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Abstract: 12	
 13	
The bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to 14	

move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between 15	

species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque-16	

generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and 17	

some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown. 18	

Here we use electron cryo-tomography to determine the in situ macromolecular structures of the flagellar motors of 19	

three Gammaproteobacteria species: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis 20	

MR-1, providing the first views of intact motors with dual stator systems. Complementing our imaging with 21	

bioinformatics analysis, we find a correlation between the stator system of the motor and its structural complexity. 22	

Motors with a single H+-driven stator system have only the core P- and L-rings in their periplasm; those with dual 23	

H+-driven stator systems have an extra component elaborating their P-ring; and motors with Na+- (or dual Na+-H+)-24	

driven stator systems have additional rings surrounding both their P- and L-rings. Our results suggest an evolution of 25	

structural complexity that may have enabled pathogenic bacteria like L. pneumophila and P. aeruginosa to colonize 26	

higher-viscosity environments in animal hosts. 27	
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Introduction 29	

The bacterial flagellum is a macromolecular machine that transforms the movement of ions (H+ or Na+) across the 30	

cell membrane into a mechanical torque to move the bacterial cell through its environment[1]. In general, the 31	

flagellum consists of a cell-envelope-embedded motor, a hook which acts as a universal joint and a long propeller-32	

like filament[2,3]. The motor can rotate the filament in either a counterclockwise or clockwise direction. For cells 33	

with a single flagellum this drives the cell forward or backward; for peritrichous cells this results in "run" or 34	

"tumble" movements. Flagella can also exhibit more complex behavior; it was recently reported that the Shewanella 35	

putrefaciens flagellum can wrap around the cell to mediate a screw-like motion that allows the cell to escape narrow 36	

traps[4]. Besides their role in motility, bacterial flagella participate in other vital activities of the cell such as biofilm 37	

formation[5]. Moreover, the virulence of many human pathogens depends directly on their flagella, with flagellated 38	

strains of Pseudomonas aeruginosa and Legionella pneumophila causing more serious infections with higher 39	

mortality rates[6,7]. P. aeruginosa lacking fully-assembled flagella cause no mortality and are 75% less likely to 40	

cause pneumonia in mice[6]. 41	

 42	

The best-studied flagellar motor, in Salmonella enterica, consists of several sub-complexes, which we will describe 43	

in order from the inside out. On the cytoplasmic side are the inner-membrane-embedded MS ring (formed by the 44	

protein FliF) and the C-ring (aka the switch complex, formed by FliN, FliM and FliG). The C-ring encircles a type 45	

III secretion system (T3SS) export apparatus (FliH, FliI, FliJ, FlhA, FlhB, FliP, FliQ and FliR). Spanning the space 46	

from the inner membrane to the peptidoglycan cell wall is the ion channel (called the stator), a complex of two 47	

proteins (MotA and MotB) with 4:2 stoichiometry[8,9]. The interaction between the stator and the C-ring (FliG) 48	

generates the torque required to drive the flagellum. The MS ring is coupled to the extracellular hook (FlgE) through 49	

the rod (FlgB, FlgC, FlgF and FlgG). The rod is further surrounded by two other rings: the P- (peptidoglycan, FlgI) 50	

and the L- (lipopolysaccharide, FlgH) rings which act as bushings during rod rotation. Extending from the hook is 51	

the filament (FliC) which is many micrometers in length. In addition to these components, the assembly of the 52	

whole flagellar motor is a highly synchronized process that requires a plethora of additional chaperones and capping 53	

proteins[10–12]. 54	

 55	
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Recently, the development of electron cryo-tomography (ECT)[13,14] has allowed the determination of the 56	

complete structures of flagellar motors in their cellular milieu at macromolecular (~5 nm) resolution.  ECT studies 57	

of many different bacterial species have revealed that while the core structure described above is conserved, the 58	

flagellar motor has evolved many species-specific adaptations to different environmental conditions[15–21]. For 59	

example, extra periplasmic rings were found to elaborate the canonical P- and L-rings in the motor of the 60	

Gammaproteobacteria Vibrio species. These rings are called the T-ring (MotX and Y) and H-ring (FlgO, P and 61	

T)[20]. Unlike the S. enterica motor described above, which is driven by H+ ions, the motors of Vibrio and other 62	

marine bacteria employ different stators (PomA and PomB) which utilize Na+. These Na+-dependent stators generate 63	

higher torque (~2,200 pN) than H+-dependent stators (~1,200 pN), driving the motor at higher speeds (up to 1,700 64	

Hz compared to ~300 Hz in H+-driven motors)[22].  65	

 66	

Most flagellated bacteria use a single stator system – either H+-driven or Na+-driven, depending on their 67	

environment. Some species, however, such as Vibrio alginolyticus, use two distinct types of motors to move in 68	

different environments: a polar Na+-driven flagellum and lateral H+-driven flagella. Still other species employ dual 69	

stator systems with a single flagellar motor, conferring an advantage for bacteria that experience a range of 70	

environments (see [23] and references therein). For example, P. aeruginosa employs a dual H+-driven stator system 71	

(MotAB and MotCD). While the MotAB system is sufficient to move the cell in a liquid environment[24], MotCD 72	

is necessary to allow the cell to move in more viscous conditions[25]. Shewanella oneidensis MR-1 combines both 73	

Na+- and H+-dependent stators in a single motor, enabling the bacterium to move efficiently under conditions of 74	

different pH and Na+ concentration[26]. How these more elaborate motors may have evolved remains an open 75	

question. 76	

 77	

Here, we used ECT to determine the first in situ structures of three Gammaproteobacteria flagellar motors with dual 78	

stator systems: in L. pneumophila, P. aeruginosa and S. oneidensis MR-1. L. pneumophila and P. aeruginosa have 79	

dual H+-dependent stator systems and S. oneidensis has a dual Na+-H+-dependent stator. This imaging, along with 80	

bioinformatics analysis, shows a correlation between the structural complexity of the motor and its stator system, 81	

suggesting a possible evolutionary pathway. 82	

 83	
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Results and Discussion 84	

To determine the structures of the flagellar motors of L. pneumophila, P. aeruginosa, and S. oneidensis we imaged 85	

intact cells of each species in a hydrated frozen state using ECT. We identified clearly visible flagellar motors in the 86	

tomographic reconstructions and performed sub-tomogram averaging to enhance the signal-to-noise ratio, 87	

generating a 3D average of the motor of each species at macromolecular resolution (Fig. 1 and S1). While all three 88	

motors shared the conserved core structure of the flagellar motor, they exhibited different periplasmic decorations 89	

surrounding this conserved core. While the S. oneidensis and P. aeruginosa averages showed clear densities 90	

corresponding to the stators (Fig. 1 E, F, K and L, orange density), none were visible in the L. pneumophila average, 91	

suggesting that they were more variable, or dynamic. Interestingly, we observed a novel feature in the S. oneidensis 92	

motor: an extra ring outside the outer membrane (Fig. 1 A-F, purple density). This structure is reminiscent of the O-93	

ring (outer membrane ring) described recently in the sheathed flagellum of Vibrio alginolyticus[17]. However, while 94	

the V. alginolyticus O-ring was associated with a 90° bend in the outer membrane, no such outer membrane bend 95	

was seen in the unsheathed S. oneidensis flagellum, so the function of this structure remains mysterious. 96	

 97	

The most striking difference between the three motor structures was the L- and P-rings, which were highly 98	

elaborated in S. oneidensis. The P. aeruginosa and L. pneumophila motors lacked additional rings associated with 99	

the L-ring, but showed smaller elaborations of their P-rings. To determine whether flagellar motor structure 100	

correlates with motor type, we compared our three new ECT structures with those of the five previously-published 101	

Gammaproteobacteria motors (Fig. 2). Two motors (Escherichia coli and S. enterica) have a single H+-driven stator 102	

system, two motors have dual H+-dependent stator systems (P. aeruginosa and L. pneumophila), three motors have 103	

Na+-driven systems (the three Vibrio species) and one motor has a dual Na+-H+-driven system (S. oneidensis). 104	

Interestingly, we found that motors with similar stator type also shared similar structural characteristics. While the 105	

two motors with a single H+-dependent stator system did not show any periplasmic elaborations beyond the 106	

conserved flagellar core, the dual H+-dependent stator systems had an extra ring surrounding their P-ring, with no 107	

embellishment of the L-ring. The Na+-dependent motors of the Vibrio spp., together with the Na+-H+-dependent 108	

motor of S. oneidensis have extra components surrounding both their P- and L- rings. In Vibrio, these extra 109	

periplasmic rings are known as the T-ring (surrounding the P- ring and formed by the MotX and MotY proteins) and 110	

the H-ring (surrounding the L-ring and consisting of the FlgO, FlgP and FlgT proteins). The presence of the T- and 111	
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H-rings was suggested to be specific to the Na+-driven Vibrio motors[20] with the FlgT protein required for the 112	

formation of both rings[27]. 113	

 114	

Previous studies showed that MotX and MotY are important for flagellar rotation in S. oneidensis but it was not 115	

known whether they form part of the motor or not[28]. Similarly, bioinformatics analysis and biochemical studies 116	

showed that MotY is involved in the function of the P. aeruginosa motor, but the structural basis of this role was not 117	

known[24]. We therefore performed a bioinformatics search for candidate homologs of MotX, MotY, FlgO, FlgP 118	

and FlgT in the genomes of P. aeruginosa, L. pneumophila and S. oneidensis to examine whether there is a 119	

correlation between the presence of homologous genes and the extra periplasmic rings observed in the ECT 120	

structures. While we found candidates for all five proteins constituting the T- and H-rings in S. oneidensis as 121	

previously suggested[29], only MotY candidates were found in L. pneumophila and P. aeruginosa (Table S1). This 122	

is in accordance with our ECT structures, which showed that L. pneumophila and P. aeruginosa motors have a ring 123	

surrounding only their P-rings while the S. oneidensis motor has rings surrounding both the P- and L-rings. These 124	

rings are likely T- and H-rings, respectively, as in Vibrio. The lack of candidate MotX homologs in the genomes of 125	

L. pneumophila and P. aeruginosa (Table S1) is consistent with their lack of PomB, the component of the Na+-126	

dependent stator with which MotX interacts. Interestingly, the absence of candidates for FlgT in the L. pneumophila 127	

and P. aeruginosa genomes suggests that it may not be required for the recruitment of MotY as in Vibrio species.  128	

 129	

To see whether these correlations hold more broadly, we expanded our bioinformatics analysis to additional species 130	

of Gammaproteobacteria. We examined the genomes of species with single H+-driven stator systems (Table S2), 131	

dual H+-driven stator systems (Table S3) and Na+-driven stator systems (Table S4). Interestingly, we identified a 132	

second species, Colwellia psychrerythraea 34H, with a single motor and candidates for both PomAB (Na+-driven) 133	

and MotAB (H+-driven) stator systems, similar to S. oneidensis MR-1 (Table S5). In all species we examined, we 134	

observed the same pattern: (i) genomes of species with single H+-driven stator systems lacked homologs of H- or T-135	

ring components; (ii) genomes of species with Na+ stator systems contained homologs of all H- and T-ring 136	

components, and (iii) genomes of species with dual H+-driven stator systems contained candidate homologs only for 137	

the T-ring component MotY. The sole exception to this rule was Chromohalobacter salexigens DSM 3043, which 138	
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contained a homolog of FlgO in addition to MotY. None of the eight species with dual H+-driven stator systems we 139	

examined contained a homolog of FlgT, further suggesting that it is not essential for MotY stabilization in this group. 140	

 141	

Together, our results from ECT imaging of flagellar motors in situ and bioinformatics analysis reveal a correlation 142	

between the structural complexity of the flagellar motor of Gammaproteobacteria and the type of its torque-143	

generating unit, the stator (summarized in Fig. 3). Low-speed motors with single H+-stator systems have only the P- 144	

and L-ring, while high-speed motors using Na+ have two extra periplasmic rings, the T- and H-rings. Unexpectedly, 145	

we find that motors with dual H+-driven stator systems represent a hybrid structure between the two, elaborating 146	

their P-rings with one of the five components of the T- and H-rings, MotY. This extra MotY ring might help to 147	

stabilize the motor under conditions of increased load, as in the viscous environment of the pulmonary system 148	

encountered by L. pneumophila and P. aeruginosa. These results therefore suggest an evolutionary pathway in 149	

which these pathogenic Gammaproteobacteria species could have borrowed a motor stabilization strategy from 150	

related Na+-driven motors to allow them to colonize animal hosts. 151	

 152	
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Figure 3 286	
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Figure legends 298	

Figure 1: The structures of three dual-stator Gammaproteobacteria flagellar motors revealed by ECT. A & B) 299	

slices through Shewanella oneidensis MR-1 electron cryo-tomograms showing single polar flagella. C & D) 300	

zoomed-in views of the slices shown in A and B highlighting the flagellar motors. E) central slice through a sub-301	

tomogram average of the S. oneidensis MR-1 flagellar motor. F) schematic representation of the sub-tomogram 302	

average shown in E with the major parts of the motor labeled. G-L) flagellar motor of Pseudomonas aeruginosa. 303	

Panels follow the same scheme as in A-F above. M-R) flagellar motor of Legionella pneumophila. Panels follow the 304	

same scheme as above. Scale bars 50 nm (red) and 20 nm (blue and orange). 305	

 306	

Figure 2: Compilation of all Gammaproteobacteria flagellar motors imaged to date by ECT. Central slices of 307	

sub-tomogram averages are shown for the eight Gammaproteobacteria flagellar motors revealed by ECT, including 308	

the three structures solved in this study (P. aeruginosa, L. pneumophila and S. oneidensis). The motors are classified 309	

based on their stator system: single H+-driven (dashed blue box), dual H+-driven (blue box), Na+-driven (green box) 310	

or dual Na+-H+-driven (green-blue box). Scale bars are 20 nm. 311	

 312	

Figure 3: Models showing correlation between structural complexity of the flagellar motor and its stator type. 313	

Flagellar motors with single H+-driven stator systems (e.g. Salmonella) have P- and L-rings alone. Motors with dual 314	

H+-driven stator systems have an extra ring surrounding the P-ring formed by the MotY protein alone. Motors with 315	

Na+-driven motors have two periplasmic rings, the T-ring (MotX and MotY) and H-ring (FlgO, FlgP and FlgT), 316	

decorating the P- and L-rings respectively. Note that the boundaries between the P- and L-rings and their 317	

decorations are tentative in these schematics. 318	

 319	

 320	

 321	

 322	

 323	

 324	
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Supporting information: 325	

 326	

 327	

 328	
 329	
 330	
 331	
 332	
 333	
 334	
 335	
 336	
 337	
 338	
 339	
 340	
 341	
 342	
Figure S1: Gold-standard FSC curves of sub-tomogram averages. Resolutions at a 0.143 cutoff (dashed line) are: L. 343	

pneumophila, 6.4 nm; P. aeruginosa, 5.9 nm; S. oneidensis MR-1, 6.9 nm.  344	
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Table S1. Candidate homologs of H- and T-ring components in species imaged in this study.  345	

Species MotX 
candidate 

MotY 
candidate 

FlgO candidate FlgP candidate FlgT candidate 

Pseudomonas 
aeruginosa 

(dual H+-driven 
stator) 

- + - - - 

Legionella 
pneumophila 

(dual H+-driven 
stator) 

- + - - - 

Shewanella 
oneidensis MR-

1 
(dual Na+-H+-
driven stator) 

+ + + + + 

 346	

Table S2. Candidate homologs of H- and T-ring components in single H+-dependent stator systems. 347	

Species MotX 
candidate 

MotY 
candidate 

FlgO candidate FlgP candidate FlgT candidate 

Escherichia coli - - - - - 
Salmonella 

enterica 
- - - - - 

Sodalis 
glossinidius 

- - - - - 

 348	

Table S3.  Candidate homologs of H- and T-ring components in dual H+-dependent stator systems. 349	

Species MotX 
candidate 

MotY 
candidate 

FlgO 
candidate 

FlgP candidate FlgT candidate 

Azotobacter 
vinelandii DJ 

- + - - - 

Cellvibrio 
japonicas 
Ueda107 

- + - - - 

Chromohalobacter 
salexigens DSM 

3043 

- + + - - 

Pseudomonas 
entomophila 

- + - - - 

Saccharophagus 
degradans 2-40 

- + - - - 

Xanthomonas 
campestris pv. 

campestris 

- + - - - 

Teredinibacter 
turnerae T7901 

- + - - - 

Pseudomonas 
putida 

- + - - - 

 350	
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Table S4. Candidate homologs of H- and T-ring components in Na+-dependent stator systems. 351	

Species MotX 
candidate 

MotY 
candidate 

FlgO candidate FlgP candidate FlgT candidate 

Colwellia 
psychrerythraea 

34H 

+ + + + + 

Vibrio 
alginolyticus 

+ + + + + 

Vibrio fischeri + + + + + 
 352	

Table S5. Candidate homologs of stator system components in Colwellia psychrerythraea 34H. E-values of 353	

BLAST results are shown for each candidate locus (name in parentheses). 354	

Species MotA candidate MotB candidate PomA candidate PomB candidate 

Colwellia 
psychrerythraea 

34H 

8e-10 
(CPS_1524) 

 

4e-11 
(CPS_1525) 

 

2e-124 
(CPS_1092) 

 

4e-129 
(CPS_1093) 

 
 355	

Table S6. Raw Blast results for all species in Tables S1-S5. E-values are shown. For E-values exceeding the 356	

cutoff, the top hit is listed in parentheses. 357	

Species MotX 
candidate 

MotY 
candidate 

FlgO 
candidate 

FlgP candidate FlgT candidate 

Azotobacter 
vinelandii DJ 

1e-06 
 
 

8e-14 
(Avin_48650) 

0.032 0.32 4.2 

Cellvibrio 
japonicas 
Ueda107 

0.59 9e-28 
(CJA_2588) 

 

0.72 0.29 6e-09 
 

Chromohalobacter 
salexigens DSM 

3043 

0.014 6e-13 
(Csal_3309) 

 

9e-16 
(Csal_2511) 

 

2.8 2.7 

Pseudomonas 
entomophila 

3e-05 
 

2e-31 
(PSEEN1209) 

 

1.6 0.32 0.099 

Saccharophagus 
degradans 2-40 

6e-06 
 

1e-37 
(Sde_2427) 

 

0.24 2.1 1.2 

Xanthomonas 
campestris pv. 

campestris 

0.019 1e-13 
(XCC1436) 

 

3 4.5 0.021 

Teredinibacter 
turnerae T7901 

0.7 3e-35 
(TERTU_3000) 

 

1.4 0.061 1 

Pseudomonas 
putida 

0.005 7e-31 
(PP_1087) 

 

1 0.77 0.063 

Legionella 
pneumophila 

1e-08 
 

3e-35 
(lpg2962) 

0.87 
 

0.11 2.2 
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Pseudomonas 

aeruginosa 
 

3e-05 
 

2e-37 
(PA3526) 

 

0.047 
 

0.63 0.19 

Escherichia coli 9e-06 
 

2e-09 
 

0.19 
 

0.84 
 

0.19 

Salmonella 
enterica 

5e-07 
 

5e-09 
 

0.34 
 

4.9 
 

0.82 
 

Sodalis 
glossinidius 

4.4 
 

1e-07 
 

0.88 
 

0.27 
 

2.2 
 

Colwellia 
psychrerythraea 

34H 

2e-63 
(CPS_4618) 

 

1e-73 
(CPS_3471) 

 

2e-59 
(CPS_1469) 

 

6e-28 
(CPS_1470) 

 

5e-38 
(CPS_1468) 

 
Shewanella 

oneidensis MR-1 
2e-46 

(SO_3936) 
 

2e-80 
(SO_2754) 

 

2e-19 
(SO_3257) 

 

6e-31 
(SO_3256) 

 

3e-36 
(SO_3258) 

 
 358	
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Materials and Methods: 360	

 361	

Strains and growth conditions: 362	

Legionella pneumophila (strain Lp02) cells were grown on plates of ACES [N-(2-acetamido)-2-aminoethanesulfonic 363	

acid]-buffered charcoal yeast extract agar (CYE) or in ACES-buffered yeast extract broth (AYE) with 100 µg/ml 364	

thymidine. Ferric nitrate and cysteine hydrochloride were added to the media. For ECT experiments, cells were 365	

harvested in early stationary phase. 366	

 367	

Shewanella oneidensis MR-1 cells belonging to the strains listed in Table S7 were used in this study. They were 368	

grown using one of the following methods: Luria–Bertani (LB) broth culture, chemostat, the batch culture method or 369	

in a perfusion flow imaging platform. Detailed descriptions of these methods can be found in[30]. Briefly, in the 370	

chemostat method, 5 mL of a stationary-phase overnight LB culture was injected into a continuous flow bioreactor 371	

containing an operating liquid volume of 1 L of a defined medium[31], while dissolved oxygen tension (DOT) was 372	

maintained at 20%. After 20 h, and as the culture reached stationary phase, continuous flow of the defined 373	

medium[31] was started with a dilution rate of 0.05 h−1 while DOT was still maintained at 20%. After 48 h of 374	

aerobic growth under continuous flow conditions, the DOT was manually reduced to 0%. O2 served as the sole 375	

terminal electron acceptor throughout the experiment. pH was maintained at 7.0, temperature at 30 °C, and agitation 376	

at 200 rpm. Either 24 or 40 hours after DOT reached 0%, samples were taken from the chemostat for ECT imaging.  377	

 378	

In the batch culture method, 200 µL of an overnight LB culture of S. oneidensis cells was added to each of two 379	

sealed and autoclaved serum bottles containing 60 mL of a defined medium[31]. One of the two bottles acted as a 380	

control and was not used for imaging. To this control bottle, 5 µM resazurin was added to indicate the O2 levels in 381	

the medium. The bottles were then placed in an incubator at 30 °C, with shaking at 150 rpm until the color due to 382	

resazurin in the control bottle completely faded, indicating anaerobic conditions. At this point, samples were taken 383	

for ECT imaging from the bottle that did not contain resazurin. 384	

 385	

For the perfusion flow imaging experiments, S. oneidensis cells were grown overnight in LB broth at 30 °C to an 386	

OD600 of 2.4–2.8 and washed twice in a defined medium[31]. A glow-discharged, carbon-coated, R2/2, Au NH2 387	
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London finder Quantifoil EM was glued to a 43 mm × 50 mm no. 1 glass coverslip using waterproof silicone glue 388	

(General Electric Company) and let dry for ~30 min. Using a vacuum line, the perfusion chamber (model VC-LFR-389	

25; C&L Instruments) was sealed against the grid-attached glass coverslip. A total of ~10 mL of the washed culture 390	

was injected into the chamber slowly to allow cells to settle on the grid surface, followed by a flow of sterile defined 391	

medium from an inverted serum bottle through a bubble trap (model 006BT-HF; Omnifit) into the perfusion 392	

chamber inlet. Subsequently, the flow of medium was stopped and the perfusion chamber was opened under sterile 393	

medium. The grid was then detached from the coverslip by scraping off the silicone glue at the grid edges using a 394	

22-gauge needle and rinsed by transferring three times in deionized water, before imaging by ECT. 395	

 396	

Samples were also prepared from an aerobic S. oneidensis LB culture grown at 30 °C to an OD600 of 2.4–2.8. 397	

 398	
Pseudomonas aeruginosa PAO1 cells were first grown on LB plates at 37 °C overnight. Subsequently, cells were 399	

inoculated into 5 ml MOPS [(3-(N-morpholino) propanesulfonic acid)] Minimal Media Limited Nitrogen and grown 400	

for ~ 24 hours at 30 °C. 401	

 402	

Table S7. S. oneidensis strains used in this study  403	
 404	
Strain Relevant genotype Ref. 
MR-1 Wild-type [32] 
ΔpilMNOPQ type IV pili biogenesis mutant [33] 
ΔmshHIJKLMNEGBACDOPQ Msh pili biogenesis mutant [33] 
ΔpilM-Q, ΔmshH-Q mutant that lacks type IV and Msh 

pili biogenesis genes 
[33] 

Δcrp Lacking the cAMP receptor protein 
(CRP) 

[34] 

 405	

Sample preparation for electron cryo-tomography: 406	

Cells (L. pneumophila, P. aeruginosa and S. oneidensis) from batch cultures and chemostats were mixed with BSA 407	

(Bovine Serum Albumin)-treated 10-nm colloidal gold solution (Sigma-Aldrich, St. Louis, MO, USA) and 4 µL of 408	

this mixture was applied to a glow-discharged, carbon-coated, R2/2, 200 mesh copper Quantifoil grid (Quantifoil 409	

Micro Tools) in a Vitrobot Mark IV chamber (FEI). Excess liquid was blotted off and the grid was plunge frozen in 410	

a liquid ethane/propane mixture for ECT imaging. 411	

 412	
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 413	

Electron cryo-tomography: 414	

Imaging of ECT samples (S. oneidensis and P. aeruginosa) was performed on an FEI Polara 300-keV field emission 415	

gun electron microscope (FEI company, Hillsboro, OR, USA) equipped with a Gatan image filter and K2 Summit 416	

counting electron-detector camera (Gatan, Pleasanton, CA, USA). Data were collected using the UCSF Tomography 417	

software[35], with each tilt series ranging from −60° to 60° in 1° increments, an underfocus of ~5–10 µm, and a 418	

cumulative electron dose of ~130–160 e-/A2 for each individual tilt series. For L. pneumophila samples, imaging was 419	

done using an FEI Titan Krios 300 kV field emission gun transmission electron microscope equipped with a Gatan 420	

imaging filter and a K2 Summit direct electron detector in counting mode (Gatan). L. pneumophila data was also 421	

collected using UCSF Tomography software and a total dose of ~ 100 e-/A2 per tilt series with ~ 6 um underfocus. 422	

 423	

Sub-tomogram averaging: 424	

The IMOD software package was used to calculate three-dimensional reconstructions of tilt series[36]. Alternatively, 425	

the images were aligned and contrast transfer function corrected using the IMOD software package before producing 426	

SIRT reconstructions using the TOMO3D program[37]. Sub-tomogram averages with 2-fold symmetrization along 427	

the particle Y-axis were produced using the PEET program[38].  428	

 429	

Bioinformatics analysis: 430	

Candidate H- and T-ring component genes were identified by sequence alignment of the following Vibrio cholerae 431	

proteins against the fully sequenced genomes of each bacterial species using BLASTP. The Vibrio cholerae proteins 432	

used were: MotX (Q9KNX9), MotY (Q9KT95), FlgO (Q9KQ00), FlgP (Q9KQ01) and FlgT (Q9KPZ9). Candidate 433	

stator homologs in Colwellia psychrerythraea 34H were identified by sequence alignment of PomAB proteins of V. 434	

cholerae (Q9KTL0 and Q9KTK9 respectivley) and MotAB proteins of E. coli (P09348 and P0AF06 respectively) 435	

against its genome. The C. psychrerythraea 34H genome contains a single flagellar motor system[23]. Candidate 436	

MotX and MotY homologs identified were adjacent to the flagellar cluster in the genome, and for each stator system 437	

candidate homologs were characteristically located in tandem in the genome. The codes in parentheses represent 438	

Uniprot IDs. An E-value cutoff of < 1 x 10-10 was used.  The raw BLAST results for all species are shown in Table 439	

S6. 440	
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