empty subset of B and let & be the set of all ordered pairs (D, d), where D
is a disjointed subset of B and where d is a mapping of D into A such that d(a) = a
for all € D. Let & be ordered as follows: (D, d) < (D', d') whenever D < D’ and d' is
an extension of d. Then & is a non-empty inductively ordered set. Indeed, since a € 4
implies that (D, d), where D = {a} and d(e) = a, is an element of & we have that &
is not empty. Furthermore, if {(D,, d,) : » € N} is a chain of elements of &, then (D, d),
where D = U(D,: » € N) and where d is defined by d(a) = d,(a) whenever ¢ € D,, is
easily seen to be an element of &. Hence, by Zorn’s lemma & contains a maximal
element, say, (D,, d,). Since D, is disjointed and B has the o-chain condition we obtain
that D, is countable. Then sup D, = a, exists for B is o-complete. Then for all a € A
we have that ¢y, = a. Indeed, if not, then there exists an element ¢ € A such that
not (a < a,) holds. We conclude that dya a &= 0. Then 0 < @, A a < a. Hence, if
D" = DyU{d,va} and d’ is a mapping of D’ into A defined by d' =d, on D, and
d'(dy v a) = a, then (D', d’) is strictly larger than (D,, d,) which contradicts the definition
of (D,,d,). Thus a, = sup D, < sup do(D,) < a,, i.e., sup A exists and is equal to
sup d,y(D,). Since dy(D,) is countable and d,(D,) < A we have shown that B is super-
complete. This completes the proof of the theorem.

As an immediate corollary we have the following result:

Theorem 2. 2. A g-complete and atomic Boolean algebra is supercomplete if and only
if the set of its atoms is at most countable.

Remark. There exist, however, many non-atomic and supercomplete Boolean al-
gebras. Indeed, all measure algebras of finite non-atomic and countably additive measures
are supercomplete (see Theorem 3. 1 below).
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3. Definitions and some simple properties of measures

A real function m on a Boolean algebra % is called a finitely additive measure if m
satisfies the following conditions: (i) m(a) = 0 for all a € B; (ii) m(a v b) = m(a)+ m(b),
whenever aa b = 0; (i) m(1) +=0. If m is a finitely additive measure on 9B, then
m(0) = 0; m(a) + m(b) = m(aab) + m(avd), a,b, € B; m is monotone, i.e., a < b
implies m(a) < m(b); m(a, v:---va,) = )'f m(a;), whenever the set {a,,...,a,} is
disjointed. =1

A finitely additive measure m is called strictly positive or effective if m(a) =0
implies @ = 0. Not every Boolean algebra admits a strictly positive finitely additive
measure (see [9] for further information about this statement). If a Boolean algebra B
admits a strictly positive finitely additive measure m, then it satisfies the o-chain con-
dition. Indeed, if A is a disjointed subset of B, then for every n =1,2,..., the set

A, = {a: a€A and m(a) g—i-} is at most finite. In view of Theorem 2.1, we have
obtained the following result of F. Wecken [14].

Theorem 3. 1. If a o-complete Boolean algebra B admits a strictly positive finitely
additive measure, then B is supercomplete.

If m is a finitely additive measure on 9B, then the set J, = {a: m(a) = 0} is an
ideal of . Furthermore, m defines in a natural way a strictly positive finitely additive
measure on B/J,. The theorem of Wecken has been generalized to this case by Smith
and Tarski [13] and again in view of Theorem 2. 1 can be stated as follows:

Theorem 3. 2. If B is a o-complete Boolean algebra and m is a finitely additive measure
on B, then B|/IJm, where I = {a: a € B and m(a) = 0} is supercomplete.

A finitely additive measure m on a Boolean algebra B is called a countably additive or
o-additive measure if for every countable disjointed set A of B, m(sup A) =2 (m(a): a€A).
From this definition it follows immediately that for every finitely additive measure m the
following conditions are mutually equivalent: (i) m is o-additive; (ii) if as(t = 1,2,...)
is decreasing and inf; a; = 0, then inf, m(a;) = 0; if a;(i = 1,2,...) is increasing and
a = sup; a;, then m(a) = sup, m(a;).

Following Yosida and Hewitt [16] we say that an finitely additive measure m is
purely finitely additive if every countably additive measure m’ such that 0 = m' < m
is identically equal to zero.

The most important result in the theory of finitely additive measures in Boolean
algebras is the following result of K. Yosida and E. Hewitt (see Theorem 1. 24 of [16]).

Theorem 3. 3. Every finitely additive measure m in a Boolean algebra B can be
uniquely written as the sum of a o-measure m, and a purely finitely additive measure m,,.

We shall call m, the o-additive part of m and m,, the purely finitely additive part of m.

The following result, which is of importance for section 5, was formulated by
M. A. Woodbury [15], without proof, for set algebras and proved in general for Boolean
algebras by H. Bauer (see ‘“Satz 1” in [2]). It gives a construction of the c-additive
part of a measure.

Theorem 3. 4. If m is a finitely additive measure on a Boolean algebra B, then for
the o-additive part m, of m the following formula holds: For all a € B

m,(a) = inf (lim m(a): {a;: i = 1,2, ...} increasing and a = sup; a;)

Since m is finitely additive it is obvious that, equivalently, we have
m,(a) =inf (2 m(a):{a;:i =1,2,...} disjointed and a =sup;(a,v - * - va)). It is this formula
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for m, which was proved by H. Bauer. In order to prove that the two formulas are the
same observe that if {a;:¢ =1,2,...} is disjointed and sup;(a; v---va) = a, then

ayv---va;(t=1,2,...)isincreasingin t and m(a, v- -+ v a) = m(a,) + - -+ m(a;).
Conversely, if a; (i =1,2,...) is increasing in ¢ such that sup; a; = a, then the set
A ={ay, ay A dy, ay A dy, . . ., a; A d;_,, ...} is disjointed, sup A = a and
m(a,)) + m(asAdy) + -+ m(a; Ad,_)) = ml(a).

4. The Egorov property

In this section we shall discuss the class of Boolean algebras which plays an im-
portant role in Koshi’s theorem. This class of Boolean algebras is singled out by a property,
which we have called the Egorov property. The reason for calling it the Egorov property
shall be explained in due course. The property itself was introduced for the first time
by H. Nakano (see [10] page 40) in the theory of semi-ordered linear spaces.

Definition 4. 1 (Egorov property). A Boolean algebra B is said to have the Egorov
property if for every double sequence a;; (i =1,2,... and j=1,2,...) which is
increasing in | for every i =1,2,... such that sup; a;; = a for all i =1,2,... there
exists an increasing sequence of elements ar (k =1,2,...) and for every pair of indices
Lk (1=1,2,... and k = 1,2,...) there exists an index n = n(i, k) such that
@ < Guap for al i =1,2,... and k =1,2,... and sup, q;, = a.

Of course there is no loss in generality to assume that n = n(i, k) (t =1, 2,... and
k==1,2,...) is increasing in ¢ and % separately. Furthermore, if the Boolean algebra B
is o-complete, then we may take @, = inf; a; ;4 (k =1,2,...).

If a Boolean algebra has the Egorov property, then every ideal has the Egorov
property too. In case that the Boolean algebra is o-complete then every o-complete
subalgebra has also the Egorov property. The Egorov property is preserved under
g-isomorphisms.

Dually, we have the following theorem:

Theorem 4. 1. A Boolean algebra B has the Egorov property if and only if for every
double sequence a;; (i =1,2,... and ] =1,2,...) which is decreasing in j for every
i =1,2,... such that inf; a;,; = a for all i =1,2,... there exists a decreasing sequence
ap (k=1,2,...) and for every pair of indices i,k (i =1,2,...andk =1,2,...) an index
n = n(i, k) such that &, = @, i1y 1 =1,2,... and k = 1,2,...) and inf; ¢, = a.

Finally, we say that a Boolean algebra has the weak Egoroe property if in Defi-
nition 4.1 in place of supy a; = a we have that 0<<sup a;x < a whenever a > 0. We
shall concentrate our attention, however, on the Egorov property rather than on the
weak Egorov property since we shall prove in section 6 that these two properties are
equivalent for measure o-algebras of finitely additive measures.

We shall now first give a sufficient condition for a Boolean algebra to have the
Egorov property.

Theorem 4. 2. A o-complete Boolean algebra has the Egorov property if it admits a
strictly positive countably additive measure.

Proof. Let a;; (t =1,2,...and j =1,2,...) be increasing in j for every
i==1,2,... such that sup; ¢;; = a for all i =1,2,.... Then for every pair
of indices i,k (j =1,2,...; k=1,2,...) there exists an index n = n(i, k) such that

m(an b ,gn = Then, if we let a, =inf; a;,,, (k =1,2,...) we obtain that

2k
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aAd, = sup; (aAd; . (k=1,2,...). Hence, m(ana,) < Z; m(ana d,;;) §—}1E,

1. e., supg @ = a. This completes the proof of the theorem.

Remark. This simple result justifies the terminology used in Definition 4.1. For
the reason why Egorov’s theorem holds in the theory of measures for the class of a. e.
finite measurable functions relative to some finite countably additive measure can be
easily traced back to the Egorov property of the measure algebra.

A property which is closely related to the Egorov property is weak o-distributivity.
A Boolean algebra % is called weakly o-distributive if for every double sequence
a; (i=12,...and j =1,2,...) which is increasing in j for every i =1,2,... we
have that inf; sup; a;; = sup,, inf; @, ,;,, where the last sup is to be taken over all
infinite sequences of indices n =n(t) (1 =1,2,...).

Dually, we have that a Boolean algebra is weakly o-distributive if and only if for
every double sequence a;; (t =1,2,... and j =1, 2, ...) which is decreasing in j for
every i =1,2,... we have that sup; inf; a;; = inf, sup; ¢; ..

The notion of weak o-distributivity derives its importance in the theory of
measures from the following theorem of Horn and Tarski (see [5] and footnote 1 on
page 104 in [12]) which is analogous to Theorem 4. 2: Every o-complete Boolean algebra
which admits a strictly positive finite countably additive measure is weakly o-distri-
butive.

In view of Theorem 4. 2, the following theorem is a generalization of the theorem
of Horn and Tarski.

Theorem 4. 3. If B is o-complete and if B has the Egoroy property, then B is weakly
a-distributive.

Proof. Let a;; (i =1,2,... and j = 1,2,...) be a double sequence of ele-
ments of B which is increasing in j for every i =1,2,.... If inf;sup; q;; = a,
then we have to show that sup,, inf; a;,, = a. Since for every sequence n of in-
dices, @;,; = sup; a;; (i =1, 2,...) we obtain that inf; @;,; < a for all sequences
n of indices. Thus a is an upper bound of the family {inf; a; ,, : {n}}. We shall prove that a
is a least upper bound of this family. For this purpose we observe that 4 v inf;sup; a; ; = 1.
Since 4 v inf; sup; a;; = inf; sup; (a;,; v @) we obtain that sup; (a;; v 4) =1 for all
i =1,2,.... Then it follows from the Egorov property of B that for every pair of indices
Lk (i=12,...and £ =1,2,...) there exists an index n = n (i, k) such that
sup, inf; (a;,r Vv 4) =1. Hence, d v sup, inf; @;,;, =1. We conclude that for
every element b such that inf; g; ,,; < b for all sequences n we have that dvb =1,
or equivalently, ¢ < b. This finishes the proof of the theorem.

From Wecken’s result (Theorem 3.1) it follows that every o-complete Boolean
algebra which admits a strictly positive countably additive measure is supercomplete.
Thus the following theorem shows that Theorem 4. 2 and the result of Horn and Tarski
are in effect equivalent.

Theorem 4. 4. If B is supercomplete, then B has the Egoroy property if and only
if B is weakly o-distributive.

Proof. We have only to show that if B is weakly o-distributive, then %8 has the
Egorov property since the other half of the theorem is contained in the previous result.
To this end, we assume that the double sequence a;; (i =1,2,... and j =1,2,...)
is increasing in j for every i = 1,2, ... and that sup; a;; = aforalli =1,2,.... Since
9B is supercomplete there exists a countable collection of sequences n; = n(i, k)

Journal fiir Mathematik. Bd. 218. Heft 3/4 29
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(t=1,2,... and k=1,2,...) such that e = sup,inf;q,q ;. Hence, B has the
Egorov property and the proof is finished.

If B is complete, then we cannot show that the property of weak o-distributivity
implies the Egorov property. For we shall prove in the following theorem that, under the
assumption that the continuum hypothesis holds, this may be false. Since we know that
the continuum hypothesis cannot be disproved (see [4]) we cannot show that for complete
Boolean algebras the Egorov property follows from the property of being weakly o-distri-
butive.

Theorem 4. 5. Under the assumption tha. the continuum hypothesis holds, a complete
and atomic Boolean algebra has the Egorov property if and only if the set of its atoms is at
most countable.

Proof. Since every complete atomic Boolean algebra is completely isomorphic
to the set algebra of all subsets of its set of atoms (see 25. 1 in [12]) we have to prove
Theorem 4.5 only for complete algebras of sets. To this end, assume that E is a set
of cardinal x,. If the continuum hypothesis holds, i. e., ¢ =R;, Sierpinski showed
(see Prop. Cy;, p.- 53 of [11]) that there exists a double sequence E;; (i =1,2,... and
] =1,2,...) of subsets of E which is increasing in j for every i = 1, 2, . . . such that

'U1 E,; = E for all i =1,2,... and for any double sequence of indices n = n(i, k)
¥== ©

(:=1,2,...and k£ =1,2,...) the set 'r_wl E, . 1s countable for every k =1,2,....
Hence, kL_Jl _f_11 E; 1 is countable. We conclude that the algebra of subsets of E does

not have the Egorov property.

Conversely, if E is countable, then the algebra of all its subsets satisfies obviously
the o-chain condition and hence, by Theorem 2. 1, is supercomplete. Furthermore, since
every complete set algebra is completely distributive it follows from Theorem 4. 4 that
the Boolean algebra of all subsets of E has the Egorov property. This completes the proof
of the theorem.

In the following theorem we shall show that Theorem 4. 4 is best in a sense.

Theorem 4. 6. If the continuum hypothesis holds, then every complete Boolean algebra
which has the Egorov property is supercomplete.

Proof. From Theorem 2. 1 it follows that we have to show that B satisfies the o-chain
condition. For this purpose, we shall assume that E is a disjointed subset of ®B. There
is no loss in generality to assume that O ¢ E. Then for every subset A of E we define
7(A) = sup A. It is obvious that 7(@) = 0. Furthermore, we shall denote 7 (E) by e. We
shall prove that = has the following properties:

(i) If A< E, then ©(E— A) = 7(E) A 7(A).

(i) For every family of subsets {4,:v€N} of E we have that v(U,A,) =sup,7(4,)
and (U, 4,) = inf, 7(4,).

(iii) The mapping v is one-to-one.

In order to prove (i) we observe that 7(A)v 7v(E— 4) = v(E) = e. Further-
more, since E is disjointed we have that ¢ € A implies aab =0 for all b€ E— 4.
Hence, a € A implies that aa 7 (E — A) = 0. In the same way, we obtain that
7(A) A T(E — A) = 0, which proves (i). For the proof of (ii) we observe that
sup, 7(4,) = sup, sup (4,) = sup (U, 4,) = 7(U, 4,). The second part of (ii) follows
from the first part of (ii) and (i) in the following way:

inf, 7(4,) = e — sup, 7(E— A,) = 1(E— U,(E— 4,)) = ©(N, 4,).
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Finally, (iii) follows immediately from (ii) and the fact that 0 ¢ E. Indeed, if A, B< E
and A == B, then v(A U B) >v(A) and 7(B). This contradicts (4 U B) =7(A)v1(B)
whenever 7(4) = 7(B).

From the above properties of 7 it follows that the set algebra of all subsets of E
is completely isomorphic to the Boolean algebra of elements 7(4), A < E with unit e
and with the Boolean operations defined in 9. It is trivial that this Boolean algebra has
the Egorov property. Hence, the algebra of all subsets of E has the Egorov property.
Under the assumption of the continuum hypothesis, we conclude from Theorem 4.5
that F is at most countable. This proves that B satisfies the o-chain condition and hence,
by Theorem 2. 1, B is supercomplete and the proof is finished.

Remark. Theorem 4. 6 is related to a result of I. Aimemiya (see [1] and [7]) which
states that under the continuous hypothesis every Dedekind-complete vector lattice
(= Riesz space) R which has the Egorov property is super Dedekind complete. Since [1]
is not easily accessible we shall indicate briefly a proof of this result. Let 8 = B(R) be
the Boolean algebra of all projectors of R (for terminology see [10]). Then 8 is complete
and has the Egorov property. Hence, according to Theorem 4.5, ¥ is supercomplete.
Then from Theorem 13. 2 of [10] it follows that R is super Dedekind complete. Con-
cerning this and other results of Riesz spaces we shall report in a joint paper with
A. C. Zaanen which is to appear in the Proceedings of the Royal Academy of the Netherlands.

5. A theorem of S. Koshi

We shall begin this section with the principal lemma on which Koshi’s result will
be based. It may be considered to be an improvement of Theorem 3. 4 in case the Boolean
algebra has the Egorov property.

Lemma 5. 1. Let B be a Boolean algebra and let m be a finitely additive measure
defined on B.

(i) If B has the Egorov property, then for every a € B there exists an increasing sequence
of elements a,(k = 1,2, ...) such that sup, a;, = a and m,(a) = sup, m(a;), where m; is
the o-part of m.

(ii) If B has the weak Egorov property and a 4 0, then there exists an increasing
sequence of elements a,(k = 1,2, ...) such that 0 < sup, ¢, = a and sup, m(a) = m,(a).

Proof. (i) If a € B, then, by Theorem 3. 4, for every i = 1,2, ... there exists an
increasing sequence a;; (j =1, 2, ...) such that sup; ¢;; =a (¢ =1,2,...) and
sup;m(a; ;) <m,(a)+1/i (i=1,2,...). Since B has the Egorov property, it follows that
there exists an increasing sequence a; (k=1,2,...) and a double sequence of indices
n=n(i,k) (i=1,2,... and k=1,2,...) such that sup, g, =a and ¢, =< @; ,;,1) (0 =1,2,...
and k=1,2,...). Hence, m(a) =< m(a . = sup;m(a;;) < m,(a)+ 1/i for all
i=1,2,...and k£ =1,2,.... We conclude that m(a,) < m,(a) for all £k =1,2,....
Since sup, @, = a it follows from Theorem 3. 4 that sup, m(a;) = m,(a).

Since the proof of (ii) is similar to the proof of (i) we shall leave it to the reader.

We are in a position to formulate and to prove the following theorem which
generalizes Theorem 1 of Koshi [8].

Theorem 5. 1. Let B be a Boolean algebra.

(i) If B has the Egorov property, then to every finitely additive measure m there
corresponds a superdense ideal ¥ such that m is countably additive on J, or equivalently,
every purely finitely additive measure on B vanishes on some superdense ideal of B.

22*
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(it) If B has the weak Egorov property, then to every finitely additive measure m
there corresponds a dense ideal  such that m is countably additive on ¥, or equivalently,
every purely finitely additive measure m vanishes on some dense ideal of B.

DProof. Since (ii) follows in the same way from (ii) of Lemma 5. 1 as (i) follows from (i)
of Lemma 5.1 we shall only proof (i). To this end, let m be a finitely additive measure
on B. Then, by Theorem 3.3, m = m, + m,. Furthermore, (m,), = 0. From (i) of
Lemma 5.1 it follows that for every a€ B there exists an increasing sequence ay (k =1,2,...)
such that sup, m,(q) = 0. Hence, J, = {a: m,(a) =0} is a superdense ideal; and
m = m, on Smp. This finishes the proof of the theorem.

In the case that B has the Egorov property, Lemma 5.1 can be improved upon
in the following way:

Lemma 5. 2. If the Boolean algebra B has the Egorov property and if {m;:i=1,2,...}
is a countable family of finitely additive measures on B, then for every a € B there exists an
increasing sequence w, (k =1,2,...) such that sup, @, = a and sup, m;(a;) = m; ,(a)
for all 1 =1,2,....

Proof. For every i =1,2,... there exists a sequence a,; (j = 1, 2,...) which is
increasing in j such that sup;a;; = a for all i =1, 2,... and sup; m,;(a;;) = m,; ,(a)
((i) of Lemma 5.1). Since B has the Egorov property there exists an increasing
sequence a; (k = 1, 2, . . .) and a double sequence of indices n = n(i, k) (1 = 1,2, .
and £ =1,2,...) such that sup, ¢, = a and @, < @;,,, (¢ =1, 2,... and
k=1,2,...). It follows from m,(a;) < m (@ nup) (0 =1,2,... and k = 1,2, ...) that
sup, m;(a,) < sup, m;(a; ,; ) = sup; m(a;;) = m;,(a) for all i =1,2,.... Hence, by
Theorem 3. 4, we have that sup, m;(a;) = m, ,(a) for all i =1,2,.... This completes
the proof of the Lemma.

In the same way as Theorem 5. 1 follows from L.emma 5. 1, Theorem 5. 2 follows
from Lemma 5. 2. This theorem generalizes Corollary 1 of [8].

Theorem b. 2. If B has the Egorov property, then to every countable family of finitely
additive measures there corresponds a superdense ideal in B on which they are simultancously
countably additive, or equivalently, every countable family of purely finitely additive measures
vanish simultaneously on some superdense ideal in B.

6. A theorem of Kelley

In general, a Boolean algebra does not admit a strictly positive finitely additive
measure and to a lesser extent a strictly positive countably additive measure. In [6]
Kelley showed that if a Boolean algebra satisfies certain conditions then the two problems
are equivalent. We shall prove now the following generalization of Kelley’s theorem.

Theorem 6. 1. If a Boolean algebra B admits a strictly positive finitely additive
measure and has the weak Egorov property, then B admits a strictly positive countably
additive measure.

Proof. Let m be a strictly positive finitely additive measure on %B. By (ii) of
Theorem 5. 1 it follows that there exists a dense ideal & in B such that m = m, on Q.
If m,(a) = 0 for some a + O then there exists an element b € § such that b 0,0 < a
and m(b) = m,(b). Hence, m(b) = 0 which contradicts the fact that m is strictly positive
and the proof is finished.

With this result and the results of [6] we have now the following form of Theorem 9
of Kelley’s paper:
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Theorem 6. 2. If B is a o-complete Boolean algebra and if B admits a strictly positive
finitely additive measure, then the following conditions are mutually equivalent:

(1) B has the weak Egorov property,

(ii) B admits a strictly positive countably additive measure,
(iil) B has the Egorov property,

(iv) B is weakly o-distributive,
)

(v) Inthe Stone representation space of B is every set of the first category nowhere dense.
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