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27 ABSTRACT 

28

29 Stabilisation of the stalled replication fork is crucial to prevent excessive fork reversal or degradation, 

30 which can undermine genome integrity. The WRN protein is a human RecQ helicase that participates 

31 in the processing and recovery of perturbed replication forks. WRN is unique among the other human 

32 RecQ family members to possess exonuclease activity. However, the biological role of the WRN 

33 exonuclease is poorly defined, and little is known about an involvement in the response to perturbed 

34 replication. Recently, the WRN exonuclease has been linked to protection of stalled forks from 

35 MRE11-dependent degradation in response to clinically-relevant nanomolar doses of the 

36 Topoisomerase I inhibitor camptothecin. Alternative processing of perturbed forks has been 

37 associated to chemoresistance of BRCA-deficient cancer cells, thus, we used WRN exonuclease-

38 deficiency as a model to investigate the fate of perturbed replication forks undergoing degradation, 

39 but in a BRCA wild-type condition. We find that, upon nanomolar doses of camptothecin, loss of 

40 WRN exonuclease stimulates fork inactivation and accumulation of parental gaps, which engages 

41 RAD51. Such alternative mechanism affects reinforcement of CHK1 phosphorylation and causes 

42 persistence of RAD51 during recovery from treatment. Notably, in WRN exonuclease-deficient cells, 

43 persistence of RAD51 correlates with elevated mitotic phosphorylation of MUS81 at Serine 87, which 

44 is essential to avoid accumulation of mitotic abnormalities. Altogether, these findings indicate that 

45 aberrant fork degradation, in the presence of a wild-type RAD51 axis, stimulates RAD51-mediated 

46 post-replicative repair and engagement of the MUS81 complex to limit genome instability and cell 

47 death.

48
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49 AUTHOR SUMMARY

50

51 Correct progression of the molecular machine copying the chromosomes is threatened by multiple 

52 causes that induce its delay or arrest. Once the replication machinery is arrested, the cell needs to 

53 stabilise it to prevent DNA damage. Many proteins contribute to this task and the Werner’s syndrome 

54 protein, WRN, is one of them.

55 Defining what happens to replication machineries when they are blocked is highly relevant. Indeed, 

56 destabilised replication machineries may form upon treatment with anticancer drugs and influence 

57 the efficacy of some of them in specific genetic backgrounds. We used cells that lack one of the two 

58 enzymatic functions of WRN, the exonuclease activity, to investigate the fate of destabilised 

59 replication machineries. Our data show that they are handled by a repair pathway normally involved 

60 in fixing DNA breaks but, in this case, recruited to deal with regions of the genome that are left 

61 unreplicated after their destabilisation. This alternative mechanism involves a protein, RAD51, which 

62 tries to copy DNA from the sister chromosome. In so doing, however, RAD51 produces a lot of DNA 

63 interlinking that requires upregulation of a complex, called MUS81/EME1, which resolves this 

64 interlinking prior cell division and prevents accumulation of mitotic defects and cell death. 

65

66

67

68

69
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70 INTRODUCTION

71

72 The response to perturbed replication is crucial for the maintenance of genome integrity [1–5]. In 

73 humans, the proper handling of perturbed replication forks is also linked to cancer avoidance and 

74 many proteins involved in this process act also as onco-suppressors [3–6]. The importance of dealing 

75 correctly with perturbed replication forks is also demonstrated by the existence of several human 

76 genetic diseases caused by mutations in factors involved in sensing, processing and recovering 

77 replication forks [7]. 

78 The Werner’s syndrome protein (WRN) is one of the key factors of the response to perturbed 

79 replication and participates directly to the checkpoint in S-phase [8,9]. WRN is mutated in the genetic 

80 disease Werner’s syndrome (WS), which is characterized by cancer predisposition and premature 

81 aging [9], and its loss confers sensitivity to several DNA-damaging agents inducing replication stress 

82 [8,10]. From an enzymatic point of view, WRN is both a DNA helicase and exonuclease; however, 

83 while its helicase activity has been linked to processing of reversed or collapsed replication forks 

84 [2,9], little is known about the biological relevance of the exonuclease activity. We recently reported 

85 that the exonuclease activity of WRN is involved in protecting replication forks that are perturbed by 

86 treatment with the Topoisomerase I poison Camptothecin (CPT) in the nanomolar range of 

87 concentration [11]. Exposure to low doses of CPT, as opposed to high doses, does not induce DSBs 

88 in the short-term but stimulates greatly formation of reversed forks [12,13]. Reversed replication forks 

89 are versatile yet vulnerable structures and several proteins participate in their stabilisation [14–16]. 

90 Two proteins, BRCA2 and RAD51, are the most crucial for the stabilisation of reversed forks 

91 [14,16,17]. Thus, cells depleted of each of these two proteins have been used as a prototypical model 

92 to assess the consequences of inaccurate handling of reversed forks. However, BRCA2 and RAD51 

93 may also participate in DNA repair, which may be used to fix damage generated by fork instability 

94 [17–19]. Loss of WRN exonuclease determines a rapid MRE11-dependent degradation of the nascent 

95 strand, most likely after fork reversal, and affects correct replication recovery [11]. However, cells 

96 expressing the exonuclease-dead WRN retain ability to restart replication and are not overtly sensitive 

97 to low doses of CPT, suggesting that alternative mechanisms can be activated as a back-up. Since 

98 nanomolar doses of CPT are clinically-relevant in cancer therapy, cells expressing a catalytically-

99 inactive WRN exonuclease can be used as a model to investigate the fate of CPT-perturbed replication 

100 forks undergoing pathological degradation but in a BRCA2-RAD51 wild-type background.

101 Here, we report that, upon prolonged exposure to nanomolar dose of CPT, loss of WRN exonuclease 

102 channels replication forks through a pathological RAD51-dependent mechanism that makes 

103 perturbed replication forks resistant to breakage. However, engagement of RAD51 and persisting 
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104 RAD51 foci make WRN exonuclease-deficient cells reliant on the mitotic function of the MUS81 

105 complex, which mitigates mitotic abnormalities deriving from accumulation of RAD51-dependent 

106 intermediates. Furthermore, our data suggest that enhanced accumulation of ssDNA and recruitment 

107 of RAD51 interfere with correct activation of CHK1, which provides a positive feedback to the 

108 formation of nascent ssDNA.

109
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110 RESULTS

111 Loss of WRN exonuclease activity leads to a persisting and unusual formation of nascent ssDNA 

112 which compromises formation of DSBs in response to a low-dose of camptothecin

113 Treatment with nanomolar concentrations of CPT does not induce DSBs immediately but initially 

114 stimulates fork reversal [12]. Under such conditions, loss of WRN exonuclease activity results in the 

115 rapid (< 2h) degradation of both nascent strands by the MRE11-EXO1 nucleases [11]. In this regard, 

116 WRN exonuclease deficiency is a useful model to determine what happens to nuclease-targeted forks 

117 after prolonged treatment with low dose of CPT. This prompted us to analyse the processing of 

118 perturbed replication forks beyond 2h of treatment. 

119

120 We first examined the presence of nascent ssDNA as a sign of fork degradation by the native IdU 

121 assay. As expected, WS cells expressing the exo-dead WRN protein (WSE84A) showed less nascent 

122 ssDNA then the corrected wild-type counterpart (WSWT) at 1h of treatment (Fig. 1A). Surprisingly, 

123 the amount of nascent ssDNA in WRN exonuclease-deficient cells increased greatly over time and 

124 largely exceeded the wild-type level at 4h, while it increased only slightly in cells expressing the 

125 wild-type WRN (Fig. 1A). Since nascent strand degradation is MRE11-dependent in the absence of 

126 the WRN exonuclease while it is DNA2-dependent in wild-type cells (refs), we next examined if 

127 chemical inhibition of those nucleases might reduce the idiosyncratic accumulation of ssDNA 

128 detected at 4h of treatment with nanomolar CPT in WSE84A cells. Mirin treatment, which inhibits 

129 MRE11, barely reduced ssDNA detected at 4h of treatment in wild-type cells (Fig. 1B). Surprisingly, 

130 Mirin did not decrease the formation of ssDNA in WRN exonuclease-deficient cells but rather 

131 increased it even further (Fig. 1B). Inhibition of DNA2 by the small-molecule inhibitor C5 [20] 

132 increased formation of nascent ssDNA in wild-type but not in WRN exonuclease-deficient cells (Fig. 

133 1B). In contrast, concomitant inhibition of DNA2 and MRE11 was ineffective in modulating nascent 

134 ssDNA formation in wild-type cells while decreased its level in cells expressing the exo-dead form 

135 of WRN (Fig. 1B). Of note, ssDNA derived from end-resection of DSBs induced by a micromolar 

136 dose of CPT was efficiently reduced by DNA2 inhibitor C5 (Fig. S1A, B), providing a functional 

137 proof of the inactivation of the nuclease activity by the C5 compound in our cell model. These results 

138 indicate that different sets of nucleases are involved in the degradation of nascent ssDNA in WRN 

139 exonuclease-deficient cells when treatment is prolonged. 

140

141 DNA breakage can occur even in response to low-doses of CPT if treatment is sufficiently prolonged 

142 [12,13]. Thus, to further investigate the origin of the late nascent ssDNA in the WRN exonuclease-

143 deficient cells and the role of the different nucleases, we analysed the presence of DSBs after 
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144 treatment with nanomolar CPT by neutral Comet assay. As shown in Figure 1C, treatment with 50nM 

145 CPT for 4h is able to induce some DSBs in wild-type cells, although they are very low compared with 

146 those generated by the 5µM reference dose. In contrast, no DSBs were detected in WRN exonuclease-

147 deficient cells after treatment with the low-dose of CPT, even if they were readily seen in response 

148 to the high-dose of the drug (Fig. 1C). Interestingly, pre-treatment with Mirin, which enhances 

149 ssDNA in WSE84A cells (Fig. 1B), resulted in DSBs (Fig. 1C). In contrast, formation of DSBs was 

150 unaffected in wild-type cells by Mirin while it was reduced by the DNA2 inhibitor (Fig. 1C). 

151 Interestingly, inhibition of both MRE11 and DNA2, which decreases ssDNA formation in WSE84A 

152 cells (Fig. 1B), reduced significantly the DSBs generated by Mirin (Fig. 1C). Concomitant inhibition 

153 of MRE11 and DNA2 also reduced DSBs in wild-type cells (Fig. 1C). The analyses of DSBs and 

154 ssDNA suggest that the increase in nascent ssDNA induced by MRE11 inhibition in WRN 

155 exonuclease-deficient cells derives from end-resection of DSBs. In contrast, the reduction of nascent 

156 ssDNA induced by concomitant treatment with C5 and Mirin would indicate that DNA2 and MRE11 

157 are involved in the formation of the late nascent ssDNA observed in WSE84A cells independently of 

158 detectable DSBs. Finally, we tested whether MUS81 was required for late DSB formation [21,22].  

159 As shown in Fig. S1C, DSBs derived from prolonged treatment with a low-dose of CPT in wild-type 

160 cells are not affected by depletion of MUS81. 

161 Collectively, our results indicate that loss of the WRN exonuclease leads to accumulation of nascent 

162 ssDNA when treatment with nanomolar CPT is prolonged beyond 2h and that it makes cells refractory 

163 to formation of DSBs by CPT. Our data also suggest that the late accumulation of nascent ssDNA in 

164 WSE84A cells is related to the activity of multiple nucleases.

165

166 Loss of WRN exonuclease stimulates engagement of RAD51 after CPT-induced fork 

167 perturbation

168 In WRN exonuclease-deficient cells, late reappearance and accumulation of nascent ssDNA together 

169 with absence of DSBs after CPT might correlate with engagement of an alternative or aberrant fork 

170 processing mode over time. Extended regions of ssDNA are a substrate for RAD51 during 

171 recombination, thus, we investigated whether loss of WRN exonuclease could affect recruitment of 

172 RAD51 after treatment with CPT.

173

174 To evaluate recruitment of RAD51, we first prepared chromatin from cells treated with nanomolar 

175 CPT and determined the amount of RAD51 present by Western blotting. In wild-type cells, RAD51 

176 barely increased its chromatin association after CPT treatment (Fig. 2A). Expression of the exo-dead 

177 WRN, however, greatly increased the amount of RAD51 in chromatin both in untreated cells and 
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178 CPT-treated cells. Treatment with CPT led to a minimal increase over untreated (about 20%; Fig. 

179 2A). As a further control, we also measured the level of RPA32, a subunit of the RPA heterotrimer 

180 that binds to ssDNA, in chromatin.  RPA32 increased after CPT in wild-type cells (Fig. 2A). In 

181 contrast, the amount of RPA32 in chromatin was low in the absence of the WRN exonuclease and 

182 did not show any increase after treatment (Fig. 2A). RAD51 participates in multiple pathways [23,24] 

183 and chromatin recruitment may reflect such pleiotropy of roles. To further verify the increased 

184 recruitment of RAD51 in cells expressing the exo-dead WRN, we performed a quantitative 

185 immunofluorescence analysis of the RAD51 foci (Fig. 2B). We evaluated the number of foci by 

186 analysing the intensity of fluorescence in the RAD51 foci-positive nuclei. Consistent with 

187 biochemical data, loss of WRN exonuclease increased recruitment of RAD51 (Fig. 2B). Moreover, 

188 CPT treatment led to a higher number of RAD51 foci in WRN exonuclease-deficient cells compared 

189 with the wild-type (Fig. 2B)

190 These results suggest that, in the absence of the WRN exonuclease, RAD51 takes over the normal 

191 mechanism handling CPT-perturbed replication forks, perhaps to provide a backup mechanism for 

192 recovery. 

193

194 To test if RAD51 participated in replication fork restart, we analysed whether, in cells expressing the 

195 exo-dead WRN, RAD51 chromatin levels remained elevated also during recovery from CPT. To this 

196 end, we treated cells with CPT and allowed them to recover for 2 and 4h prior to preparing chromatin 

197 fractions. As shown in Figure 3A, while RAD51 levels, as determined by Western blotting, tended to 

198 remain low during recovery in wild-type cells, they remained elevated in WRN exonuclease-deficient 

199 cells. Of note, the amount of chromatin-bound RPA32 and RPA70, two subunits of trimeric RPA, 

200 remained low in WSE84A cells while it increased greatly during recovery in cells expressing the wild-

201 type WRN (Fig. 3A). To confirm this result, we performed quantitative immunofluorescence analysis 

202 of the formation of RAD51 foci during recovery from CPT. A reduction of RAD51 foci was observed 

203 during recovery from CPT in wild-type cells (Fig. 3B). In contrast, the number of RAD51 foci 

204 increased in WRN exonuclease-deficient cells (Fig. 3B), confirming that a RAD51-dependent 

205 pathway is over-activated in response to prolonged treatment with low-dose of CPT in these cells. 

206

207 The persistently-high levels of RAD51 observed in the absence of the WRN exonuclease even during 

208 recovery prompted use to determine if they were correlated with the increased formation of nascent 

209 ssDNA. Having demonstrated that concomitant inhibition of MRE11 and DNA2 restores wild-type 

210 levels of nascent ssDNA in WRN exonuclease-deficient cells (Fig. 1C), we analysed RAD51 focus-

211 forming activity after pre-treatment of cells with C5 and Mirin. As expected, RAD51 recruitment in 
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212 foci was elevated in WRN exonuclease-deficient cells after treatment and even more during recovery 

213 (Fig. 3C). Interestingly, concomitant pre-treatment with C5 and Mirin significantly reduced the 

214 formation of RAD51 foci in WSE84A cells (Fig. 3C), suggesting that it depends on late accumulation 

215 of nascent ssDNA observed in the absence of WRN exonuclease. 

216

217 The elevated levels of RAD51 during recovery might be related to the presence of under-replicated 

218 DNA that requires recombination to be replicated or repaired [25]. Thus, we analysed whether cells 

219 recovering from CPT treatment presented under-replicated regions of DNA. Since under-replication 

220 is expected to leave regions of ssDNA in the parental strand (parental gaps) behind perturbed forks, 

221 we performed native IdU assay after a 24h treatment with IdU to label all parental DNA prior to add 

222 CPT and perform recovery (Fig. 3D). As shown in Figure 3E, little parental ssDNA was detectable 

223 in wild-type cells after treatment and its amount decreased substantially during recovery. In WSE84A 

224 cells, however, parental ssDNA was higher at the end of treatment and remained elevated during 

225 recovery (Fig. 3E). Interestingly, the increased amount of parental ssDNA paralleled that of RAD51 

226 foci, suggesting that RAD51 may be recruited to deal with under-replicated regions. 

227

228 The presence of under-replicated DNA and the increased recruitment of RAD51 might indicate that 

229 perturbed replication forks get inactivated upon prolonged exposure to CPT in the absence of the 

230 WRN exonuclease. Thus, we carried out a single-molecule analysis of DNA replication by the DNA 

231 fiber assay (Fig. 4A). As observed previously [12,13], treatment with nanomolar CPT did not induce 

232 fork arrest but rather a delay in fork progression (Fig. S2). Indeed, the length of the CldU tract is 

233 increased during extended periods of treatment. Of note, length of the CldU tract was similar between 

234 WSWT and WSE84A cells at 1h and 4h of treatment (Fig. S2). When we analysed the ability to replicate 

235 after treatment, we found that most of perturbed replication forks remained active after 1h of CPT in 

236 wild-type cells, as indicated by the low level of stalled forks (red-only tracks) (Fig. 4B-D). After 

237 prolonged treatment, the number of stalled forks increased by around 2-fold, but perturbed forks 

238 remained mostly active (Fig. 4B). Notably, the number of stalled forks was higher in WRN 

239 exonuclease-deficient cells and around the 50% of the forks got inactivated at 4h of treatment (Fig. 

240 4B-D). Interestingly, in the absence of the WRN exonuclease, treatment with CPT stimulated firing 

241 of new origins (green-only tracks), which increased with time of treatment (Fig. 4C, D). In contrast, 

242 limited new origin firing was detectable in wild-type cells (Fig. 4C, D). Surprisingly, and in spite of 

243 the elevated levels of RAD51 in WSE84A cells, neither the percentage of inactive forks nor that of new 

244 origins was affected by inhibition of RAD51 during recovery (Fig. 4B-D). In contrast, we observed 
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245 that both fork inactivation and firing of new origins were increased by inhibition of RAD51 in wild-

246 type cells (Fig. 4B-D). 

247 These results suggest that RAD51 is not required to promote replication recovery but rather to 

248 promote repair of parental gaps left behind inactive forks after resumption of synthesis when the 

249 exonuclease activity of WRN is absent.

250

251 Loss of WRN exonuclease reduces activation of CHK1 

252 Our data indicate that loss of the WRN exonuclease results in accumulation of ssDNA and RAD51 

253 accompanied by a concomitant decrease of RPA. Since RPA-coated ssDNA is required for 

254 checkpoint signalling upon replication fork perturbation, we investigated whether the functionality 

255 of the WRN exonuclease might also affect activation of the replication checkpoint in response to 

256 nanomolar concentration of CPT. As a readout of the activation of the ATR-dependent checkpoint 

257 response, we analysed phosphorylation of CHK1 at S345 by Western blotting. In wild-type cells, 

258 treatment with a nanomolar dose of CPT induced a time-dependent phosphorylation of CHK1 which 

259 is also readily observed in cells expressing the helicase-dead form of WRN (WSK577M) (Fig. 5A). In 

260 contrast, CPT-induced phosphorylation of CHK1 was reduced in cells expressing the exonuclease-

261 dead mutant of WRN, and this phenotype was more evident at 4 and 6h of treatment (Fig. 5A). The 

262 requirement of the WRN exonuclease for correct CHK1 phosphorylation was specific for the low-

263 dose CPT treatment as it was not observed after 5µM of CPT (Fig. S3A).

264 To confirm that loss of WRN exonuclease affected CHK1 phosphorylation by an independent assay, 

265 we monitored the status of S345 of CHK1 by immunofluorescence. As shown in Fig. 5B, a reduced 

266 phosphorylation of CHK1 at S345 was readily detected also by immunofluorescence in WRN 

267 exonuclease-deficient cells. 

268

269 Next, we wanted to analyse whether decreased activation of CHK1 correlated with reduced activation 

270 of ATR-dependent signalling. To assess activation of ATR, we monitored phosphorylation of the 

271 activating site T1989 by immunofluorescence. Despite the defective phosphorylation of CHK1, ATR 

272 was phosphorylated similarly in wild-type cells and in cells expressing the exonuclease-dead form of 

273 WRN (Fig. 5C). Since loss of WRN exonuclease affects recruitment of RPA but did not affect 

274 activation of ATR, we analysed whether it could influence recruitment of other factors modulating 

275 ATR-checkpoint function. As loss of WRN exonuclease leads to accumulation of nascent ssDNA at 

276 4h of CPT (Fig. 1A), we analysed the presence of TopBP1 and RAD9, which associates with TopBP1 

277 [26,27], specifically at nascent ssDNA by our recently described IdU-PLA assay [11]. In parallel, we 

278 evaluated the presence of the total amount of ssDNA by IdU assay. Association of TopBP1 or RAD9 
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279 with nascent ssDNA was not detected under untreated conditions (data not shown), however, 

280 treatment with 50nM CPT for 4h resulted in recruitment of both factors at nascent ssDNA in wild-

281 type cells (Fig. 5D, E). Of note, loss of WRN exonuclease reduced the recruitment of TopBP1 but 

282 not that of RAD9 at the nascent ssDNA (Fig. 5D, E) although in these conditions the IdU assay 

283 detected 2-times more ssDNA (Fig. 5F). 

284

285 Loss of the WRN exonuclease leads to accumulation of nascent ssDNA, which is targeted by RAD51 

286 and not by checkpoint factors, possibly resulting in reduced CHK1 phosphorylation. Thus, we 

287 investigated whether pre-treatment with the RAD51 inhibitor B02 or treatment before sampling could 

288 re-establish a normal CHK1 activation in WRN exonuclease-deficient cells (Fig. S3B). Of note, 

289 inhibition of RAD51 further decreased the phosphorylation of CHK1 regardless the way it was added 

290 (Fig. S3B). This was surprising but prompted us to evaluate whether reduced CHK1 activation could 

291 be implicated in the enhanced accumulation of nascent ssDNA. To test this potential feedback effect, 

292 we expressed the S317/S345D CHK1 phosphomimetic mutant [28] in WSE84A cells (Fig. 6A) before 

293 evaluating the formation of nascent ssDNA by the IdU assay. As shown in Figure 6B, the 

294 phosphomimetic CHK1 was efficiently expressed in the cells and its expression was able to 

295 substantially reduce the amount of nascent ssDNA in WRN exonuclease-deficient cells restoring the 

296 wild-type levels.

297 Altogether, our results show that loss of WRN exonuclease activity affects proper activation of CHK1 

298 in response to a low-dose of CPT and that reduced phosphorylation of CHK1 probably correlates with 

299 reduced recruitment of checkpoint factors at ssDNA. They also suggest that reduced CHK1 

300 phosphorylation contributes to the accumulation of ssDNA in the nascent strand, possibly as part of 

301 a positive feedback loop.

302

303 WRN exonuclease-deficient cells need the mitotic function of MUS81 to counteract mitotic 

304 aberration and mis-segregation

305 Inaccurate processing of perturbed replication forks, elevated under-replicated DNA and RAD51 

306 levels observed in the absence of WRN exonuclease could threaten mitosis because of DNA 

307 interlinking as shown in BRCA2-deficient cells [29]. Mitotic resolution of DNA interlinked 

308 intermediates involves the MUS81/EME1 complex [30,31]. Thus, we evaluated whether WRN 

309 exonuclease-deficient cells accumulated active MUS81 in mitosis by performing 

310 immunofluorescence with an antibody directed against the pS87-MUS81, which we have 

311 demonstrated to be a readout of the active MUS81/SLX4 complex [32]. In wild-type cells, little 

312 MUS81 phosphorylation at S87 was detectable either under unperturbed cell growth or in response 
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313 to low-dose of CPT (Fig. 7A). In contrast, many pS87-MUS81-positive nuclei were detectable in 

314 cells expressing the exonuclease-dead WRN already in unperturbed conditions (Fig. 7A). Notably, in 

315 WRN exonuclease-deficient cells, pS87-MUS81 levels were further enhanced by CPT and remained 

316 elevated also after recovery (Fig. 7A). Interestingly, and consistent with our previous results [32], 

317 phosphorylation of MUS81 never occurred in S-phase cells labelled with EdU (Fig. 7A). To 

318 determine whether elevated MUS81 activation correlated with under-replication and enhanced 

319 RAD51 recruitment, we asked if inhibition of RAD51 by B02 (ref) reverted the pS87-MUS81 levels 

320 in WRN exonuclease-deficient cells. As shown in Figure 7B, inhibition of RAD51 greatly decreased 

321 activation of the MUS81 complex after recovery from CPT, as indicated by reduction in pS87-

322 MUS81-positive nuclei. 

323

324 Enhanced activation of MUS81 in mitosis in WSE84A cells might be indicative of persistence of 

325 unresolved DNA intermediates, which could induce mitotic abnormalities or segregation defects. To 

326 assess if loss of WRN exonuclease during the response to low-dose of CPT could result in segregation 

327 defects, we first analysed the presence of bulky anaphase bridges in DAPI-stained cells (Fig. 7C). 

328 Interestingly, anaphase cells were highly enriched in WRN exonuclease-deficient cells (Fig. 7C; see 

329 numbers above the bars), suggesting that these cells may have a delayed exit from anaphase. Of note, 

330 the number of anaphases with bridges was very low in WRN exonuclease-deficient cells as compared 

331 to cells expressing WRN wild-type (Fig. 7C). Since delayed exit from anaphase might derive from 

332 mitotic defects and could result in post-mitotic abnormalities, we decided to evaluate the presence of 

333 aberrant mitoses, multinucleated cells and micronuclei. As shown in Figure 7D, we found that both 

334 aberrant mitosis and cells with micronuclei were increased by loss of WRN exonuclease activity. In 

335 contrast, no difference in multinucleated cells was found between cells expressing wild-type or exo-

336 dead WRN (Fig. 7D). 

337

338 The presence of under-replicated DNA or the persistence of unresolved DNA intermediates in G2/M 

339 triggers the formation of 53BP1 NBs in the subsequent G1 phase [33]. Since WRN exonuclease-

340 deficient cells showed persistence of under-replicated DNA, we investigated whether they 

341 accumulated 53BP1 NBs. To this end, we performed immunofluorescence against 53BP1 and 

342 CyclinA in cells after recovery from 4h treatment with CPT and scored the number of 53BP1 NBs-

343 positive cells in the CyclinA-negative population (i.e. G1 cells). As shown in Figure 7E, the number 

344 of 53BP1 NBs in WSE84A cells was higher than in wild-type cells even in untreated conditions. 

345 Treatment with CPT enhanced the number of 53BP1 NBs in wild-type and in WRN exonuclease-
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346 deficient cells; however, the increase was substantially higher in cells expressing the exo-dead WRN 

347 (Fig. 7E and Fig. S5). 

348 Notably, inhibition of RAD51 in WRN exonuclease-deficient cells resulted in persistent 

349 accumulation of mitotic cells in pro-metaphase (Fig. S4). This result suggested that loss of RAD51 

350 undermines correct mitotic progression in WRN-exonuclease-deficient cells but prevented 

351 assessment of any correlation between enhanced engagement of RAD51 and mitotic defects or 

352 formation of 53BP1 NBs. 

353

354 As in WRN exonuclease-deficient cells engagement of RAD51 is functionally related to elevated 

355 levels of S87-MUS81 phosphorylation (Fig. 7B), we next analysed whether inactivation of the mitotic 

356 function of MUS81 by overexpression of the unphosphorylable S87A-MUS81 mutant (ref) in these 

357 cells could aggravate the mitotic defects. Interestingly, over-expression of the S87A-MUS81 mutant 

358 in wild-type cells did not affect the percentage of anaphase bridges and micronuclei, while it increased 

359 the number of multinucleated cells (Fig. 8A). In sharp contrast, expression of the S87A-MUS81 

360 mutant substantially aggravated the mitotic defects in WRN exonuclease-deficient cells (Fig. 7A). 

361 Indeed, expression of the S87A-MUS81 protein increased the number of anaphase bridges and 

362 micronucleated cells. Similarly, expression of the S87A-MUS81 mutant enhanced the presence of 

363 53BP1 NBs in WSE84A cells (Fig. 8B).

364

365 To further assess the biological significance of the MUS81 hyperactivation observed in mitosis in the 

366 absence of the WRN exonuclease, we evaluated the sensitivity to nanomolar doses of CPT by 

367 clonogenic survival. As shown in Figure 8C, WRN exonuclease-deficient cells were slightly more 

368 sensitive to CPT then wild-type cells. Overexpression of the wild-type MUS81 resulted in a mild 

369 increase in sensitivity in wild-type cells but not in cells expressing the exo-dead WRN (Figure 7C). 

370 In contrast, overexpression of the S87A-MUS81 resulted in a substantial increase in the sensitivity of 

371 WRN exonuclease-deficient cells to CPT (Fig. 8C).

372

373 Altogether, our data indicate that the enhanced engagement of RAD51 observed in the absence of the 

374 WRN exonuclease requires the increased activation of the MUS81 complex in mitosis. Therefore, 

375 expression of a MUS81 mutant that disables mitotic activation of the MUS81/EME1 complex 

376 increases mitotic abnormalities and sensitivity to CPT of WRN exonuclease-deficient cells. Thus, in 

377 the absence of the WRN exonuclease, hyperactivation of the MUS81 complex functions as a fail-safe 

378 system that maintains mitotic abnormalities at low levels, allowing survival. 

379
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380 DISCUSSION

381

382 In recent years, an increasing interest arose around alternative mechanisms of fork processing and 

383 fork degradation since they correlate with response to chemotherapeutics in cells that are deficient 

384 for the primary pathway(s) as described in the absence of BRCA1/2 [15,17]. Most of these studies 

385 focused on the early events occurring in the absence of BRCA1 or BRCA2, but few of them 

386 investigated mechanisms involved during recovery from replication stress [29,34]. Furthermore, loss 

387 of BRCA1 or BRCA2 affects recombination as well as fork protection and this prevents the 

388 investigation of the role of recombination for the recovery of replication forks undergoing 

389 degradation. Recently, we reported that the WRN exonuclease activity protects against fork 

390 degradation when cells are treated with clinically-relevant doses of CPT [11]. Here, we used WRN 

391 exonuclease-deficient cells as a model to assess what happens at destabilised perturbed forks when 

392 treatment with nanomolar doses of CPT is prolonged. We find that, in the absence of the WRN 

393 exonuclease, nascent strands undergo continuous degradation that produces accumulation of ssDNA. 

394 This late accumulation of ssDNA follows its disappearance at early time points because of the 

395 activities of MRE11 and EXO1 [11]. Interestingly, the late wave of ssDNA at perturbed forks is only 

396 minimally affected by inactivation of each single exonuclease acting at perturbed forks, and is only 

397 reduced when MRE11 and DNA2 are both inhibited. This suggests that multiple nucleases take over 

398 with time at forks destabilised by the absence of WRN exonuclease while most of the degradation 

399 observed in cells deficient of BRCA1/2, or other factors assisting RAD51, seems to involve only 

400 MRE11-EXO1 [35–38]. Treatment with nanomolar doses of CPT does not induce DSBs unless 

401 treatment is prolonged [12,13]. Interestingly, loss of the WRN exonuclease makes cells resistant to 

402 the induction of DSBs after prolonged treatment with nanomolar CPT. Induction of DSBs in response 

403 to nanomolar doses of CPT has been correlated with activation of RECQ1 possibly to promote restart 

404 of those forks that failed to be processed otherwise [13]. Loss of the ability to induce DSBs at forks 

405 would be consistent with engagement of a distinct fork recovery mechanism in cells expressing the 

406 exo-dead WRN protein. Indeed, WRN exonuclease-deficient cells do not show RECQ1 PARylation 

407 [11], which is required to avoid unscheduled RECQ1 activation [13], which, together with the absence 

408 of DSBs support a pathway switch at CPT-perturbed forks. 

409

410 Consistent with the pathway switch, inhibition of MRE11 is sufficient to restore DSBs after prolonged 

411 treatment with a low-dose of CPT in WRN exonuclease-deficient cells, suggesting that formation of 

412 DSBs does not necessarily occur downstream of pathological fork processing.  Interestingly, RAD51 

413 is strongly accumulated in the absence of the WRN exonuclease and persists during recovery from 
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414 treatment. An elevated engagement of RAD51 in the absence of the WRN exonuclease has been 

415 reported in Drosophila [39], suggesting that the role of WRN exonuclease at perturbed forks is 

416 conserved. Similarly, unscheduled exonuclease-mediated processing of perturbed forks in yeast has 

417 been recently shown to engage a RAD51-mediated pathway [40]. Furthermore, parental ssDNA, a 

418 readout of template gaps, also accumulates in the absence of WRN exonuclease. RAD51 binds to 

419 ssDNA and initiates recombination [19,25]. The concomitant accumulation of ssDNA and elevated 

420 recruitment of RAD51 in the absence of the WRN exonuclease would be consistent with the 

421 engagement of gaps left behind inactivated forks in a template-switch mode of replication recovery, 

422 as shown after DNA damage in Xenopus egg extracts [23]. Consistent with this possibility, WRN 

423 exonuclease-deficient cells show enhanced inactivation of CPT-perturbed forks and new origin firing. 

424 Moreover, although RAD51 has been implicated in fork restart [24,41], in WRN exonuclease-

425 deficient cells, RAD51 is not involved in fork reactivation after CPT treatment. Indeed, its inhibition 

426 does not increase fork inactivation. This result is in agreement with the participation of RAD51 in 

427 “gap repair” and supports the notion that prolonged treatment with nanomolar CPT channels 

428 perturbed forks into alternative fork processing pathways if the function of WRN exonuclease is 

429 absent. Consistent with this, in wild-type cells, inhibition of RAD51 reduces fork reactivation. This 

430 is not unexpected since RAD51 plays crucial roles in both fork remodelling and stability [14,16]. In 

431 addition, as RAD51 and WRN have been proposed to cooperate during recovery from fork arrest 

432 [42], it is reasonable to speculate that loss of WRN function also compromises the normal activity of 

433 RAD51 at fork.

434

435 Loss of WRN exonuclease results in a mild defect in the activation of CHK1. Activation of the ATR-

436 dependent checkpoint requires formation of ssDNA [43–45]. In the absence of the WRN exonuclease 

437 ssDNA accumulates but is hijacked by RAD51 and it is not completely free for the binding of 

438 checkpoint factors. Indeed, in WRN exonuclease-deficient cells, TopBP1 and its binding factor 

439 RAD9 are not more highly associated with ssDNA as compared with the wild-type. Notably, 

440 phosphorylation of ATR, a readout of its activation, is indistinguishable from the wild-type. It 

441 suggests that ATR also gets activated independently from ssDNA.  Alternatively, a hyperactivation 

442 of ATR is also prevented by sequestering of ssDNA by RAD51. Indeed, overexpression of RAD51 

443 has been shown to affect checkpoint activation [46]. Notably, bypassing of the CHK1 activation 

444 defect by expression of a phosphomimetic CHK1 mutant in WRN exonuclease-deficient cells restores 

445 normal levels of ssDNA. This suggests that accumulation of ssDNA is also unleashed by reduced 

446 CHK1 activation through a positive feedback loop. 

447
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448 The observed elevated recruitment of RAD51, which is used during recovery in the absence of the 

449 WRN exonuclease to deal with under-replicated DNA, also leads to elevated phosphorylation of 

450 MUS81 at S87. Phosphorylation of MUS81 at S87 occurs in G2/M and is related to resolution of 

451 recombination intermediates [32]. Consistently, inhibition of RAD51 reduces S87 phosphorylation 

452 in WRN exonuclease-deficient cells. Thus, engagement of RAD51-dependent fork recovery, possibly 

453 by template switch since DSBs do not form, results in an increased number of interlinked 

454 intermediates calling for resolution by the MUS81 complex. Our data indicate that activation of 

455 MUS81 complex in G2/M is essential to overcome segregation defects arising from excessive 

456 RAD51-dependent recombination and support proliferation upon treatment with CPT. Indeed, 

457 expression of the unphosphorylable S87A-MUS81 mutant increases abnormal mitosis and sensitizes 

458 WRN exonuclease-deficient. 

459

460 Loss of the WRN exonuclease although resulting in fork degradation does not induce MUS81 

461 activation in S-phase, which is observed in the absence of BRCA2 [37].  However, the persistence of 

462 under-replicated DNA and requirement of MUS81 complex activity in G2/M shown by WRN 

463 exonuclease-deficient cells are also characteristic of BRCA2-deficient cells [34]. Thus, it is tempting 

464 to speculate that elevated fork degradation correlates with inability to replicate all the genome. 

465 Notably, BRCA2-deficient cells show much more severe mitotic defects [29,34]. In WRN 

466 exonuclease-deficient cells, mitotic abnormalities are increased by disabling MUS81 function in 

467 mitosis but are likely increased also by impairing RAD51 function during recovery, since RAD51 

468 inhibition results in increased accumulation of parental ssDNA and induces a significant mitotic 

469 block. As BRCA2 deficiency also interferes with the post-replicative function of RAD51 [23] it is 

470 tempting to speculate that the elevated mitotic defects might be the end-result of combined fork 

471 deprotection and recombination defects. Indeed, it is recently demonstrated that mitotic abnormalities 

472 in BRCA2-deficient cells are primarily linked to loss of the recombination function of RAD51 using 

473 separation-of-function mutants [29].

474

475 Collectively, our data show that WRN exonuclease-deficient cells can be a useful model to investigate 

476 the fate of deprotected or destabilised replication forks under a clinically-relevant, specific type of 

477 replication stress; and, together with published data, they can be summarised in the model shown in 

478 Figure 9. In response to nanomolar CPT, perturbed replication forks rapidly undergo fork reversal 

479 [12]. The WRN exonuclease is required somehow at this stage to prevent MRE11-dependent 

480 degradation. In wild-type cells, with time, reversed forks degenerate into DSBs, possibly because of 

481 unscheduled RECQ1-mediated fork restoration [13]. In the absence of WRN exonuclease, perturbed 
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482 replication forks undergo a further cycle of degradation of nascent strand by MRE11 and/or DNA2, 

483 which leads to ssDNA accumulation and engagement of RAD51. The accumulation of ssDNA and 

484 possibly engagement of RAD51 make perturbed replication forks resistant to DSBs and interfere with 

485 checkpoint signalling, resulting in a mild defect in CHK1 activation.  In the absence of WRN 

486 exonuclease, more perturbed forks become inactivated over-time and RAD51 is required also during 

487 recovery from CPT to support repair at template gaps left behind the inactive forks. Engagement of 

488 RAD51 during recovery results in elevated activation of the MUS81 complex in G2/M to deal with 

489 intermediates, and to limit mitotic defects and cell death. As CPT is a chemotherapeutic, our data also 

490 indicate that tumors with impaired function of the WRN exonuclease can be sensitized to treatment 

491 by genetic or chemical interference with the MUS81 complex in mitosis, which is less relevant for 

492 survival in cells expressing the WRN wild-type.

493

494

495
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496 MATERIALS AND METHODS 

497

498 Cell lines and culture conditions

499 The SV40-transformed WRN-deficient fibroblast cell line (AG11395) was obtained from Coriell Cell 

500 Repositories (Camden, NJ, USA). To produce stable cell lines, AG11395 (WS) fibroblasts were 

501 transduced with retroviruses expressing the full-length cDNA encoding wild-type WRN (WSWT), 

502 exonuclease-dead (WSE84A), or helicase-dead (WSK577M)[47]. All the cell lines were maintained in 

503 Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies) supplemented with 10% FBS 

504 (Boehringer Mannheim) and incubated at 37 °C in a humidified 5% CO2 atmosphere. 

505

506 Chemicals

507 Camptothecin (ENZO Lifesciences) was dissolved in DMSO and a stock solution (10 mM) was 

508 prepared and stored at -20°C. Mirin (Calbiochem), an inhibitor of MRE11 exonuclease activity, was 

509 used at 50 µM; the B02 compound (Selleck), an inhibitor of RAD51 activity, was used at 27 µM. C5 

510 (ref), DNA2 inhibitor C5 was dissolved in DMSO and used  at final concentration of 300 µM [20]. 

511 IdU and CldU (Sigma-Aldrich) were dissolved in sterile DMEM at 2.5mM and 200mM respectively 

512 and stored at -20°C. 

513

514 Plasmids transfection

515 Plasmid expressing the phospho - mimic (Flag-CHK1317/345D) mutant form of CHK1, a kind gift from 

516 Professor K.K. Khanna (Queensland Institute of Medical Research, Australia) was generated as 

517 described [28]. To express the plasmids, cells were transfected using the NeonTM Transfection System 

518 Kit (Invitrogen), according to the manufacturer’s instructions.

519

520 Immunofluorescence assays

521 Cells were grown on 35-mm coverslips and harvested at the indicated times after treatments. For 

522 RAD51 IF, after further washing with PBS, cells were pre-extracted with 0,5% TritonX-100 and fixed 

523 with 3% PFA / 2% sucrose at RT for 10min. After blocking in 3% BSA for 15 min, staining was 

524 performed with rabbit monoclonal anti-RAD51 (Bioss, 1:100) diluted in a 1% BSA / 0,1% saponin 

525 in PBS solution, for 1h at 37° in a humidified chamber. For 53BP1, pS87MUS81 and α-tubulin 

526 staining, cells were fixed with 4% PFA at RT for 10 min. Cells were subsequently permeabilized with 

527 0,4% Triton-X100. Staining with primary antibodies diluted in a 1% BSA / 0,1% saponin in PBS 

528 solution was carried out for 1h at RT. After extensive washing with PBS, specie-specific fluorophore-

529 conjugated antibody (Invitrogen) was applied for 1h at RT followed by counterstaining with 0.5 
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530 mg/ml DAPI. Secondary antibody was used at 1:200 dilution. Images were acquired as greyscale files 

531 using Metaview software (MDS Analytical Technologies) and processed using Adobe Photoshop 

532 CS3 (Adobe). For each time point, at least 200 nuclei were examined, and foci were scored at 40×. 

533 Only nuclei with > 5 foci were considered as positive and were quantified using ImageJ.

534

535 EdU incorporation assay

536 To label replicated DNA, cells were incubated with 10 µM EdU for 30 minutes. Samples were fixed 

537 with 4% PFA at RT for 10 min and cells were subsequently permeabilized with 0,5% Triton-X100. 

538 EdU incorporation was detected using the Click-It Edu Alexa Fluor 488 Imaging Kit (Invitrogen) 

539 according to the manufacturer’s instructions.

540

541 Antibodies

542 The primary antibodies used were: anti-pS10H3 (1:1000, Santa Cruz Biotechnologies), anti-Cyclin 

543 A (IF: 1:100, Santa Cruz Biotechnologies), anti-53BP1 (1:300, Millipore), anti-BrdU (1:80, Abcam; 

544 CldU detection), anti-BrdU (1:50, Becton Dickinson; anti-IdU detection), anti-pS87MUS81 (ref 

545 1:200), anti-RAD51 (1:1000, Bioss Antibodies), anti-αTubulin (1:50, Sigma-Aldrich) and anti-Lamin 

546 B1 (1:10000, Abcam).

547

548 Chromatin fractionation and Western blot analysis

549 Chromatin fractionation experiments were performed as previously described [48]. Western blotting 

550 was performed using standard methods. Blots were incubated with primary antibodies against: rabbit 

551 anti-pCHK1(S345) (Cell Signalling Technology), mouse anti-CHK1 (Santa Cruz Biotechnology), 

552 rabbit anti-RAD51 (Bioss Antibodies), mouse anti-RPA32 (Calbiochem), rabbit anti-RPA70 

553 (GeneTex), mouse anti-GAPDH (Santa Cruz Biotechnology) and rabbit anti-Lamin B1 (Abcam). 

554 After incubations with horseradish peroxidase-linked secondary antibodies (1:20000, Jackson 

555 Immunosciences), the blots were developed using the chemiluminescence detection kit 

556 WesternBright ECL HRP substrate (Advansta) according to the manufacturer’s instructions. 

557 Quantification was performed on scanned images of blots using the Image Lab software, and the 

558 values shown on the graphs represent normalization of the protein content evaluated through 

559 LaminB1 or GAPDH immunoblotting.

560

561

562

563
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564 Clonogenic survival

565 Cells were plated onto 35mm dishes, after 24h they were treated with different doses of CPT. After 

566 18, cells were washed, trypsinized and seeded in 60mm dishes. After 14-21 days, plates were stained 

567 with crystal violet and colonies counted. 

568

569 DNA fibres analysis

570 DNA fibres were prepared, spread out and immunodecorated as previously described [11]. Images 

571 were acquired randomly from fields with untangled fibres using Eclipse 80i Nikon Fluorescence 

572 Microscope, equipped with a VideoConfocal (ViCo) system. The length of labeled tracks were 

573 measured using the Image-Pro-Plus 6.0 software. A minimum of 100 individual fibres were analysed 

574 for each experiment and the mean of at least three independent experiments presented.

575

576 Detection of nascent single-stranded DNA 

577 To detect nascent single-stranded DNA (ssDNA), cells were plated onto 22x22 coverslips in 35mm 

578 dishes. After 24h, the cells were labelled for 15 min before the treatment with 250µM IdU (Sigma-

579 Aldrich), cells were then treated with CPT 5µM for different time points. Next, cells were washed 

580 with PBS, permeabilized with 0.5% Triton X-100 for 10 min at 4°C and fixed wit 2% sucrose, 3% 

581 PFA. For ssDNA detection, cells were incubated with primary mouse anti-BrdU antibody (Becton 

582 Dickinson) for 1h at 37°C in 1%BSA/PBS, followed by Alexa Fluor488-conjugated goat-anti-Mouse 

583 (Invitrogen), and counterstained with 0.5µg/ml DAPI. Slides were analysed with Eclipse 80i Nikon 

584 Fluorescence Microscope, equipped with a VideoConfocal (ViCo) system. For each time point, at 

585 least 100 nuclei were scored at 60×. Parallel samples either incubated with the appropriate normal 

586 serum or only with the secondary antibody confirmed that the observed fluorescence pattern was not 

587 attributable to artefacts. Fluorescence intensity for each sample was then analysed using ImageJ 

588 software.

589

590 Statistical analysis

591 All the data are presented as means of at least two independent experiments. Statistical comparisons 

592 of WSWT or WRN-mutant cells to their relevant control were analysed by ANOVA or Mann-Whitney 

593 test. P < 0.5 was considered as significant.

594

595

596

597
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761 LEGENDS TO FIGURES 

762

763 Figure 1. Loss of WRN exonuclease activity leads to formation of nascent ssDNA which 

764 compromises formation of DSBs in response to a low-dose of camptothecin (A) Evaluation of 

765 ssDNA by anti-IdU immunofluorescence under non-denaturing condition. Nascent DNA was pre-

766 labelled for 15 min with IdU before treatment and labelling remained during treatment with CPT. Dot 

767 plots show the mean intensity of ssDNA staining for single nuclei from cells expressing the wild-type 

768 (WSWT) or the exo-dead form of WRN (WSE84A). Cells were either left untreated or challenged with 

769 50 nM CPT for increasing periods, as indicated. The intensity of the anti-IdU immunofluorescence 

770 was measured in at least 200 nuclei from three independent experiments. Values are represented as 

771 means ±SE. Representative images of ssDNA labelling are shown. (B) Evaluation of nascent ssDNA 

772 in cells treated with nuclease inhibitors. Cells were treated with Mirin, C5 or both 30 min before IdU 

773 labelling and 45 min before CPT treatment for 4 h, and then subjected to the ssDNA assay. The graph 

774 shows the mean intensity of IdU fluorescence measured from two independent experiments (n=200), 

775 data are presented as mean ±SE. Statistical analysis in A and B was performed by the Mann–Whitney 

776 test (**P < 0.1; ***P < 0.01; ****P < 0.001) (C) Analysis of DSB accumulation by the neutral 

777 Comet assay. Cells were treated or not with CPT 50 nM for the indicated time, or with 5μM CPT 

778 (high-dose) for 1 h, and then subjected to the neutral Comet assay. Where indicated, cells were pre-

779 treated with Mirin, C5 or both. In the graph, data are presented as mean tail moment ± SE from two 

780 independent experiments (ns = not significant; **P < 0.1; ***P < 0.01; ****P < 0.001; ANOVA 

781 test). Representative images from the neutral Comet assay are shown.

782

783 Figure 2. Loss of WRN exonuclease stimulates engagement of RAD51 after CPT. (A) WB 

784 analysis of chromatin association of RAD51 and RPA32 in wild-type (WSWT) and in cells expressing 

785 the exo-dead mutant form of WRN (WSE84A). Cells were treated or not with CPT for 4 h. LaminB1 

786 was used as loading control. The blot is representative of three replicates. The graphs show the 

787 quantification of the amount of RAD51 or RPA32 normalised against LaminB1 (mean±SE). (B) 

788 Quantitative immunofluorescence analysis of RAD51 foci in WSWT and WSE84A cells. Cells were 

789 treated with CPT 50nM for 4h, triton-extracted and subjected to RAD51 immunostaining. Graph 

790 shows the intensity of RAD51 immunostaining for each cell with scorable foci (n>3). Values are 

791 presented as means ± SE (*** P < 0.01;**** P < 0.001; Mann–Whitney test). Representative images 

792 are shown.

793



28

794 Figure 3. RAD51 recruitment persisted during recovery from CPT in the absence of the WRN 

795 exonuclease. (A) WB analysis of chromatin association of RAD51, RPA70 and RPA32 in wild-type 

796 (WSWT) and in cells expressing the exo-dead mutant form of WRN (WSE84A). Cells were treated or 

797 not with 50nM CPT for 4h followed by recovery as indicated. LaminB1 was used as loading control. 

798 The blot is representative of three replicates. The graphs show the quantification of the amount of 

799 RAD51 or RPA32 normalised against LaminB1 (mean±SE). (B) Quantitative immunofluorescence 

800 analysis of RAD51 foci in WSWT and WSE84A cells. Cells were treated with CPT 50nM for 4h and 

801 recovered or not as indicated. Graph shows the intensity of RAD51 immunostaining for each cell 

802 with scorable foci (n>3). Values are presented as means ± SE (*** P < 0.01; **** P < 0.001; Mann–

803 Whitney test). Representative images are shown. (C) Quantitative immunofluorescence analysis of 

804 RAD51 foci in WSWT and WSE84A cells pre-treated with the nuclease inhibitors. Cells were pre-treated 

805 with the indicated inhibitors prior to be challenged with CPT 50nM for 4h and recovered or not as 

806 indicated. Graph shows the intensity of RAD51 immunostaining for each cell with scorable foci 

807 (n>3). Values are presented as means ± SE (** P < 0.1; **** P < 0.001; Mann–Whitney test). (D-E) 

808 analysis of parental ssDNA. Parental DNA was labelled with IdU as indicated in the experimental 

809 scheme (D). (E) The graph shows the amount of parental ssDNA calculated as mean intensity of IdU 

810 fluorescence measured from two independent experiments (n=200), data are presented as mean ±SE. 

811 Statistical analysis was performed by the Mann–Whitney test (**P < 0.1; ****P < 0.001). 

812 Representative images are shown.

813

814 Figure 4. RAD51 inhibition does not impair replication fork recovery following treatment with 

815 low dose of CPT. (A) Experimental scheme of dual-labelling replication assay with DNA fibres. Red 

816 tract: CldU; Green tract: IdU. (B) The graph shows the average number of stalled forks (red only 

817 tracts opposed to the active forks marked as red+green tracks) after recovery from 50nM CPT 

818 treatment. Where indicated, RAD51 inhibitor (B02; RAD51i) was added to cultures together with 

819 CPT and during the IdU pulse. Data are presented as mean ± SE. One-hundred IdU-positive tracts 

820 were analysed in each experimental point (n=2). (C) The graph shows the average number of new 

821 origins (green only tracts) after recovery from 50nM CPT treatment. Where indicated, RAD51 

822 inhibitor (B02; RAD51i) was added to the cultures together with CPT and during the IdU pulse. 

823 Values are presented as mean ± SE. In B and C statistical analysis was performed by Anova test. (D) 

824 Representative DNA fibres fields are shown in the images.

825

826 Figure 5. Loss of WRN exonuclease activity affects phosphorylation of CHK1. (A) WB analysis 

827 of CHK1 phosphorylation at S345 in wild-type (WSWT) and in cells expressing the exo-dead mutant 
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828 form of WRN (WSE84A) or the helicase-dead form (WSK577M). Cells were treated or not with 50nM 

829 CPT as indicated. Total CHK1 and GAPDH were used as loading controls. The blot is representative 

830 of three replicates. Below is reported quantification of p345CHK1 phosphorylation normalised 

831 against total CHK1. (B) Immunofluorescence analysis of pS345CHK1 in WSWT and WSE84A cells 

832 treated with CPT 50nM for 4h. Numbers in insets represent the mean percentage of pS345CHK1-

833 positive nuclei (n=2; errors are not shown but are < 15% of the mean). (C) Immunofluorescence 

834 analysis of pT1989ATR in WSWT and WSE84A treated with CPT 50nM for 4h. Numbers in insets 

835 represent the mean percentage of pS345CHK1-positive nuclei (n=2; errors are not shown but are < 

836 15% of the mean). (D-E) Analysis of TopBP1 or RAD9 recruitment at nascent ssDNA by PLA. 

837 Nascent strand was labelled with IdU for 15min before cells were treated with 50nM CPT for 4h. 

838 PLA was performed under native conditions using anti-IdU to detect nascent ssDNA and anti-

839 TopBP1 or RAD9 to detect the protein. Negative controls are from samples processed with anti-IdU 

840 only. The graphs show the number of PLA spots in each nucleus (n=300 from 3 independent 

841 replicates). Statistical analysis was performed by the Mann–Whitney test (ns = not significant; ****P 

842 < 0.001). Representative images are shown. (F) Duplicated samples from D-E were analysed for the 

843 presence of nascent ssDNA by native anti-IdU detection only. The graph shows the mean intensity 

844 of IdU fluorescence measured from two independent experiments (n=200), data are presented as mean 

845 ±SE. Statistical analysis was performed by the Mann–Whitney test (***P < 0.01). 

846

847 Figure 6. Expression of a phosphomimic CHK1 mutant restores wild-type levels of nascent 

848 ssDNA in WRN exonuclease-deficient cells. (A) WB analysis of FLAG-CHK1317/345D expression in 

849 WSE84A cells. (B) Evaluation of nascent ssDNA formation. Cells treated with 50nM CPT for 4h were 

850 analysed for the presence of nascent ssDNA by native anti-IdU detection. The graph shows the mean 

851 intensity of IdU fluorescence measured from two independent experiments (n=200), data are 

852 presented as mean ±SE. Statistical analysis was performed by the Mann–Whitney test (*P < 0.5; 

853 ***P < 0.01; ****P < 0.001). Representative images are shown.

854

855 Figure 7. WRN exonuclease-deficient cells show enhanced MUS81 phosphorylation on S87 and 

856 mitotic defects. (A) Anti-pS87MUS81 immunofluorescence staining (red) was performed in wild-

857 type and WRN exonuclease-dead expressing cells. The S-phase cells (green) were revealed with short 

858 EdU pulse followed by Click-IT reaction. Nuclei were depicted with DAPI staining (blue). The mean 

859 frequency (±SE; n=3) of pS87-MUS81-positive nuclei are indicated in the representative images. (B) 

860 WS cells expressing the WSE84A mutant were treated with CPT for 4h and then released in fresh 

861 medium for 18 hours. The RAD51 inhibitor B02 was added with CPT and during the recovery. The 
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862 frequency (± SE; n=2) of pS87-MUS81-positive nuclei are indicated as percentage in the 

863 representative images. (C) The graph shows the mean percentage ± SE of bulky anaphase bridges 

864 analysed in untreated and CPT-treated cells expressing WRN wild-type and the exonuclease-deficient 

865 mutant. The number of anaphases counted for each experimental point are indicated above as n. 

866 Randomly-selected representative anaphases with bridges are shown. (D) Representative images of 

867 mitotic aberrations analysed in α-Tubulin (green) and DAPI-stained cells are shown above the graph 

868 indicating the frequency of each event after treatment with 50nM of CPT for 4h followed by a 18h 

869 recovery. Data are presented as mean±SE. Statistical analysis was performed by the ANOVA test (*P 

870 < 0.5). (E) Analysis of 53BP1 NBs. Cells were either untreated or treated with 50nM CPT as 

871 indicated. Samples were subjected to immunofluorescence using anti-53BP1 and anti-Cyclin A to 

872 evaluate 53BP1 fluorescence only in G1 cells (Cyclin A-negative). Graphs show the frequency of 

873 each class of nuclei in two independent replicates. Representative images from CPT-treated samples 

874 are shown.

875

876 Figure 8. MUS81S87A mutant overexpression aggravates the mitotic phenotypes of WRN 

877 exonuclease-deficient cells. (A) Bulky bridges, multinucleated and micro-nucleated cells were 

878 analysed with or without MUS81S87A mutant overexpression, in WRN wild-type and exonuclease-

879 deficient cells. The graph represents the frequency of the aberration analysed in two independent 

880 experiments ± SE. (B) Analysis of 53BP1 NBs formation in Cyclin A-negative cells. Representative 

881 images of fluorescence cells stained with anti-53BP1 (green) and Cyclin A (red). Nuclear DNA was 

882 counterstained with DAPI (blue). For each point at least 300 nuclei were counted and cells with > 5 

883 53BP1 NBs were considered as positive. The graph shows the quantification of 53BP1-positive G1 

884 cells. (C) Clonogenic assay in cells treated with low-doses of CPT. Cells were exposed to different 

885 doses of CPT for 18h, re-plated at low density and survival evaluated as percentages of colonises 

886 normalised against the untreated. Statistical analyses in A-C were performed by ANOVA test (* P < 

887 0.5; ** P < 0.1).

888

889 Figure 9. Proposed model of the effect of prolonged treatment with nanomolar CPT doses in 

890 absence of WRN exonuclease (see text for details).

891
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892 SUPPORTING INFORMATION LEGENDS

893

894 Supplementary Figures and Legends. The file contains five supplementary figures and their 

895 legends. 




























