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Abstract 

The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane             
generation and has recently been proposed to also be involved in the oxidation of short-chain               
hydrocarbons including methane, butane and potentially propane. The number of archaeal clades            
encoding the MCR complex continues to grow, suggesting that this complex was inherited from an               
ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation            
of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary           
history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome          
(MAG; rG16) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that                
encodes two divergent McrABG operons similar to those found in Candidatus Bathyarchaeota and             
Candidatus Syntrophoarchaeum MAGs. rG16 is basal to members of the class Archaeoglobi, and             
encodes the genes for β-oxidation, potentially allowing an alkanotrophic metabolism similar to that             
proposed for Ca. Syntrophoarchaeum. rG16 also encodes a respiratory electron transport chain that             
can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. As the first              
Archaeoglobi with the MCR complex, rG16 extends our understanding of the evolution and             
distribution of novel MCR encoding lineages among the Archaea. 

Introduction 

The methyl-coenzyme M reductase (MCR) complex is a key component of methane metabolism,             
and until recently had only been found within the Euryarchaeota ( Methanococcales,           
Methanopyrales, Methanobacteriales, Methanomicrobiales, Methanocellales, Methanosarcinales,     
Methanomassiliicoccales, Methanofastiosales, Methanoflorentales, Methanphagales [ANME-1]     
and Methanonatronarchaeia). However, recent genome-centric metagenomic studies have led to          
the discovery of genomes encoding divergent MCR complexes within the Candidatus           
Bathyarchaeota and Candidatus Verstraetearchaeota1,2. Originally, the novel MCR-encoding Ca.         
Bathyarchaeota and Verstaetearchaeota were inferred to be capable of hydrogenotrophic and           
methylotrophic methanogenesis, respectively. Intriguingly, the Ca. Bathyarchaeota also appeared to          
be capable of producing energy through peptide fermentation and β-oxidation, unusual among            
MCR-encoding microorganisms. More recently a euryarchaeotal lineage, Candidatus        
Syntrophoarchaeum, was found to encode Ca. Bathyarchaeota-like MCR homologs and          
experimentally demonstrated to activate butane for oxidation via modified β-oxidation and           
Wood-Ljungdahl (WL) pathways3. The similarity in the MCR complexes and inferred metabolism            
of the Ca. Bathyarchaeota and Ca. Syntrophoarchaeum suggest that the Ca. Bathyarchaeota may             
also oxidise short hydrocarbons. Both organisms are confined to anoxic, hydrocarbon-rich           
habitats 1–3, where abiotically produced short alkanes are abundant and likely to be utilized as carbon               
and energy sources. The increased number of archaeal lineages encoding the MCR complex and              
their metabolic flexibility suggests that these microorganisms may have a greater impact on carbon              
cycling than originally suspected.  

The similarity of the MCR complexes encoded by Ca. Bathyarchaeota and Ca. Syntrophoarchaeum             
is incongruent with their large phylogenetic distance in the genome tree, suggesting that these genes               
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were acquired via horizontal gene transfer (HGT) 4,5. Both scenarios indicate that further diversity of              
divergent MCR-encoding lineages remains to be discovered5, which has been supported by            
gene-centric metagenomic analyses of deep-sea and terrestrial hydrothermal environments 6,7.         
Expanding the genomic representation of novel MCR-encoding lineages by targeting these           
environments using genome-centric metagenomic approaches will help resolve the evolutionary          
history of the complex and expand the diversity of lineages known to be involved in hydrocarbon                
cycling. 

Archaeoglobi is a class of thermophilic Archaea belonging to the Euryarchaeota that are abundant              
in subsurface hydrothermal environments, where they likely play a role in carbon and nutrient              
cycling8,9. The Archaeoglobi are split into three genera: Archaeoglobus, which are all heterotrophic             
or chemolithotrophic sulfate reducers10–19, and Geoglobus and Ferroglobus, which reduce both           
nitrate and ferric iron20–22. Pure cultures of Archaeoglobus have been shown to be capable of alkane                
oxidation23,24, and based on their shared metabolic features with methanogens 25–28 and proximity to             
methanogens in the genome tree, are suggested to have an ancestor capable of methanogenesis.              
However, there are currently no representatives of the Archaeoglobi known to encode the MCR              
complex, likely a result of poor genomic representation caused by their extreme habitats that are               
difficult to sample.  

Borehole observatories installed on the flank of the Juan de Fuca Ridge in the Pacific Ocean                
provide pristine fluids from the subseafloor igneous basement aquifer29. Previous metagenomic           
studies on samples collected from these borehole observatories revealed a distinct microbial            
community, including a number of novel Archaeoglobi 30,31. Here, we characterise metagenome           
assembled genomes (MAGs) from igneous basement fluid samples from the boreholes31, focusing            
on a genome within a novel family that encodes two divergent copies of the mcrABG operon.                
Metabolic reconstruction revealed that the novel Archaeoglobi is potentially capable of           
hydrocarbon oxidation, amino acid fermentation, and can utilize multiple electron acceptors.           
Phylogenetic analyses support a horizontal gene transfer hypothesis for the distribution of novel             
MCR complex among the Archaea, and provides insight into the evolution of the Archaeoglobi. 

Results and discussion 

To investigate the novel microbial diversity within Juan de Fuca Ridge flank boreholes, a              
metagenome (45.4 Gbp total raw reads) was from two wells were generated, assembled, and              
binned. Two of the 98 MAGs (rG3 and rG16) were found to encode full-length copies of the alpha                  
subunit of the MCR complex ( mcrA ). rG3 encodes two McrA homologs with high sequence              
similarity to Methanothermococcus thermolithotrophicus (>99% amino acid identity, AAI). In          
contrast, rG16 ( Supplementary Note 1; Supplementary Figure 1) encodes two divergent McrAs            
that were most similar to Ca. Syntrophoarchaeum caldarius (52% AAI) and Ca.            
Syntrophoarchaeum butanivorans (56% AAI). Based on 228 Euryarchaeota-specific marker genes,          
rG16 was estimated to be nearly complete (99.84%) with low contamination (1.96%), and a genome               
size of ~2.13 Mbp. Annotation of the 2,305 proteins encoded by the rG16 genome revealed all                
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subunits of the MCR complex, including two copies of the mcrC subunit and an ancillary mcrD                
subunit, all of which have highest sequence similarity to homologs within Ca. Syntrophoarchaeum. 

Phylogenetic analysis of the two MCR complexes in rG16 revealed that they branched with high               
bootstrap support to the divergent MCRs from Ca. Syntrophoarchaeum and Ca. Bathyarchaeota            
( Figure 1A ; Supplementary Figure 2 - 3). Notably, the average branch length within the divergent               
McrA clade was double (1.05 ± 0.24 substitutions per site) that of traditional hydrogenotrophic,              
acetoclastic and H 2-dependent methylotrophic methanogens (0.46 ± 0.10 substitutions per site),           
suggesting an accelerated rate of evolution following duplication or HGT 32. To determine the             
taxonomy of rG16, a genome tree was constructed from a concatenated alignment of 122 archaeal               
single copy marker genes. rG16 was positioned basal to other members within the class              
Archaeoglobi with strong bootstrap support ( Figure 1B; Supplementary Figure 4), including other            
Archaeoglobi previously recovered from the Juan de Fuca Ridge31. Phylogenetic analysis of the             
partial 16S rRNA gene (904 bp) confirmed the position of rG16 within the Archaeoglobi              
( Supplementary Figure 5). The average AAI between rG16 and other Archaeoglobi recovered            
from the Juan de Fuca Ridge (54.2% ± 0.7 AAI; Supplementary Figure 6) and relative               
evolutionary divergence 33,34, suggest it is the first representative of a novel family within the              
Archaeoglobi35. The incongruencies between the genome tree and MCR phylogenies for rG16, Ca.             
Syntrophoarchaeum, and the Ca. Bathyarchaeota are most parsimoniously explained by HGT of the             
MCR.  
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Figure 1. Maximum-likelihood trees of A) McrA proteins, and B) a concatenated alignment of 122               
single copy archaeal marker genes from high quality archaeal RefSeq genomes (release 80).             
Hydrogenotrophic and acetoclastic methanogens are shaded blue, H 2-dependent methylotrophic         
methanogens are shaded green, known/putative methane oxidisers are shaded yellow,          
and lineages encoding divergent McrAs are shaded red. Bootstrap support was generated            
from 100 replicates, and white, gray and black nodes represent ≥50%, ≥75% and ≥90%              
support, respectively. 

Metabolic reconstruction of the rG16 MAG highlighted the potential for diverse metabolic            
capabilities, including amino acid fermentation and short chain alkane oxidation using a wide             
variety of electron acceptors ( Figure 2). rG16 encodes a complete Wood-Ljungdahl pathway, and             
consistent with the Ca. Bathyarchaeota and Ca. Verstraetearchaeota, encodes 5 copies of the H              
subunit of the methyltetrahydromethanopterin (H 4MPT): coenzyme M methyltransferase complex         
( mtrH ), each co-located with predicted di- and tri-methylamine corrinoid proteins ( Supplementary           
Table 1). This suggests that rG16 encodes a diverse range of methyltransferases, but is unlikely to                
conserve energy via methane oxidation or hydrogenotrophic methanogenesis 26. The WL pathway           
may be used for oxidation of acetyl-CoA as previously observed in heterotrophic Archaeoglobales             
isolates12. Ca. Syntrophoarchaeum caldarius and Ca. Syntrophoarchaeum butanivorans have been          
inferred to oxidise alkanes activated by the MCR complex, putatively via the β-oxidation and WL               
pathways3. rG16’s two copies of McrA share catalytic residues with Ca. Syntrophoarchaeum            
homologs ( Supplementary Figure 7), and encodes β-oxidation and methyltransferase enzymes that           
would allow short alkane oxidation ( Figure 2). However, unlike Ca. Syntrophoarchaeum, the            
presence of a short chain acyl-CoA and butyryl-CoA dehydrogenase ( acd and bcd, respectively),             
and a long-chain acyl-CoA synthetase ( fadD ) may allow rG16 to oxidise long chain fatty acids               
( Figure 2). The energy for hydrocarbon activation may be produced via either a soluble or               
membrane bound heterodisulfide reductase ( hdrABC , hdrDE, respectively), both of which are           
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encoded by the rG16 genome. While no mvhAG subunit was encoded by rG16, the C-terminal of                
hdrA is fused to the mvhD subunit as previously observed in Methanosarcina acetivorans36             
suggesting it plays a similar role in disulfide reduction. A further seven putative hdrD subunits               
co-located with flavin adenine dinucleotide-containing dehydrogenases ( glcD ) potentially oxidise         
coenzyme M (CoM-SH) and coenzyme B (CoB-SH) as proposed for the Ca. Verstraetearchaeota             
and Ca. Bathyarchaeota ( Figure 2) 1,2. While common to the Archaeoglobi, the membrane bound             
HdrDE has yet to be observed in Ca. Bathyarchaeota and Ca. Syntrophoarchaeum. The functional              
redundancy of hdrABC /DE has also been observed in Archaeoglobus profundus37 where they were             
suggested to play a role in sulfur metabolism. However, without the dissimilatory sulfate reductase              
( dsrAB ) gene, their role in rG16 remains unclear.  

 

Figure 2. Metabolic reconstruction of the rG16 genome. A) Respiratory and fermentative pathways             
are shaded blue and red, respectively. B) Proposed CoM-S-S-CoB disulfide regeneration and            
membrane energetics of rG16 are shown. Genes associated with the pathways shown can be found               
in Supplementary Table 1.  
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Alkane oxidation can be energetically favourable when coupled to an electron acceptor such as              
sulfate38, nitrate39, nitrite40 and metal oxide41 reduction, or transferred to a syntrophic partner via              
direct interspecies electron transfer (DIET)42. Similar to the iron metabolising Geoglobus22,43,44 and            
Ferroglobus 45 within the Archaeoglobi, rG16 does not encode dsrAB, but was found to encode 10               
multi-haem c-type cytochromes (MHCs) with 4 - 31 haem binding motifs that may facilitate iron               
reduction8,43,44,46, or DIET as proposed in anaerobic methanotrophic archaea 42. To compare the            
multi-haem cytochrome profile of rG16 with other Bacteria and Archaea, a network analysis was              
conducted on genomes from NCBI’s RefSeq database. Each MHC encoded by rG16 shared high              
sequence similarity to homologs encoded by archaeal (e.g. Ferroglobus placidus, Geoglobus           
acetivorans ) and bacterial (e.g. Ferrimonas and Shewanella) iron reducers, Ca. Methanoperedens           
nitroreducens, and Ca. Syntrophoarchaeum ( Figure 3). Four multi-haem cytochromes similar to           
Methanoperedens , Ferroglobus and Geoglobus homologs are organised into three contiguous          
operons ( scaffold 8; Figure 3) encoding membrane-bound, redox-active complexes, including a           
bc1-like complex with a Rieske iron sulfur protein and cytochrome b that may generate a proton                
gradient with a Q-cycle ( scaffold 8, ORF 202 - 207; Figure 3), and two complexes associated with                 
the transfer of electrons to the membrane ( scaffold 8, ORF 212- 215, ORF 208 - 211). One                 
complex includes an enzyme with two haem binding domains that is conserved among iron              
metabolising Geoglobus and Ferroglobus ( ORF 212). Intriguingly, rG16 encodes an operon of            
three MHCs ( scaffold 16; ORF 2 - 4; Figure 3), two of which are specific to Archaeoglobi,                 
Methanoperedenaceae , and Ca. Syntrophoarchaeum, suggesting these MHCs play a specific role in            
alkane oxidisers ( Figure 3). The final gene in this operon is homologous to a large C-type                
cytochrome also found in Geoglobus acetivorans SBH6 T that is a possible genomic determinant of              
iron reduction 21. rG16 also encodes a narGHJIK ( Figure 3), which may allow alkane oxidation              
coupled to nitrate reduction 39. A further two operons encode sulfur reductase-like complexes that             
were previously only found in the hyperthermophile Aquifex aeolicus 47, and shown to allow             
tetrathionate, polysulfide and elemental sulfur to be used as terminal electron acceptors ( Scaffold 6,              
ORF 76 - 80; Scaffold 4, ORF 33 - 36; Figure 3). The potential to use partially oxidized forms of                    
sulfur, nitrogen, and iron as electron acceptors suggests that rG16 can use different electron sinks               
depending on environmental conditions48.  
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Figure 3. Operons encoding redox active complexes within rG16. White arrows represent            
hypothetical proteins. Networks are of MHCs and represent clusters of related proteins and their              
organism of origin.  
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rG16 putatively generates ATP via anaerobic respiration of short chain alkanes. A proton motive              
force is generated by the F 420H 2:quinone oxidoreductase, and ATP is generated by an archaeal type               
ATP synthase ( Figure 2, Box 1). However, rG16 is also facultative fermenter, with the ability to                
ferment via a number of pathways ( Figure 2). While no glucose transporters could be identified,               
glucose can be fermented via glycolysis, producing acetyl-CoA via pyruvate-ferredoxin          
oxidoreductase ( por ) or 2-oxoglutarate ferredoxin oxidoreductase ( kor ). rG16 also encodes genes to            
ferment organic acids such as lactate via lactate dehydrogenase ( ldh ) and succinate, fumarate and              
malate via a partial citric acid cycle ( Figure 2). A type II/III ribulose 1,5-bisphosphate              
carboxylase/oxygenase homologous to Ca. Bathyarchaeota, Ca. Verstraetearchaeota, and        
Altiarchaeales may play a role in nucleotide catabolism 1,49 (Archaeal type RuBisCO;           
Supplementary Figure 10). A number of amino acid transporters ( Branched chain amino acid             
transporters; scaffold 2, ORF 137 - 141, scaffold 4, ORF 1 - 5; scaffold 20, 82 - 84) and                   
peptidases (tetrahedral aminopeptidase, peptidase family M50, Xaa-Pro dipeptidase, methionine         
aminopeptidase) indicate that rG16 can also ferment peptides ( Figure 2). Pathways for the             
fermentation of glutamate, glutamine, alanine, cysteine, aspartate and asparagine exist, as well as a              
number of aminotransferases ( aspB , hisC, cobD) and two copies of por, which is involved in the                
fermentation of aromatic amino acids in other hyperthermophiles 50. rG16 also encodes a            
benzoyl-CoA reductase complex ( bcrABCD ) indicating the potential to degrade aromatic          
compounds. The acetyl-CoA generated via glycolysis and via fermentation of organic and amino             
acids can be used for substrate level-phosphorylation using acetyl-CoA synthetase ( acs ) or            
acetate-CoA ligase ( acd ). The various fermentative strategies used by rG16 suggest that it is              
adapted to a fluctuating availability of organic compounds.  

To compare the metabolic capabilities of rG16 with publically available archaeal genomes from             
RefSeq and GenBank, a global analyses of KEGG Orthologous (KO) genes was conducted. The              
KO profile of rG16 was most similar to other members of the Archaeoglobi,             
Methanomassiliicoccales ANME-1, Candidatus Syntrophoarchaeales and Methanonatronarchaeia      
sp., but distant from the Ca. Bathyarchaeota and Ca. Verstraetearchaeota ( Figure 4A, B). To              
further examine the shared genomic content of novel MCR encoding lineages, orthologous clusters             
(OCs) were generated using proteinortho 51. Within the Archaeoglobi, 134 OCs were unique to             
rG16, mapping to 71 KOs primarily associated with carbon metabolism ( Supplementary Table 1).             
The few clusters that were unique to the rG16, Ca. Bathyarchaeota and Ca. Syntrophoarchaeum              
(seven OCs) were limited to subunits from the MCR complex, a putative methanogenesis marker              
(TIGR03275), and a gene associated with cobalamin biosynthesis (cob(I)alamin         
adenosyltransferase; cobA ; Supplementary Table 1). A further 25 OCs were specific only to rG16              
and Ca. Syntrophoarchaeum, including four further methanogenesis markers (TIGR03271,         
TIGR03291, TIGR03268, TIGR03282), a sugar-specific transcriptional regulator, and a class II           
fumarate hydratase. Many OCs shared between rG16 and Ca. Syntrophoarchaeum were annotated            
as ‘hypothetical protein’, suggesting much of the metabolic similarities of novel hydrocarbon            
metabolisers have yet to be functionally characterised. 
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Figure 4. Comparative genomics of the rG16 genome. A) PCA of the presence/absence of KEGG               
Orthologous (KO) genes in all archaea, B) within the Euryarchaeota, with the exception of the               
Haloarchaea, and C) within the Archaeoglobi. The phylogeny of the Archaeoglobi within the             
maximum-likelihood tree of the 122 archaeal marker genes within Figure 1B is also shown. 

To explore the evolutionary history of the MCR complex, the gene phylogeny of the McrA subunit                
was compared with the archaeal genome phylogeny ( Supplementary Figure 9). Traditional           
euryarchaeal methanogens are largely congruent with the branching order of the genome tree             
( Supplementary Figure 9), suggesting that the evolutionary history of the McrA largely follows             
vertical inheritance. However, the monophyletic H 2-dependent methylotroph and Ca.         
Bathyarchaeota/Ca. Syntrophoarchaeum/rG16 clades are highly paraphyletic in the genome tree          
( Supplementary Figure 9). Ca. Bathyarchaeota and Archaeoglobi McrA cluster with different           
homologs of the Ca. Syntrophoarchaeum ( Figure 1A ), a phylogenetic pattern most parsimoniously            
explained by HGT ( Supplementary Figure 9) . The basal phylogenetic position of rG16 and             
divergence to other Ca. Syntrophoarcheum MCR would suggest this event did not occur in recent               
evolutionary history, supported by the lack of a divergent GC or kmer profile surrounding the gene                
context of the rG16’s MCRs 52 ( Supplementary Figure 10 - 11). Given the metabolic similarities              
between the Archaeoglobi and methanogens 26, it has been hypothesised that the last common             
ancestor (LCA) of the Archaeoglobi encoded the MCR complex, which was subsequently lost             
following HGT of the dsrAB gene from the Bacteria 53,54. While it is unclear whether the LCA of the                  
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Archaeoglobi encoded a conventional or divergent MCR complex, three scenarios explain the            
current distribution of dsrAB and the MCR complex in this lineage: i) HGT of dsrAB into the LCA                  
of the Archaeoglobi, followed by loss of this metabolism after acquisition of the divergent MCR               
complex in rG16 ( Supplementary Figure 12A ), ii) HGT of the divergent MCR complex into the               
LCA of the Archaeoglobi, followed by loss of the complex after the acquisition of dsrAB in the                 
Archaeoglobaceae ( Supplementary Figure 12B), or iii) the separate acquisition of the divergent            
MCR complex and dsrAB by rG16 and the Archaeoglobaceae ( Supplementary Figure 12C ).            
Greater genomic representation and comparative genomics of the Archaeoglobi will clarify the            
evolutionary story, particularly if MCR-encoding lineages are found that fall within the            
Archaeoglobaceae. The evolutionary history of the MCR is highly complex, with evidence for both              
vertical inheritance and HGT ( Supplementary Figure 12). It is likely that archaeal lineages             
encoding the divergent MCR complex will continue to be discovered, and with the genomic              
representation they add to public databases, their evolutionary history and metabolic role in the              
hydrothermal subsurface biosphere will become increasingly clear. 
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Methods 
Metagenome generation, assembly and binning 

Two metagenomes from crustal fluids of the JdFR flank were generated as described previously31.              
One sample (SRR3723048) that yielded the novel Archaeoglobi genome rG16 was selected for             
reassembly using metaSPAdes v3.9.055 with default settings, using raw reads as input. Raw reads              
were mapped to the resulting assembly using BWA-MEM 56 v0.7.12. Binning was conducted using             
MetaBAT v0.32.457 using the --specific setting. 

Identification of MCR encoding genomes 

Genomes generated by MetaBAT were searched with GraftM v0.11.16 using an McrA-specific            
GraftM package (gpkg). The McrA gene tree was curated with NCBI taxonomy, with the              
Bathyarchaeota and Syntrophoarcaheum clade labeled as “divergent”. An evalue of 1e-50 was used             
to filter for full-length McrA genes. 

MAG quality control 

rG16 was analysed using RefineM58 v0.0.23 to identify contigs with divergent tetranucleotide            
frequencies and GC content. A single 2,748 bp contig was removed due to divergent a GC,                
tetranucleotide and taxon profile ( Supplementary Note 1). The remaining contigs were scaffolded            
with FinishM v0.0.7 roundup using default parameters (github.com/wwood/finishm). The         
completeness and contamination of the resulting bin was assessed using CheckM v1.0.859 with             
default settings. 

Annotation of rG16 

The rG16 MAG was annotated using EnrichM annotate (github.com/geronimp/enrichM). Briefly,          
EnrichM calls proteins from contigs using Prodigal v2.6.360, and blasts them against UniRef100             
using DIAMOND 61 v0.9.22 to obtain KO annotations. Pfam-A 62 (release 32) and TIGRFAM 63            
(release 15.0) Hidden Markov Models (HMMs) were run on the proteins using hmmer 3.1b64 to               
obtain Pfam and TIGRFAM annotations, respectively. Further manual curation was completed           
using NCBI BLAST and CD-Search65. 

Genome tree 

Using GenomeTreeTK (https://github.com/dparks1134/GenomeTreeTk) v0.0.41, a genome tree of        
Archaea from NCBI’s RefSeq database (release 80) was created using a concatenated alignment of              
122 archaea-specific single marker copy genes. Genomes <50% complete, and with >10%            
contamination as determined using CheckM were removed from the analysis. After alignment to             
HMMs constructed for each of the 122 marker genes, alignments were concatenated and genomes              
with <50% of the alignment were excluded from the analysis. Maximum likelihood trees were              
constructed using FastTree v2.1.9, and non-parametric bootstrapping was completed using          
GenomeTreeTK’s bootstrap function. 
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16S rRNA gene tree 

Sequences classified as Archaeoglobi with a pintail score of 100 and an alignment and sequence               
quality of ≥ 80 were extracted from the SILVA database 66 (version 132) and used as reference                
sequences for a 16S rRNA phylogenetic tree. The partial 16S rRNA sequence from rG16 was added                
to the database, sequences were aligned using ssu-align67 v0.1, and subsequently converted to fasta              
format using the convert from seqmagick v0.6.1 (fhcrc.github.io/seqmagick). Gapped regions in the            
alignment were removed with trimAl v1.2 using the --gappyout flag68. The Maximum likelihood             
tree was constructed using FastTreeMP69 with a generalized time-reversible model and --nt flags,             
bootstrapped with GenomeTreeTK (github.com/dparks1134/GenomeTreeTk), and visualised in       
ARB 70 v6.0.6. 

Gene phylogenies (McrA, McrB, McrG, RuBisCo) 

McrA, McrB, McrG and RuBisCo sequences were derived from the genomes used in the genome               
tree. Proteins from all genomes were called using Prodigal v2.6.3, and searched using hmmer v3.1b               
with Pfam Hidden Markov models (PF02240.15, MCR_gamma; PF02241.17, MCR_beta;         
PF02249.16, MCR_alpha; PF02745.14, MCR_alpha_N; PF00016.19, RuBisCO_large;      
PF02788.15, RuBisCO_large_N) with the --cut_tc flag to minimize false positives. For McrA and             
RuBisCo, both models needed to hit a sequence for it to be included in the analysis. For each gene,                   
sequences were aligned using MAFFT-GINS-i v7.221 and filtered using trimAl with the --gappyout             
flag. A maximum likelihood tree was constructed using FastTreeMP with default parameters. 

Average amino acid identity 

Average Amino acid identity was generated with CompareM v0.0.22         
(https://github.com/dparks1134/CompareM) using the aai_wf with default parameters. 

Network analysis of MHCs 

Proteins from the Archaea in NCBI’s RefSeq database (release 80) were searched with the              
Cytochrome C Pfam HMM (PF00034). Hits were filtered to have at least one of the Cytochrome C                 
CXXCH domains using a custom script (fastacxxch.count.py,       
github.com/geronimp/HandyScripts/blob/master/99_random/fastacxxch.count.py). Closest matches   
for all resulting proteins were identified using DIAMOND with an evalue cutoff of 1e-20. The               
result was visualised in Cytoscape v3.2.0, removing clusters without a rG16 homolog. 

KO analysis 

Proteins from the genomes were searched using DIAMOND blastp against UniRef100 with an             
evalue cutoff of 1e-05. For each protein, the KO annotations were derived from the top hit. The                 
presence/absence of each KO in each genome was used as input to a Principal Component Analysis                
(PCA) using the prcomp function in R. 

Sliding window GC and tetranucleotide frequencies 

A custom script (https://github.com/geronimp/window_sequence) was written to fragment the rG16          
contigs into short sequences, in a sliding window. For each fragment, the percent GC and 4mer                
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frequency was calculated using seqstat in the biosquid package v1.9g          
(packages.debian.org/sid/biosquid) and Jellyfish71 v2.2.6. 

Data visualisation 

Figures were generated in R72 v3.0.1 using ggplot73 v1.0.0 and refined using Inkscape v0.91              
(inkscape.org/en). 
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