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Abstract: In this letter, a procedure for the calculation of transmission
loss maps from numerical simulations in the time domain is presented.
It can be generalized to arbitrary time sequences and to elastic media
and provides an insight into how energy spreads into a complex configu-
ration. In addition, time dispersion maps can be generated. These maps
provide additional information on how energy is distributed over time.
Transmission loss and time dispersion maps are generated at a negligi-
ble additional computational cost. To illustrate the type of transmission
loss maps that can be produced by the time-domain method, the prob-
lem of the classical two-dimensional upslope wedge with a fluid bottom
is addressed. The results obtained are compared to those obtained previ-
ously based on a parabolic equation. Then, for the same configuration,
maps for an elastic bottom and maps for non-monochromatic signals
are computed.
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1. Introduction

In underwater acoustics, wave propagation problems typically involve variable geome-
try and heterogeneous media, which can generate strong signal fluctuations and make
the analysis of time signals difficult. Thus, to measure the acoustic energy emitted by a
source distributed inside a complex model, acousticians often present results as
frequency-dependent transmission loss (TL) curves or TL maps. These maps are tradi-
tionally computed in the frequency domain based on the Helmholtz equation.

Two main approaches coexist in the literature to solve this equation in complex
environments. The first consists in performing an approximation, usually parabolic, to
obtain a solution at a lower computational cost. The second involves discretizing the
Helmholtz equation using a full-wave technique (often finite elements), at the cost of a
much longer computation time.

This letter presents an alternative approach for the calculation of transmission
losses via the wave equation expressed in the time domain. When the source is broad-
band, it allows one to compute time dispersion maps at no additional computational
cost compared to the mono-frequency case. To compute TL maps in the time-domain,
one can, in principle, simply store all time signals at all receiver positions and then per-
form a Fourier transform for each point stored to convert all of them to the frequency
domain. However, from a technical point of view this solution is realistic only if the
number of receivers is small to moderate because of the amount of storage (in memory
or to disk) that the process requires when the number of recording points and/or the
number of time steps computed is large to very large. In practice, this limits the gener-
ation of frequency-domain results from time-domain simulations to the creation of a
small number of TL curves at a limited number of spatial points, preventing the gener-
ation of full two-dimensional (2D) TL maps.

The objective of this letter is thus to present an efficient way of creating TL
maps from time-domain numerical simulations that avoids the storage of individual
time signals. Since the source time signal can be arbitrarily chosen, the TL maps can
be evaluated for quasi-monochromatic signals as well as for signals with a wider
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bandwidth, enabling one to analyze the influence of bandwidth on the distribution of
acoustic energy inside the domain. In addition, time dispersion maps can also be calcu-
lated on the fly during the simulation, providing an insight into the structure of the
received time signals. All these quantities are obtained at a negligible additional
numerical cost. It is worth noting that the technique presented is general and can be
applied to all methods expressed in the time domain.

Recently, a time-domain spectral-element method (Komatitsch and Tromp,
1999) has been shown to efficiently solve full-wave propagation problems in ocean
acoustics (Bottero et al., 2016; Cristini and Komatitsch, 2012). Beyond its capability of
handling complex geometries and rheologies accurately, as any finite-element tech-
nique, the time-domain spectral-element method runs efficiently on very large com-
puters, exhibiting a computer strong scaling that is almost linear with respect to the
number of CPUs or GPUs. This property can lead to a drastic reduction of the dura-
tion of numerical simulations compared to some more classical time-domain finite-
element techniques. Working in the time domain also allows one to consider arbitrary
source time functions and to obtain information on the dispersion of the studied
signals.

When used in conjunction with the spectral-element method in the time
domain, the implementation of the proposed way of computing TL or time dispersion
maps thus has the additional advantage that, contrary to full-wave methods in the fre-
quency domain, the time-domain spectral-element method does not exhibit decreasing
performance when increasing the number of processor cores used to perform the calcu-
lations. Matrix system solvers (linear solvers) are needed when solving the wave equa-
tion in the frequency domain, and their known performance scaling issues on large
machines above a thousand processor cores or so (Xu et al., 2013), which is not that
high by current high-performance computing standards, implies that some large prob-
lems are numerically difficult to handle in the frequency domain, even on the current
largest supercomputers.

The letter is organized as follows: Sec. 2 is devoted to the definition of the dif-
ferent physical quantities that we want to study, and to how one can compute them
efficiently in a time-domain numerical simulation. Then, in Sec. 3, we provide and dis-
cuss some examples of the evaluation of these quantities within the framework of a
time-domain spectral-element method. Wave propagation over a fluid and then over
an elastic upslope wedge is considered for several source bandwidths. We finally draw
some conclusions in Sec. 4.

2. Generalization of the calculation of transmission losses and evaluation of signal time
spreading

In this section, we define the different physical quantities that we want to study and show
how they can be calculated on-the-fly in a time-domain numerical simulation. These quan-
tities will allow for the evaluation of the transmission losses and of the time structure of
signals at all the discrete points of the spatial domain under study. Let us note u.(x,?)
and u.(x,7) the horizontal and vertical displacement field, respectively, and P(x,?) the

pressure field at time ¢ and position x = (x,z). u(x, 1) = \/itx(x, 0 +ii-(x,1)* is the

norm of the particle velocity field. The instantaneous energy per unit volume field in
the fluid is given by (Jensen et al, 2011, pp. 11-12),
1 1 P*(x,1)

E(x, 1) == (X, 1) + 2

(x7 ) 2p(x)u (x7 )+2,0(X)C2(X)

where p=1000kg m ~ is the density of water and c¢(x) is the distribution of sound

velocity. Likewise, in a linear isotropic solid medium the instantaneous energy is

M

3

1 s 1
E(x, 1) = Ep(x)u (x, 1) + EZ]: eij(x, 1)oy(x, 1), 2
where €(x,7) and o(x,¢) are the strain and stress tensors, respectively. Let 7 refer to
the duration that is considered, then the integrated energy field reads

E(x) = Jof E(x, 1) de. 3)

This physical parameter represents the amount of energy received at a given position
inside the model at time 7 It is similar to the radiated seismic energy introduced by
Boatwright and Choy (1986) and evaluated from body wave measurements, or to the
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T-Phase Energy Flux proposed by Okal (2003) to characterize the energy generated by
an earthquake source in the form of a T-wave. Then, knowing the energy Ey of the
emitting source, it is possible to evaluate the transmission losses for time 7 as

TL(x) = —10log ix) 4)
Ey
Energy is determined by an integral in time, but with the value that we get we have no
knowledge of how this energy is distributed within the time interval that we are consid-
ering. For a given energy value, time spreading can be very different depending on the
propagation path followed by the signal. It is therefore very useful to get such a piece
of information. In order to calculate it, we first define the maximum energy field by

M(x) =max &(x,1). %)
t<Ty

This field gives the maximum of the instantaneous energy for each point and provides
a way of defining an “effective” time dispersion for a signal as

Ex)
M(x)

This quantity is homogeneous to a duration. It represents the duration of the triangle-
shaped signal that has the same energy and maximum amplitude as those that we have
calculated. It is therefore a measure of the time spreading of the signal. Time-domain
numerical simulations provide access to these physical parameters at each time step o¢
and thus allow for the computation of transmission losses and time dispersion maps
on-the-fly during the run at a negligible additional computational cost. In practice, at
iteration i+ 1 and position x, one can evaluate

T(x)=2 (6)

Ei (x) = E[(x) + E(x, IH_])(S[, (7)

M1 (x) = max[M;(x), E(x, tiy1)], ®)
o E,-H(x)

Tin(x) = Zm- ©)

Time domain full-wave numerical methods can thus also provide an at-a-glance view
of how the acoustic energy emitted by a source is distributed inside a complex hetero-
geneous model. In Sec. 3, we will show examples of the maps that can be obtained
based on the calculation of these physical quantities. In all the examples shown, the
final time 7 of the simulations was chosen so that most of the energy produced by the
source has left the domain under study.

3. Validation and examples of TL and time dispersion maps

Below we show three sets of results to demonstrate the ability to compute both TL
and dispersion maps from time-domain simulations. In the three cases we consider a
fluid layer overlying a sloping sea floor. This configuration illustrates several wave
propagation phenomena such as mode conversion and mode cutoff due to a varying
water column depth. The first problem serves as a validation of the approach by com-
paring TL maps obtained by a time-domain method to those computed by a reference
method in the frequency domain. The second set of results considers an elastic sea
floor. It shows the dual effects on the TL maps of pulse bandwidth and shear stiffness
in the sea floor. The third set shows dispersion maps for a broadband pulse propagat-
ing along and into a fluid sea floor.

3.1 Comparisons of the TL maps with a reference solution

In order to illustrate and validate our approach, we choose to investigate the classical
2D fluid wedge benchmark problem, whose characteristics can be found in Sec. 6.9.2
of Jensen et al (2011). In the context of an attenuating fluid bottom, TL maps for a
monochromatic source have already been published there and can thus be used for
comparison. These previous results were obtained with a split-step implementation of
the Thomson—-Chapman parabolic equation using a Greene wide-angle source to ini-
tialize the solution. No full-wave Helmholtz solution for this problem is available in
the literature.

Let us first generate a TL map from a time-domain numerical simulation for
exactly the same configuration. The simulation is based on a time-domain spectral-ele-
ment method (Komatitsch and Tromp, 1999), which has been shown to efficiently
solve full-wave fluid/solid propagation problems in ocean acoustics (Bottero et al.,
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2016; Cristini and Komatitsch, 2012). In the spectral-element method, viscoacoustic or
viscoelastic effects are represented based upon three generalized Zener standard linear
solids placed in parallel, with different relaxation times for each, to mimic a constant
Q quality factor over the frequency band under study in the simulation (Komatitsch
and Tromp, 1999). In order to avoid spurious reflections from the sides of the compu-
tational domain, for all configurations the domain is extended up to a range of 20 km
and down to a depth of 1km and equipped with perfectly matched absorbing layers
(Xie et al., 2016).
For this work, we define a source time function signal by

o) = g(l — cos(Ant)sin(2nfor)) if0 <t < % 10)

0 else,

where A is the maximum amplitude of the source, f; is the dominant frequency of the
source signal, and A is its bandwidth. This type of time sequence will allow us to con-
trol the bandwidth of the emitted signal by changing the value of parameter A. Quasi-
monochromatic signals that will provide results close to frequency-domain calculations
as well as narrowband or broadband signals can be generated. We will thus be able, in
Secs. 3.2 and 3.3, to study the influence of the bandwidth on the spreading of acoustic
energy inside the computational domain. In addition to a fluid viscoacoustic bottom,
we will also consider a solid viscoelastic bottom by adding a shear velocity of
c,=600m s ' and a shear attenuation coefficient o5 = 0.5dB2g' to the sediment
characteristics.

The first results are shown in Fig. 1, which provides the comparison between a
monochromatic TL map [Fig. 1(a)] taken from Jensen et al (2011) and a quasi-
monochromatic TL map [Fig. 1(b)] generated from a time-domain full-wave numerical
simulation. Typically, the results shown in this letter were obtained in a few seconds
using 128 CPU processor cores of a regional cluster, while results for these models
using a parabolic equation method are obtained almost instantaneously.

The quasi-monochromatic signal was generated using a bandwidth A=0.5Hz.
We performed several simulations with signals having a smaller bandwidth but did not
notice any changes in the TL map. We thus consider this value of the bandwidth as a
good approximation of a monochromatic signal for this configuration. Note that this
is a fluid only configuration. The two TL maps are very similar. Mode cutoff of the
three modes, which exist in the flat part of the model, are recovered almost identically
in both cases. The main differences are observed for short ranges. This is not surprising
since the parabolic equation, which is used to generate the results of Fig. 1(a), has
angular limitations. Moreover, a source with a limited aperture was used, contrary to
our simulation, which implements a point source. Therefore the discrepancies between
the two TL maps are attributed to the known inaccuracy for steep angles.
Nevertheless, interference structures in the water column are very close, except at the
end of the wedge where again the grazing angles are steepened because of the varying
depth and thus cannot be handled correctly through numerical modeling based on the
parabolic equation method which was used. This comparison may be seen as a first
answer to the question raised by Buckingham (1992) on the accuracy of TL maps
obtained using the parabolic equation for an upslope fluid wedge. Based on the results
that we obtain, it can be considered that the accuracy of the parabolic equation is

(a) Jensen et al. tic signal. Fluid seafloor
STV e
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Fig. 1. (Color online) (a) Original TL map, in dB, from Jensen ez al. (2011, p. 514). (b) TL map from a full-
wave time-domain simulation using a quasi-monochromatic source (f, =25Hz, A=0.5Hz). (a) is reproduced
(slightly modified) from Fig. 6.11 of Jensen ez al. (2011) with permission from Springer. The black line indicates
the seabed interface.
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good. Moreover, parabolic equation methods have made significant progress in the
meantime and should thus compare more favorably nowadays. In particular, wide-
angle capabilities that have been developed should at least suppress many of the dis-
crepancies observed in the near field. It should also be noted that if several frequencies
are of interest, a simulation is necessary for each frequency considered.

3.2 Effect of pulse bandwidth and sea floor elasticity

Since our numerical method works in the time domain, we can also consider signals
with different bandwidths in order to evaluate how this parameter may influence the
spreading of energy inside the computational domain. Figure 2(a) represents the TL
map for a signal with a bandwidth A=8.0 Hz.

Compared to the monochromatic case [Fig. 1(b)], smoothing of the interfer-
ence structure is observed in the water column mainly from the beginning of the wedge
to its end, the reason being that for each frequency there is a different modal structure,
with different grazing angles and therefore different cutoff depths varying continuously
with frequency. This smoothing is also observed in the sediment. The complex struc-
ture that was observed below the source also disappears.

Adding a shear velocity to the sea floor leads to a very different structure of
the leaking of acoustic energy in the bottom [Fig. 2(b)]. The leaking of energy associ-
ated to the presence of shear waves is strong and dominant. The associated narrow
beams are almost vertical because of the low velocity of shear waves in this configura-
tion. Below the sloping interface, it can be seen that the beams exhibit an interference
structure due to the leaking, in this case, of both the shear waves and the propagating
modes. This structure is also seen in the near field but, in this case, it is generated by
the leaking of evanescent modes. Similar results were presented in Abawi and Porter
(2007) (top figure of their Fig. 1). It can also be noted that the leaking of the first
mode is strongly affected by the presence of shear waves, as it does not penetrate deep
into the sediment. There is much less energy in the water column at the end of the
wedge than in the fluid-only configuration. A large amount of energy is captured by
the shear waves of the bottom. The structure of the sound field in the sediment sug-
gests that if another interface is considered, i.e., if we consider an elastic layer over a
semi-infinite half-space, the presence of shear waves is critical and may generate com-
plex effects because of the potential interaction between these beams and this interface.
As in the pure fluid case, increasing the bandwidth [Fig. 2(c)] leads to smoothing of
the energy levels mainly in the area of the slope.

(a) TL. A= 8.0 Hz. Fluid seafloor

(b) TL. A= 0.5 Hz. Elastic seafloor
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Fig. 2. (Color online) Effect of source bandwidth and bottom elasticity on transmission losses for an upslope
wedge. (a) TL map, in dB, for a fluid bottom using a broadband source (f, =25 Hz, A=8.0 Hz). (b) TL map, in
dB, for an elastic bottom using a quasi-monochromatic source (fo =25 Hz, A=0.5Hz). (c) TL map, in dB, for
an elastic bottom using a broadband source (f, =25 Hz, A=8.0 Hz).
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3.3 Broad bandwidth and time dispersion maps

As mentioned in Sec. 3.2, another type of information can be extracted from time-
domain simulations. This piece of information is related to the spreading of energy
with time at a receiver location. Indeed, for a given energy level, the time structure of
the received signal can be very different and provide additional information on the
propagation process that led to this received signal. This is particularly useful, e.g., for
T-waves analysis because the time structure of a received signal is different depending
on the source mechanism that led to the generation of this signal. In order to illustrate
the kind of information that is provided by this type of map, we performed a full-wave
time-domain numerical simulation for a fluid bottom and a broadband signal
(fo=25Hz, A=25.0Hz).

Figure 3(a) represents the TL map, and Fig. 3(b) represents the time disper-
sion map for TL values lower than 43dB only in order to avoid showing very weak
signals. Finally, Fig. 3(c) provides time sequences associated to receivers located at the
position of the crosses indicated in Figs. 3(a) and 3(b). These positions were chosen so
that the energy level is similar for all positions. The time sequences are arbitrarily
shifted for visualization purposes. The time dispersion map exhibits complicated struc-
tures reflecting the various time structures that can be generated in this configuration.
Signals tend to be more dispersed with range, especially right beneath the sea surface
or along the interface with the sea bottom. Nevertheless, at the end of the wedge, at
the cutoff depth of mode 1, signals tend to be narrower. This effect is clearly visible in
Fig. 3(c).

4. Conclusions and future work

We have presented an efficient procedure to compute transmission losses and time dis-
persion maps from time-domain full-wave numerical simulations. This procedure
allowed us to extend the notion of transmission losses to non-monochromatic signals
and to elastic media. Some results using this procedure were obtained for a 2D wedge
configuration in ocean acoustics. In the case of a simulation in the frequency domain
and for a fluid bottom, these results were compared to results previously obtained
using a parabolic equation, showing that both methods give similar results. As a result,
our approach can provide solutions for configurations for which using a full-wave
numerical method is important because of the complexity of the model. Used in con-
junction with a spectral element method in the time domain, this procedure may be
used in the future to generate full-wave TL maps for problems that are too large for

(a) TL. A=25.0 Hz. Fluid seafloor (b) Effective duration. A =25.0 Hz. Fluid seafloor
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Fig. 3. (Color online) Figure illustrating the use of time dispersion maps. The geometry is the same as in Fig. 1.
(a) TL map, in dB, using a broadband source (f,=25Hz, A=25.0Hz). (b) Associated time dispersion map
7 (x) (in seconds). This field is shown only for transmission losses that are below 43 dB. (c) Arbitrary time-
shifted pressure signals recorded at the positions indicated by the crosses in (a) and (b). The color of each curve
corresponds to the color of the respective cross. The wave energy is about the same at the three positions, but
the time dispersion is different.
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frequency-domain solvers due to their scaling issues. In future work we expect to pre-
sent results on T-wave propagation or on pile driving, in which this approach may
bring new insights into the mechanisms of wave propagation.

Our SPECFEM open source spectral-element software package used in this
study is freely available at geodynamics.org; it contains all the tools needed to repro-
duce the simulations presented in this letter.
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