STABLE SEMINORMS REVISITED

RICHARD ARENS, MOSHE GOLDBERG* AND W. A. J. LUXEMBURG

Abstract. A seminorm S on an algebra \mathscr{A} is called *stable* if for some constant $\sigma > 0$,

 $S(x^k) \leq \sigma S(x)^k$ for all $x \in \mathscr{A}$ and all $k = 1, 2, 3, \dots$

We call *S* strongly stable if the above holds with $\sigma = 1$. In this note we use several known and new results to shed light on the concepts of stability. In particular, the interrelation between stability and similar ideas is discussed.

Mathematics subject classification (1991): 15A60, 47A30. *Key words and phrases:* Algebras, norms, seminorms, stability, strong stability.

REFERENCES

- [AG1] R. ARENS AND M. GOLDBERG, Multiplicativity factors for seminorms, J. Math. Anal. Appl. 146 (1990), 469–481.
- [AG2] _____, A class of seminorms on function algebras, J. Math. Anal. Appl. 162 (1991), 592–609.
- AG3 _____, Weighted l_{∞} norms for matrices, Linear Algebra Appl. 201 (1994), 155–163.
- [AG4] _____, Homotonic mappings, J. Math. Anal. Appl. **194** (1995), 414–427.
- [AG5] _____, Weighted l₁ norms for matrices, Linear and Multilinear Algebra 40 (1996), 229–234.
- [AGL1] R. ARENS, M. GOLDBERG AND W. A. J. LUXEMBURG, Multiplicativity factors for function norms, J. Math. Anal. Appl. 177 (1993), 368–385.
- [AGL2] _____, Multiplicativity factors for Orlicz space functions norms, J. Math. Anal. Appl. 177 (1993), 386–411.
- [FZ] S. FRIEDLAND AND C. ZENGER, All spectral dominant norms are stable, Linear Algebra Appl. 58 (1984), 97–107.
- [GT] M. GOLDBERG AND E. TADMOR, On the numerical radius and its applications, Linear Algebra Appl. 42 (1982), 263–284.
- [H] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand, New York, 1967.
- C. PEARCY, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289–291.

