SUPPLEMENTAL MATERIAL

Refining the Application of Microbial Lipids as Tracers of *Staphylococcus aureus* Growth Rates in Cystic Fibrosis Sputum

Cajetan Neubauer ^{a,b}, Ajay S. Kasi^c, Nora Grahl^d, Alex L. Sessions^b, Sebastian H. Kopf^e, Roberta Kato^c, Deborah A. Hogan^d, Dianne K. Newman ^{a,b,#}

^aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA

^bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA

^cChildren's Hospital Los Angeles, Pediatric Pulmonology, Los Angeles, California, USA

^d Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA

^e Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA

Contains: Fig. S1, Fig. S2, Table S1 and Table S2.

FIG S1 – Microbial community analysis of CF sputum by nonmetric multidimensional scaling
(NMDS; Stress=0.11) analysis of the NanoString data. Black lines connect each sample to the centroid of the Patient ID. The outline of all samples from a single Patient ID is indicated by dotted lines.
Weighted species abundances (percentage value^0.25) were used to calculate Bray-Curtis dissimilarity.
Patient ID contributed 82% to the observed variance in the dataset (PERMANOVA; p < 0.001).

FIG S2 – The amount of *anteiso* fatty acids detected in CF sputum has a moderately positive correlation with microbial producers of *anteiso* fatty acids. Abundance of *anteiso* fatty acids relative to NanoString ribosomal RNA counts. Panels for *S. aureus*, *S. maltophilia* and *P. melaninogenica*, as well as the combined counts of all three strains, are shown for all samples of the longitudinal dataset.

Patient	1	1 #2	2	3	4	5	6	7	8	9	10
Age (yr)	9	9	19	12	14	17	14	17	17	22	17
Gender	F	F	М	М	М	М	М	F	F	F	М
Days Hospitalized	12	14	14	13	10	10	10	19	NA	14	NA
FEV1% (admission)	31	32	59	63	NA	77	43	25	NA	69	NA
FEV1% (discharge)	40	34	71	75	120	83	80	30	NA	80	NA
FEV1% (baseline)	34	34	70	80	118	86	74	36	50	75	25
BMI (percentile)	55	55	2	19	73	85	40	15	8	21kg/m ²	12

TABLE S1 Study participant demographic information

Patient	CFTR mutations	Days in hospital	Samples collected during hospitalization	Sputum sample at baseline health	CF sputum culture*
1	F508del, G408S	12	6	Y	MSSA, PA
1 (#2)	F508del, G408S	14	6	Y	MSSA, PA
2	3849+10kbC>T, 2183delAA>G	14	4	Y	MSSA, Achromobacter xylosoxidans
3	F508del, unknown	13	5	Ν	MSSA
4	F508del, N1303K	10	6	Ν	MSSA, mucoid PA
5	F508del, F508del	10	3	Ν	MSSA, PA
6	F508del, F508del	10	4	Y	MRSA, mucoid PA
7	F508del, 296+2T>A	19	6	N	MSSA, mucoid PA
8	F508del, I507del	0	0	Y	PA
9	F508del, 3171delC	14	1	Ν	MSSA, mucoid PA
10	G542X, G542X	0	0	Y	Achromobacter

TABLE S2 Additional information about study participants

*MSSA = Methicillin sensitive *Staphylococcus aureus*, PA = *Pseudomonas aeruginosa*

	Non-tuberculous		Chronic	Baseline	FEV1%	FEV1%
Patient	mycobacteria*	Antibiotics used	antibiotics	FEV1%	Admission	Discharge
		Cefepime,	Azithromycin,			
1	N	Tobramycin	Inhaled Tobramycin	34	31	40
						
1 (#2)	N	Cetepime,	Azithromycin,	34	37	34
1 (#2)	IN	Tobramycin	Innaled Tobramycin	54	52	54
		Piperacillin-Tazohactam	Azithromycin			
2	Ν	Inhaled Colistin	Inhaled Tobramycin	70	59	71
		Oxacillin			1	5000
		Cefepime.				
3	Ν	Tobramycin	Inhaled Tobramycin	80	63	75
-			-			
	Mycobacterium	Piperacillin-Tazobactam,				
4	abscessus	Tobramycin	Inhaled Tobramycin	118	N/A	120
	Musshastorium					
5	Mycobucierium	Piperacillin-Tazobactam,		96	77	02
	abscessus	Tobramycin	None		11	83
			Azithromycin,			
		Ceftazidime, Tobramycin,	Tobramycin			
6	Ν	Vancomycin	Inhaled Aztreonam	74	43	80
		Amikacin,				
	Mycobacterium	Meropenem,	Inhaled Aztreonam,			
7	avium	Ciprofloxacin	Inhaled Tobramycin	36	25	30
	Marchanderi					
0	Мусовастегит		Azithromycin,	-0	27/4	27/4
8	abscessus	N/A	Inhaled Amikacin	50	N/A	N/A
			Azithromycin,			
		Cefenime	Tobramycin			
9	Ν	Tobramycin	Inhaled Aztreonam	75	69	80
		82 	-			
			Inhaled Aztreonam,			
10	Ν	N/A	Inhaled Colistin	25	N/A	N/A

TABLE S2 (continued) Additional information about study participants

* N: not detected in culture

N/A indicates instances where no data was available