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Signaling pathways as linear transmitters
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Division of Biology and Biological Engineering, California Institute of Technology,
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Abstract One challenge in biology is to make sense of the complexity of biological networks. A

good system to approach this is signaling pathways, whose well-characterized molecular details

allow us to relate the internal processes of each pathway to their input-output behavior. In this

study, we analyzed mathematical models of three metazoan signaling pathways: the canonical Wnt,

MAPK/ERK, and Tgfb pathways. We find an unexpected convergence: the three pathways behave

in some physiological contexts as linear signal transmitters. Testing the results experimentally, we

present direct measurements of linear input-output behavior in the Wnt and ERK pathways.

Analytics from each model further reveal that linearity arises through different means in each

pathway, which we tested experimentally in the Wnt and ERK pathways. Linearity is a desired

property in engineering where it facilitates fidelity and superposition in signal transmission. Our

findings illustrate how cells tune different complex networks to converge on the same behavior.

DOI: https://doi.org/10.7554/eLife.33617.001

Introduction
Cells must continually sense, interpret, and respond to their environment. This is orchestrated by sig-

naling pathways: networks of multiple proteins that transmit signals and initiate cellular response.

Signaling pathways are critical to animal development and physiology, and yet there are fewer than

20 classes of metazoan signaling pathways (Gerhart, 1999). These signaling pathways evolved prior

to the Cambrian and remain highly conserved across animal phyla (Gerhart, 1999; Pires-

daSilva and Sommer, 2003). Each signaling pathway, therefore, governs a wide range of cellular

events, both within and across organisms.

Insights into the versatility of signaling pathways may be gleaned from pathway architectures.

Indeed, distinct architectural features define each pathway. Studies over the past several decades

have revealed distinct signaling capabilities that arise from pathway architecture, for example, all-or-

none response in the MAPK/ERK pathway (Huang and Ferrell, 1996; Ferrell and Machleder, 1998),

oscillations in the NFkB pathway (Hoffmann et al., 2002), or asymmetrical cell signaling in the

Notch/Delta pathway (Sprinzak et al., 2010). Alternatively, analysis of pathway architectures may

also reveal shared signaling capabilities that emerge from the distinct architectures, pointing to a

fundamental property that pathways have converged upon despite their separate evolutionary tra-

jectories. In this study, we sought to identify shared properties between conserved signaling

pathways.

To this end, we examined three signaling pathways, the canonical Wnt, ERK and Tgfb pathways.

These pathways are activated by an extracellular ligand binding to a membrane receptor

(Figure 1A). The ligand-receptor activation initiates a series of biochemical reactions within the cell,

culminating in a buildup of transcriptional regulator, which regulates transcription of broad gene tar-

gets. Since the ligand-receptor module is relatively plastic across organisms (e.g. flies have one EGF

receptor whereas humans have four [Citri et al., 2003]), we focused on the conserved core pathway

(Figure 1A). We define the input to the core pathway as the ligand-receptor activation, and the out-

put as the level of transcriptional regulator.
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The Wnt, ERK, and Tgfb pathways transmit input using different core transmission architecture

(Figure 1B–D). In the Wnt pathway, signal transmission is characterized by a futile cycle of synthesis

and rapid degradation (Kimelman and Xu, 2006; Saito-Diaz et al., 2013; Hoppler and Moon,

2014). We use the term futile cycle to highlight that b-catenin is continually synthesized only to be

quickly targeted for degradation and kept at low concentration, as opposed to, for instance, being

synthesized only as needed. Ligand-receptor input diminishes the degradation arm of this cycle,

leading to accumulation of b-catenin output (Kimelman and Xu, 2006; Stamos and Weis, 2013;

Nusse and Clevers, 2017). In the ERK pathway, signal transmission is characterized by a cascade of

phosphorylation events coupled to feedbacks, leading to an increase in phosphorylated ERK output

(Kolch, 2005; Yoon and Seger, 2006; Avraham and Yarden, 2011; Lake et al., 2016). Finally, sig-

nal transmission in the Tgfb pathway is characterized by continual nucleocytoplasmic protein shut-

tling (Inman et al., 2002; Nicolás et al., 2004; Xu and Massagué, 2004; Schmierer and Hill, 2005;

Massagué et al., 2005). Ligand-receptor input effectively increases the rate of nuclear import, lead-

ing to an increase in output, the nuclear Smad complex (Schmierer et al., 2008).

Importantly for our approach, the architectures of the three pathways are captured by mathemati-

cal models that have been refined by years of experiments. Although by no means complete, the

mathematical models have track records of success in predicting systems-level behaviors across mul-

tiple biological systems. For instance, the Wnt model (Lee et al., 2003) captures the dynamics of

destruction complex well enough as to enable prediction of robustness in fold-change response

(Goentoro and Kirschner, 2009) and the differential roles of the two scaffolds in the pathway

(Lee et al., 2003); the ERK model (Huang and Ferrell, 1996; Ferrell and Bhatt, 1997;

Schoeberl et al., 2002; Sturm et al., 2010) captures the ultrasensitivity in the phosphorylation cas-

cade (Huang and Ferrell, 1996); and the Tgfb model (Schmierer et al., 2008) reveals the roles of

Figure 1. The Wnt, ERK, and Tgfb pathways transmit input using different core transmission architecture. (A)

Signaling pathways transmit inputs from ligand-receptor interaction to a change in output, the level of

transcriptional regulator (white circle). (B-D) The core pathway for each metazoan signaling pathway is defined by

distinct architectural features. In the Wnt pathway (B), the output is regulated by a futile cycle of continual

synthesis and rapid degradation. In the ERK pathway (C), the output is regulated by a kinase cascade coupled to

negative feedback. In the Tgfb pathway (D), the output is regulated through continual nucleocytoplasmic shuttling.

DOI: https://doi.org/10.7554/eLife.33617.002
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nucleocytoplasmic shuttling in transducing the duration and intensity of ligand stimulation

(Schmierer et al., 2008).

We studied these mathematical models to identify what, if any, behaviors converge across path-

ways. The Wnt (Lee et al., 2003), ERK (Sturm et al., 2010), and Tgfb (Schmierer et al., 2008) mod-

els consist of 7, 26, and 10 coupled, nonlinear ODEs, respectively, with 22, 46, and 13 parameters.

Because of their large sizes, they are typically solved numerically to simulate experimental observa-

tions and generate new predictions. However, for the questions posed here, we found that numeri-

cal simulations are not sufficient. Rather, we needed analytics to uncover exactly how the pathway

behaviors depend on the underlying biochemical processes. While we previously derived an analyti-

cal solution to the Wnt pathway (Goentoro and Kirschner, 2009), analytical treatment of the Tgfb

and ERK pathways has not been attempted due to the complex, nonlinear equations involved. To

address this problem, we employed various analytical techniques, including graph theory-based vari-

able elimination and dimensional analysis, to derive analytical or semi-analytical solutions to the

steady-state output of each pathway. Our analysis, along with subsequent experimental verification,

reveals a striking convergence across the Wnt, Tgfb, and ERK pathways: cells operate in the parame-

ter regime where the complex, nonlinear interactions in each pathway give rise to linear signal

transmission.

Results

Mathematical analysis identifies the Wnt, ERK, and Tgfb pathway as
linear transmitters
We began our analysis using established models of the Wnt (Lee et al., 2003), ERK (Sturm et al.,

2010), and Tgfb (Schmierer et al., 2008) pathways. These models capture the salient features of

each pathway, and include biochemical details such as synthesis, degradation, binding, dissociation

and post-translational modifications. In all the models, biochemical parameters have been directly

measured or fitted to kinetic measurements from cell, embryo or extract systems. Numerical simula-

tion of each model has predicted a wide range of pathway behaviors over the years (e.g. Wnt refs.

[Lee et al., 2003; Goentoro and Kirschner, 2009; Hernández et al., 2012]; ERK refs. [Huang and

Ferrell, 1996; Ferrell and Machleder, 1998; Schoeberl et al., 2002; Sturm et al., 2010; Fritsche-

Guenther et al., 2011]; Tgfb refs. [Schmierer et al., 2008; González-Pérez et al., 2011;

Andrieux et al., 2012; Vizán et al., 2013; Wang et al., 2014]). Below, we describe our analysis of

each pathway and the unifying behavior that emerges from all three pathways.

Canonical Wnt pathway
In this pathway, cells sense ligand-receptor input by monitoring b-catenin protein (Kimelman and

Xu, 2006; Stamos and Weis, 2013; Nusse and Clevers, 2017; MacDonald et al., 2009;

Clevers and Nusse, 2012). b-catenin is continually synthesized and rapidly degraded by a large

destruction complex, comprised of multiple proteins including APC, Axin, and GSK3b. The destruc-

tion complex binds and phosphorylates b-catenin, tagging it for degradation by the ubiquitin/pro-

teosome machinery (Kimelman and Xu, 2006; Stamos and Weis, 2013). Wnt ligands, through

binding to Frizzled and LRP receptors, inhibit the destruction complex, leading to accumulation of b-

catenin. b-catenin then regulates the expression of broad target genes (Stamos and Weis, 2013;

Nusse and Clevers, 2017).

The model of the Wnt pathway (Figure 2A) was published in 2003 by a collaboration between

the Kirschner and Heinrich labs (Lee et al., 2003). The Wnt model consists of seven nonlinear differ-

ential equations and 22 parameters. Applying dimensional analysis, we previously derived the analyt-

ical solution to b-catenin concentration at steady-state (Goentoro and Kirschner, 2009):

bcat½ �ss¼K17 �
1�gþ a

u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4g

1�gþ a
u
2

� �

s

� 1

 !

(1)

a¼ k4k6k9v14 �GSK3tot �APCtot

k5k 6K7K8k13k15
(2)
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Figure 2. The Wnt, ERK, and Tgfb pathways are linear signal transmitters. (A-C) Network diagrams of the signaling pathways. The Tgfb diagram is

modified from Schmierer et al. (2008). In the network diagram in A, DC refers to the b-catenin destruction complex. Below the network diagrams: the

parameter groups and linearity equations we analytically derived in this study. Parameter groups and input functions are color-coded to the

corresponding reactions in the network diagrams. Parameters that do not appear in the parameter groups either drop out due to irreversible reaction

Figure 2 continued on next page
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g¼ v12

k13K17

(3)

where the input function u¼ u Wntð Þ is the rate of inhibition of the destruction complex (DC) via

Dishevelled/Dvl, a function of ligand-receptor activation. As illustrated in Figure 2A, Ki’s are equilib-

rium dissociation constants, ki’s are rate constants, and vi’s are synthesis rates. a and g in Equation 1

are dimensionless parameter groups defined in Equations 2 and 3: a characterizes b-catenin degra-

dation by the destruction complex, and g characterizes the extent to which b-catenin binds to APC

independently of the destruction complex.

Equation 1 demonstrates that, in general, b-catenin concentration is a nonlinear function of the

input u. Many parameters of the model were directly measured in Xenopus extracts, and the remain-

ing calculated from measurements in the same system (Appendix 1—table 1). In this study, we

examined how the analytical solution (Equation 1) behaves with these measured parameters. The

measured parameters (Appendix 1—table 1) indicate that a~ 66, g ~ 1:4, and for maximal stimula-

tion, u ~ 6:0. The large a reflects how b-catenin stability is primarily dictated by the destruction com-

plex, that is, a=u � 1 means that non-Axin-dependent degradation is minimal, and a=u � g means

that the positive feedback from sequestration by APC is minimal. Indeed, the rapid action of the

destruction complex in the Wnt pathway is a recurring observation across biological systems

(Kimelman and Xu, 2006; Saito-Diaz et al., 2013; Hoppler and Moon, 2014). With a=u � 1þ g,

Equation 1 simplifies to

bcat½ �ss »K17

g

a
u (4)

with detailed derivations presented in Appendix 1. Therefore, within physiologically relevant param-

eter values, the steady-state b-catenin concentration becomes a linear function of the input u (red

line, Figure 2D). The linear input-output relationship holds for the entire dynamic range of the

model, until the system saturates at maximal stimulation (u~6:0). We confirmed that the numerical

solution of the full model matches the analytical solution in Equation 4 (blue line, Figure 2D), and

Figure 2 continued

steps (such as k10 and k11 in the Wnt pathway) or negligible (as indicated by ellipses). (D-F) Our analysis reveals that in physiologically relevant

parameter values, these pathways generate a linear input-output relationship. The outputs are b-catenin, dpERK, and nuclear Smad complex for the

Wnt, ERK, and Tgfb pathway, respectively. The input functions u describe the effect of ligand-receptor interactions on the core pathway. Specifically:

uðWntÞ is the rate by which Dishevelled/Dvl inhibits the destruction complex upon Wnt ligand activation, where k3 and k�6 are defined in the figure

and [Dvl]a is the concentration Wnt-activated Dishevelled (see Equations A15); u(EGF) is concentration of EGF-activated Ras (Ras-GTP); and u(Tgfb) is

the fraction of Tgfb -activated receptors. Red and blue lines, respectively: analytical and numerical solutions with measured parameters (plotted against

the left y-axis). Grey line: examples of numerical solutions outside measured parameters (plotted against the right y-axis).

DOI: https://doi.org/10.7554/eLife.33617.003

The following source data and figure supplements are available for figure 2:

Source code 1.

DOI: https://doi.org/10.7554/eLife.33617.011

Figure supplement 1. Model simulations for the ERK pathway.

DOI: https://doi.org/10.7554/eLife.33617.004

Figure supplement 2. The predicted linearity extends throughout the dynamic range of the ERK and Tgfb pathways.

DOI: https://doi.org/10.7554/eLife.33617.005

Figure supplement 3. Model simulations for the Tgfb pathway.

DOI: https://doi.org/10.7554/eLife.33617.006

Figure supplement 4. Incorporating into the Wnt model the dual function of GSK3b in phosphorylating b-catenin and LRP5/6.

DOI: https://doi.org/10.7554/eLife.33617.007

Figure supplement 5. The requirements for linear signal transmission in the Wnt, Tgfb, and ERK pathway.

DOI: https://doi.org/10.7554/eLife.33617.008

Figure supplement 6. Linear signal transmission occurs over a range of parameters in the model.

DOI: https://doi.org/10.7554/eLife.33617.009

Figure supplement 7. Numerical simulation of the input-output relationship of the NF-kB pathway.

DOI: https://doi.org/10.7554/eLife.33617.010
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that the response becomes nonlinear when a is decreased, breaking the requirement a=u� 1þg

(grey line, Figure 2D).

Source codes for the numerical simulations in Figure 2D–F (grey and black lines) are available in

Figure 2—source code 1.

ERK pathway
The unexpected linearity that emerges from the model of the Wnt pathway prompted us to wonder

if such simplicity may be found in other pathways. Strikingly, we observed the same linearity in the

ERK and Tgfb pathways. In the ERK pathway (Figure 2B), ligand-receptor input is transmitted via a

cascade of protein phosphorylation (Kolch, 2005; Yoon and Seger, 2006). In particular, ligand-

receptor interactions activate Ras, which leads to membrane recruitment and phosphorylation of

Raf. Phosphorylated Raf subsequently doubly phosphorylates MEK, which in turn doubly phosphory-

lates ERK (Kolch, 2005). Doubly-phosphorylated ERK (dpERK) is a transcriptional regulator that

affects a broad array of genes (Yoon and Seger, 2006). The multi-step topology of the kinase cas-

cade, combined with distributive phosphorylation of each kinase, gives rise to ultrasensitivity – first

demonstrated in the seminal work by the Ferrell lab (Huang and Ferrell, 1996; Ferrell and

Machleder, 1998). In other contexts, the pathway also exhibits a graded response

(Whitehurst et al., 2004; Mackeigan et al., 2005; Cohen-Saidon et al., 2009; Ahmed et al., 2014)

that is thought to arise from the incorporation of negative feedbacks (Lake et al., 2016), one of

which is the inhibition of Raf by dpERK through hyper-phosphorylation of serine residues

(Sturm et al., 2010; Dougherty et al., 2005; Hekman et al., 2005).

The ERK model (Sturm et al., 2010) is the product of more than two decades of refinement

(Huang and Ferrell, 1996; Ferrell and Machleder, 1998; Schoeberl et al., 2002; Sturm et al.,

2010; Fritsche-Guenther et al., 2011). The model, which captures ultrasensitivity and Raf feedback,

consists of 26 differential equations and 46 parameters. To derive an analytical expression for the

ERK pathway, we used a variable elimination technique developed for networks of mass action kinet-

ics (Feliu and Wiuf, 2012). The technique utilizes an algebraic framework, linear elimination of varia-

bles, and mass conservation laws to parameterize steady-state in terms of core variables (described

in Appendix 1). We derived an analytical relationship between the steady-state output of the path-

way dpERK½ �ss and the input to the phosphorylation cascade u:

dpERK½ �ss¼
a

b
� Raftot

½pRaf�ss

� �

� 1� g

a
�u� d

b
(5)

a¼ k3 � ðk8 þ kb7Þ
k7 � ½P1�ss �k8

þ� � � (6)

b¼ k25 � k30þ kb29þ k29 � ½P4�ss
� �

k29 � ½P4�ss �k30
þ � � � (7)

g¼ k3 � ðk8þ kb7Þ �k9 � ½MEK�ss
k7 � ½P1�ss � k8 �k10

þ� � � (8)

d¼ k26þkb25

k26
þ . . . (9)

Detailed derivations of Equation 5 are presented in Appendix 1. The input u¼ u EGFð Þ in Equa-

tion 5 is the concentration of active Ras, which is activated via GTP loading at the ligand-receptor

complex (Kolch, 2005). The parameter groups a, b, g, and d in Equation 5 are defined in Equa-

tions 6–9, where the ellipses indicate additional small terms (expanded in Appendix 1). The relative

magnitudes of a, b, g, and d indicate how the Raf pool partitions during signaling (Equations A21,

A29–A31). The dimensionless group a �u relates to the amount of free, phosphorylated Raf (a, blue-

shaded in Figure 2B), b � dpERK½ �ss describes the amount of Raf inhibited through negative feedback

by dpERK (b, red-shaded in Figure 2B), d relates to the amount of unphosphorylated (d, blue-

shaded in Figure 2B), and g �u relates to the amount of phosphorylated Raf bound to other proteins
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(e.g. to MEK, brown-shaded in Figure 2B). Equation 5 is not a closed solution, as it includes the

term pRaf½ �ss, and there are variables included in parameter groups a, b, g. We confirmed that the

parameter groups remain constant over the course of signaling (within 10%, Figure 2—figure sup-

plement 1), justifying treating the latter variables as parameters.

Next, we considered how the analytical expression (Equation 5) behaves within a specific param-

eter regime observed in experiments. First, experiments in several mammalian cell systems have

shown that feedback is strong, such that a significant fraction of the Raf pool is inhibited (Fritsche-

Guenther et al., 2011; Dougherty et al., 2005). This means that b � dpERK½ �ss ~ aþ gð Þ � uþ d. Sec-

ond, as has been observed in multiple contexts ([Huang and Ferrell, 1996; Ferrell and Machleder,

1998; Schoeberl et al., 2002; Sturm et al., 2010] Appendix 1—table 2), ERK phosphorylation is

ultrasensitive to the amount of pRaf (the ultrasensitive cascade is shaded green in Figure 2B).

Denoting K as the relative change of dpERK½ �ss with respect to pRaf½ �ss, ultrasensitivity entails that

K � 1. In this range, small changes in pRaf level have very large effects on dpERK level (e.g., in

model simulations, a 30% change in pRaf level results in a 900% change in dpERK level, Figure 2—

figure supplement 1). We find analytically that in the parameter regime where b �
dpERK½ �ss ~ aþ gð Þ � uþ d and K � 1, the negative feedback holds the level of pRaf constant

( pRaf½ �ss »Rs, details in Appendix 1). With these two features, strong negative feedback and ultrasen-

sitivity, dpERK becomes a linear function of the input u:

dpERK½ �ss »
a

b
�Raftot

Rs

�u� d

b
(10)

The full derivation is given in Appendix 1, and includes a toy model to illustrate the intuition for

how ultrasensitivity combines with negative feedback to produce linearity. Equation 10 is plotted in

Figure 2E (red line). We confirmed that the numerical solution of the full model matches the analyt-

ics in Equation 10, and becomes nonlinear when the negative feedback is weakened (grey line,

Figure 2E). Although the analytical expression describes up until 50% of ERK activation, we verified

numerically that the predicted linearity extends to 93% of ERK activation (Figure 2—figure supple-

ment 2).

The linearity derived here applies across different dynamic ERK responses. The model we ana-

lyzed gives a sustained dpERK response. In some contexts, however, the ERK pathway shows a pul-

satile response, which has been attributed to receptor desensitization (Schoeberl et al., 2002).

Using a larger model that includes details of receptor desensitization (Schoeberl et al., 2002), we

numerically verified that the linearity holds for pulsatile responses - that is, the peak level of dpERK

increases linearly with the peak level of u (Figure 2—figure supplement 1).

Tgfb pathway
Finally, we examined signal transduction within the Tgfb pathway (Figure 2C). In the Tgfb pathway,

input from ligand-receptor interactions is transmitted by the Smad proteins. There are several clas-

ses of Smad proteins, including the receptor-regulated Smads (R-Smads) and the common Smad

(co-Smad or Smad4) (Massagué et al., 2005). Ligand-activated receptors phosphorylate R-Smads.

Phosphorylated R-Smads bind to the co-Smad, and shuttle into the nucleus and regulate broad tar-

get genes. In the nucleus, the Smad complex dissociates and R-Smads are constitutively de-phos-

phorylated and shuttled out to the cytoplasm, where the cycle of phosphorylation and complex

formation begins again (Schmierer et al., 2008). This dynamic translocation in and out of the

nucleus forms a continual nucleocytoplasmic shuttling of Smads, a known integral feature of the

Tgfb pathway (Inman et al., 2002; Nicolás et al., 2004; Xu and Massagué, 2004; Schmierer and

Hill, 2005).

The Tgfb model (Schmierer et al., 2008) was published in 2008 by the Hill lab, and consists of 10

differential equations and 13 parameters. Even though the model was fitted to R-Smad2 data, the

general architecture of signal transmission is conserved across all five R-Smads (Massagué et al.,

2005; Schmierer et al., 2008). Using the variable elimination technique described before (Feliu and

Wiuf, 2012), we derived an analytical expression of the steady-state concentration of Smad complex

in the nucleus:

S24n½ �ss¼ a � a �u
ðaþgÞ �uþb

S2tot (11)
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a¼ a � ðkon½S4n�ss þ a �kex2Þ
koff

þ � � � (12)

b¼ PPase � kdephos
kphos �Rtot �

kex2

a �kex2 þkin2

þ � � � (13)

g¼ a � ða � kex2 þPPase � kdephosÞ
1

a � kex2
þ 1

CIF �kin2

� �

þ� � � (14)

In Equation 11, the input function u¼ u Tgfbð Þ is the active fraction of Tgfb receptors. The param-

eter a is the nucleocytoplasmic volume ratio. The dimensionless parameter groups a, b, and g in

Equation 11 are defined in Equations 12–14, where the ellipses indicate additional small terms

(expanded in Appendix 1). a, b, and g describe how the Smad2 pool partitions during signaling

(Equations A44, A50, A51): a �u relates to the amount of nuclear Smad complex (a, blue-shaded in

Figure 2C, captures the parameters related to complex formation and translocation to the nucleus),

b relates to the amount of free, unphosphorylated Smad2 (b, red-shaded in Figure 2C, captures the

parameters related to complex dissociation and translocation to the cytoplasm), and g �u loosely

relates to the remaining Smad2 pool (g is brown-shaded in Figure 2C). Phosphorylated Smad2

quickly forms complex (Lagna et al., 1996), so b essentially corresponds to total monomeric Smad2.

Finally, Equation 11 is not a closed solution, since variable S4n½ �ss appears in a. We numerically

tested that it is constant within 2% for non-saturating inputs (Figure 2—figure supplement 3), justi-

fying treating it as a parameter.

As in the Wnt and ERK pathway, the analytical expression for nuclear Smad complex (Equa-

tion 11) allows us to see that the behavior dramatically simplifies with parameters observed in

experiment. We consider the case for non-saturating inputs (u~ 0:1). Protein concentrations in the

Tgfb model were measured in human keratinocyte cells and the rate constants fitted to kinetic data

measured in the cells (Schmierer et al., 2008). With the measured parameters (Appendix 1—table

3), we find that b~ 46, a � u~ 1:5, and g � u~ 0:7. In this parameter regime, once Smad2 is imported to

the nucleus, it is rapidly dephosphorylated and exported. Dynamic Smad2 translocation maintains

monomeric Smad2 in excess to Smad complex (b � aþ gð Þ � u). and forms the continual nucleocyto-

plasmic shuttling that is characteristic of the Tgfb pathway. Even under maximal Tgfb stimulation, it

has been estimated that phosphorylated Smad2 comprises only 36% of the Smad2 pool

(Schmierer and Hill, 2005; Gao et al., 2009). With b � aþ gð Þ � u, the first term in the denominator

of Equation 11 is small, and concentration of nuclear Smad complex becomes a linear function of

input:

S24n½ �ss »a �
a �S2tot

b
�u (15)

Equation 15 is plotted in Figure 2F (red line), and we confirmed that numerical simulations reca-

pitulates Equation 15 (blue line, Figure 2F). Although the analytical solution is valid only for small

values of u, we numerically verified that the predicted linearity holds for the entire range of input u

(from 0 to 1, Figure 2—figure supplement 2). We confirmed that the pathway becomes nonlinear

when the R-Smad phosphatase is inhibited such that b~ aþgð Þ �u (grey line, Figure 2F). While the

model analyzed here gives a sustained Smad response, we verified numerically that the linearity

holds for a larger model that includes receptor desensitization and gives a pulsatile Smad response

(Figure 2—figure supplement 3) (Vizán et al., 2013).

Linearity in the Wnt and ERK pathways was observed experimentally
Analytical expressions for the Wnt, ERK, and Tgfb pathways reveal that the three pathways behave

as linear signal transmitters within parameter regimes measured in cells. To confirm the linearity, we

directly measured the input-output relationships in human cell lines. We focused our efforts on the

Wnt and ERK pathways, since we are limited by available antibodies in the Tgfb pathway.

To analyze the canonical Wnt pathway, we performed quantitative Western blot measurements in

RKO cells, a model system for Wnt signaling. To track the input, we measured the level of
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phosphorylated LRP5/6 receptors (on Ser1490), which increases within minutes of ligand-receptor

complex formation (Tamai et al., 2004). To track the output, we measured the level of b-catenin.

We confirmed that the level of phosphorylated LRP5/6 and b-catenin increase upon Wnt simulation

and reach steady-state within 6 hr (Figure 3—figure supplement 1). Accordingly, all subsequent

measurements were done at 6 hr after Wnt stimulation.

To measure the input-output relationship in the Wnt pathway, we treated RKO cells with varying

doses of purified Wnt3A and measured how b-catenin (output) correlates with phosphorylated LRP

(input). As shown in Figure 3A, the level of b-catenin increases linearly with the level of phosphory-

lated LRP. The linearity persists until saturation of the input, defined as 90% of maximal phosphory-

lated LRP response (blue circles, Figure 3A; Figure 3—figure supplement 2). Notably, at high

doses of Wnt3A, b-catenin continues to show incremental activation, despite saturation in phosphor-

ylation of LRP (grey circles, Figure 3A). This can be explained within some findings that, while Friz-

zled/LRP complex is the primary receptor input in b-catenin activation, b-catenin can be activated

independently of LRP (e.g. Rotherham and El Haj, 2015).

Consistent with the mathematical analysis, we observed in RKO cells that the Wnt pathway

behaves as a linear transmitter throughout the dynamic range of the input. As a control that is

expected from the Michaelis-Menten kinetics that describe ligand binding in the model, we con-

firmed that the linearity does not extend upstream to Wnt dose: both phospho-LRP5/6 and b-cate-

nin show nonlinear response to Wnt dose (Figure 3—figure supplement 2). Therefore, in the Wnt

pathway, a nonlinear ligand-receptor processing step is followed by linear signal transmission

through the core intracellular pathway.

Next, to measure the input-output relationship in the ERK pathway, we performed quantitative

Western blots in H1299 cells, one of the model systems used in the field. Linearity in the ERK path-

way has been suggested in different parts of the pathway, e.g. Knauer et al. (1984)

used experimental and modeling analyses to infer linearity between receptor occupancy and the

downstream cellular proliferation; Oyarzún et al. (2014) suggests linearity in ligand-receptor proc-

essing. Here, we specifically probe linearity in the core transmission step of the pathway. Detecting

the input level, EGF-activated Ras GTP, requires a pull down step that makes it less quantifiable.

Therefore, motivated by Oyarzún et al. (2014), we tested EGF ligand itself as the input. To track

the output, we measured the level of doubly-phosphorylated ERK1/2 (on Thr202/Tyr204), dpERK.

We first characterized the kinetics of response: dpERK peaks 5 min after EGF stimulation (Figure 3—

figure supplement 3), and saturates at 4 ng/ml EGF (grey circles, Figure 3B). Accordingly, all subse-

quent measurements were performed at 5 min after EGF stimulation, and linearity was assessed

over the input range of 0–4 ng/mL EGF (blue circles, Figure 3B).

We observed linearity in the input-output relationship of the ERK pathway, with the level of

dpERK increasing linearly with EGF dose (Figure 3B). The linearity holds throughout the dynamic

range of the system, over at least 12-fold activation of dpERK. As the ERK pathway is sometime

observed to show bimodal response that would be masked by bulk measurements, we confirmed

that the H1299 cells indeed show to graded dpERK response in single-cell level (Figure 3—figure

supplement 4), in agreement with a previous single-cell, live imaging study (Cohen-Saidon et al.,

2009). Therefore, as in the Wnt pathway, signals are transmitted linearly in the ERK pathway

throughout the dynamic range of the cell. Moreover, the linearity in the ERK pathway is more exten-

sive than in the Wnt pathway, as linearity extends all the way upstream, such that the level of dpERK

directly reflects the dose of extracellular EGF ligand.

Linearity in the Wnt and ERK pathways is modulated by perturbation to
parameters
Finally, the analytical expressions we derived in this study not only reveal linear signal transmission,

but also the mechanisms by which it arises. In the model of the Wnt pathway, linear transmission

occurs due to the futile cycle of b-catenin, in the parameter regime where b-catenin is continually

synthesized and rapidly degraded (i.e. a=u � 1þ g). This regime is not infinite: for instance, a ten-

fold decrease in a (e.g. by inhibiting the destruction complex) will break the futile cycle (grey line,

Figure 2D).

To test if the futile cycle is indeed required for linear signal transmission, we inhibited the destruc-

tion complex using CHIR99021, an inhibitor of GSK3b kinase. As before, we measured the input-out-

put relationship, b-catenin vs. phospho-LRP5/6 level, up to 90% of maximal phospho-LRP5/6 input
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Figure 3. Linearity was observed experimentally in the Wnt and ERK pathways. (A) Measurements of the input-output relationship in the Wnt pathway.

In these experiments, RKO cells were stimulated with 0–1280 ng/mL purified Wnt3A ligand, harvested at 6 hr after ligand stimulation, and lysed for

Western blot analyses. Shown on top is a representative Western blot. The data plotted come from seven independent experiments (total N = 66).

Each circle indicate the mean intensities of the phospho-LRP5/6 (x-axis) and b-catenin (y-axis) bands for all Western blot biological replicates, and error

bars indicate the standard error of the mean. For each gel, we normalize the unstimulated sample (i.e. 0 ng/mL of Wnt3A) to one, and scale the

magnitude of the dose response to the average of all gels (described in Materials and methods). The grey line is a least squares regression line, and r

is the Pearson’s coefficient, where r = 1 is a perfect positive linear correlation. (B) Measurements of the input-output relationship in the ERK pathway. In

these experiments, H1299 cells were stimulated with 0–50 ng/mL purified EGF ligand, harvested at 5 min after ligand stimulation, and lysed for Western

blot analyses. Shown on top is a representative Western blot. The data plotted here come from five independent experiments (total N = 30). Each circle

indicates the mean intensities of dpERK1/2 bands across Western blot biological replicates, and the error bars indicate standard error of the mean.

Single replicates are plotted without error bars. All data is plotted relative to unstimulated sample. The grey line is a least squares regression line, and

r2 is the coefficient of correlation where r2 = 1 is a perfect linear correlation. (C) As in (A), except that cells were treated with 1 mM CHIR99021 (detailed

in Materials and methods). The data plotted here come from five independent experiments (total N = 59). The grey line is a least squares regression,

and r is the Pearson’s coefficient, where r = 1 is a perfect positive linear correlation. Shown in the subplot are the same least squares regression line

(solid line), overlaid with the model prediction (dashed line). (D) As in (B), but measurements were performed in H1299 cells expressing mutant Raf

S289/296/301A. The data plotted here come from three independent experiments (total N = 15). The grey line is a fit using the ERK model. We first

fitted the gain of the model to the data (i.e. the y-range), and afterward, varied the strength of dpERK feedback (k25) to find the best fit. We used the

weighted Akaike Information Criterion, w(AICc), to verify that the nonlinear fit from the ERK model outperforms a linear least squares fit (see Materials

and methods). 0 < w(AICc) < 1, with higher w(AICc) indicates better performance by the non-linear fit. In all figures, linearity was additionally assessed

Figure 3 continued on next page
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(blue circles, Figure 3C). As expected, we found that inhibiting the destruction complex (decreasing

a in the model) reduced the range of linearity. The non-treated cells (blue circles, Figure 3A) exhibit

a linear input-output relationship over a 4.4-fold range of LRP input, whereas the CHIR-treated cells

show a linear input-output relationship over only a 2.8-fold range of LRP input (blue circles,

Figure 3C).

Further, our measurements also reveal an unexpected feature of the Wnt pathway. In the model,

inhibiting GSK3b causes b-catenin response to become nonlinear for larger inputs (dashed line,

Figure 3C subplot). In CHIR-treated RKO cells, however, this nonlinearity cannot be reached, as the

maximal amount of phosphorylated LRP (input) is reduced by 50% (grey circles, Figure 3; Figure 3—

figure supplement 2), consistent with the dual-function of GSK3b identified by Zeng et al. (2005);

Zeng et al. (2008) in phosphorylating b-catenin for degradation as well as phosphorylation LRP for

activation. Incorporating this dual-role of GSK3b into the model, we found that this expanded model

can indeed recapitulate the data (Figure 2—figure supplement 4). Therefore, our data indicate two

findings: first, that inhibiting GSK3b reduces the range of linear input-output behavior in the Wnt

pathway, as predicted by our analytics, and second, that GSK3b co-regulation of b-catenin and LRP

unexpectedly constrains the system within the linear regime.

Next, we examine the requirements for linearity in the ERK pathway. Equation 10 reveals that lin-

earity in the ERK pathway depends upon the coupling of strong nonlinearities – ultrasensitivity and

negative feedback. As in the Wnt pathway, this regime is not infinite, for example, decreasing the

strength of feedback b enables the system to exit the ultrasensitive regime, and therefore reduces

linearity (grey line, Figure 2E).

To test this requirement, we examined the effects of weakening the negative feedback. We cre-

ated a stable H1299 cell line expressing Raf S289/296/301A, a Raf-1 mutant in which three serine

residues that are phosphorylated by dpERK are mutated to alanine (Dougherty et al., 2005;

Hekman et al., 2005). Assessing the dynamic range of the input as before (0–4 ng/mL EGF), we

now found that dpERK responds nonlinearly to EGF dose (blue circles, Figure 3D), consistent with

model predictions (grey line, Figure 3D). As a control, we found that overexpressing WT Raf-1 to a

similar level does not perturb linearity (experiments, Figure 3—figure supplement 5; modeling,

Figure 3 continued

using the least absolute deviations, L1-norm (see Methods). L1-norm can range from 0 to 0.5, with L1-norm < 0.1 indicate a linear relationship. Blue vs

grey circles in each figure are explained in the main text. Source files of all Western blot gel images and numerical quantitation data are available

in Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.33617.012

The following source data and figure supplements are available for figure 3:

Source data 1.

DOI: https://doi.org/10.7554/eLife.33617.022

Figure supplement 1. LRP5/6 phosphorylation and b-catenin accumulation are already at steady state at 6 hr after Wnt stimulation.

DOI: https://doi.org/10.7554/eLife.33617.013

Figure supplement 2. The dynamic range of Wnt signaling in RKO cells.

DOI: https://doi.org/10.7554/eLife.33617.014

Figure supplement 3. ERK activation peaks at 5 min after EGF stimulation.

DOI: https://doi.org/10.7554/eLife.33617.015

Figure supplement 4. Single-cell immunofluorescence measurements show graded ERK response to EGF.

DOI: https://doi.org/10.7554/eLife.33617.016

Figure supplement 5. WT Raf-1 overexpression does not affect linear dose-response.

DOI: https://doi.org/10.7554/eLife.33617.017

Figure supplement 6. Expression of Raf S29/289/296/301/642A induces non-linear dose-response.

DOI: https://doi.org/10.7554/eLife.33617.018

Figure supplement 7. Technical variability from Western blot.

DOI: https://doi.org/10.7554/eLife.33617.019

Figure supplement 8. Linearity is not an artifact of loading control normalization.

DOI: https://doi.org/10.7554/eLife.33617.020

Figure supplement 9. Linearity was observed across independent experiments.

DOI: https://doi.org/10.7554/eLife.33617.021
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Figure 2—figure supplement 1). Lastly, mutating all five direct ERK feedback sites on Raf-1 to ala-

nine had a similar effect to Raf S289/296/301A (Figure 3—figure supplement 6). Our results sup-

port the model requirement that strong negative feedback is critical to linear signal transmission in

the ERK pathway.

Discussion
Our study suggests that the canonical Wnt pathway, the ERK pathway, and the Tgfb pathway have

converged upon a shared strategy of linear signal transmission. Our mathematical analysis reveals

that, despite their distinct architectures, the three signaling pathways behave in some physiological

contexts as linear transmitters. Not only is linearity is predicted within measured parameter regimes,

the analysis shows that linearity is a property of the systems that occurs through a considerable

range of parameters (Figure 2—figure supplements 5 and 6). We then showed direct measure-

ments of the linear input-output relationship in the canonical Wnt and ERK pathway.

It would be interesting to further probe the generality of linear signal transmission. Linear behav-

ior requires that single cells responds to ligand in a graded manner. Although there are reports of

oscillatory or bimodality in signaling pathways, there are also multiple observations across biological

contexts of single cells responding to ligand in a graded manner (Appendix 1—table 4). Besides

the systems analyzed here, NF-kB is another signaling pathway that has been modeled rigorously

(Hoffmann et al., 2002; Ashall et al., 2009; Lee et al., 2014). Numerical simulations of a well-estab-

lished NF-kB model (Ashall et al., 2009) over the range of nuclear NF-kB translocation observed in

human epithelial cells (Lee et al., 2014) reveal that the peak of the nuclear NF-kB pulse correlates

linearly with ligand concentration (Figure 2—figure supplement 7). Finally, linearity extends beyond

metazoan signaling pathways. In the yeast pheromone sensing pathway, a homolog of the ERK cas-

cade, transcriptional output correlates linearly with receptor occupancy (Yu et al., 2008). The linear-

ity is mediated by negative feedback by Fus3 acting on Sst2, a feedback that is not conserved in the

mammalian ERK system. These further argue for linear signal transmission as a convergent property

across independently evolving signaling pathways, as well as between conserved pathways that

diverged 1.5 billion years ago.

What are potential advantages to linear signal transmission? Linearity is a feature of many engi-

neering systems, where it serves several practical purposes. In particular, linear signal transmission

enables the superposition of multiple signals, where the output of two simultaneous inputs is equal

to the sum of the outputs for each input separately. Superposition enables multiple, dynamic signals

to be faithfully transmitted and processed independently. Thus, for instance, linearity enables people

to listen to a phone call and interpret speech amongst background noise, and allows a car radio to

tune into one station out of multiple broadcasting on separate carrier frequencies. Notably, linearity

is also a desired goal in synthetic biology, where it is often implemented using negative feedback

(Nevozhay et al., 2009; Del Vecchio et al., 2016). Analogous to engineered circuits, linearity in bio-

logical signaling pathways may facilitate multiplexing inputs into a single pathway (Figure 4A).

A second benefit is that linearity might underlie two phenomena that are increasingly found

across signaling pathways. First, a linear transmitter naturally gives rise to dose-response alignment

(Andrews et al., 2016), where one or more downstream responses of a pathway closely follows the

fraction of occupied receptor (Figure 4B). Dose response alignment appears in many biological sys-

tems and is thought to improve the fidelity of information transfer through signaling pathways

(Oyarzún et al., 2014; Yu et al., 2008; Andrews et al., 2016; Becker et al., 2010). Second, linearity

facilitates fold change detection, where cells sense fold changes in signal, rather than absolute level,

to buffer cellular noise (Goentoro and Kirschner, 2009; Cohen-Saidon et al., 2009; Lee et al.,

2014; Thurley et al., 2014; Frick et al., 2017). In linear input-output systems, the stimulated output

correlates linearly to the basal output; thus, the fold-change in output is robust to variations in cellu-

lar parameters (Figure 4C). Indeed, for the signaling pathways studied here, it has been shown

experimentally that the robust outcome of ligand stimulation is the fold-change in the level of tran-

scriptional regulator (Goentoro and Kirschner, 2009; Cohen-Saidon et al., 2009; Lee et al., 2014;

Frick et al., 2017). Therefore, selecting for linearity may naturally confer the benefits of superposi-

tion, dose-response alignment, and a robust fold-change in output.

Interestingly, unlike synthetic circuits whose linearity is often designed to extend across multiple

orders of magnitude (Nevozhay et al., 2009; Nevozhay et al., 2013), the linearity we observed in
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the three natural pathways extends only one order of magnitude, which is also the dynamic range of

the pathways. However, we know that natural pathways can convey inputs varying across multiple

orders of magnitude, for example, vision. Thus, an advantage of linearity in natural pathways may be

that, in conjunction with fold-change detection at the receptor-level (Olsman and Goentoro, 2016),

the system as a whole can continually adapt to a given input, hence maintaining sensitivity to future

signals.

Why evolve complexity in signaling pathways only to produce seemingly simple behavior? We

offer two thoughts. First, complexity of each pathway might afford tunability, in the sense that

parameters can be tuned to produce different behaviors in different contexts. For instance, the ERK

pathway produces digital, all-or-none response in some contexts (Huang and Ferrell, 1996), and

analog response in others (Whitehurst et al., 2004; Mackeigan et al., 2005). Second - to take an

example from engineering - in order to utilize physical processes that are not naturally linear, engi-

neers must implement complex design features to approximate linearity. Similarly, many biochemical

processes are inherently nonlinear, meaning that linearity does not arise from a reduction in com-

plexity. Indeed, in each pathway we analyzed here, linearity emerges from complex interactions: a

futile cycle in the Wnt pathway, ultrasensitivity coupled to feedback in the ERK pathway, and contin-

ual nucleocytoplasmic shuttling in the Tgfb pathway. Therefore, analogous to engineered systems,

complexity in the biochemical pathways we analyzed here might have evolved in part to produce

linearity.

Materials and methods

Expression constructs
pBABEpuro-CRAF that contains the wt human Raf-1 clone was a gift from Matthew Meyerson

(Addgene plasmid # 51124). Mutant Raf (S289/296/301A) and (S29/289/296/301/642A) were gener-

ated using the Q5 site-directed mutagenesis kit (New England Biolabs, E0554S). The mutant and wt

Raf-1 were then placed downstream of a CMV promoter.

Figure 4. Benefits of linearity. (A) Linearity enables multiplexing of inputs to a signaling pathway. Multiplexed signals can be independently decoded

downstream, and therefore regulate distinct transcriptional events. (B) Illustration for how linearity between the receptor occupancy and downstream

outputs gives rise to dose-response alignment (Andrews et al., 2016). (C) Linearity can produce fold-changes in output that are robust to variation in

cellular parameters. To illustrate this, we added lognormal noise (0.1 CV) to all parameters of the Wnt model, and simulated the level of b-catenin

before and after Wnt stimulation (blue circles). As long as the model operates in the regime of linear signal transmission (i.e. Y ¼ a � u, where Y is

output, u is input, and a is a scalar that is a function of parameters), variation in parameters affects stimulated and basal level of b-catenin equally, and

we get a constant fold change in b-catenin (i.e. red line, where FC ¼ Ystimulated=Ybasal is independent of parameter variations).

DOI: https://doi.org/10.7554/eLife.33617.023
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Cell lines and cell culture
RKO cells (ATCC, CRL-2577) and H1299 cells (ATCC, CRL-5803) were authenticated by STR profiling

and supplied by ATCC. RKO cells were cultured at 37˚C and 5% (vol/vol) CO2 in DMEM (Thermo-

Fisher Scientific; 11995) supplemented with 10% (vol/vol) FBS (Invitrogen; A13622DJ), 100 U/mL

penicillin, 100 mg/mL streptomycin, 0.25 mg/mL amphotericin, and 2 mML-glutamine (Invitrogen).

H1299 cells were cultured at 37C and 5% (vol/vol) CO2 in RPMI (ThermoFisher Scientific; 11875) sup-

plemented with 10% (vol/vol) FBS (Invitrogen; A13622DJ), 100 U/mL penicillin, 100 mg/mL strepto-

mycin, 0.25 mg/mL amphotericin, and 2 mML-glutamine (Invitrogen). Both cell lines tested negative

for mycoplasma contamination.

Transfection of Raf-1 constructs
H1299 cells were transfected with the mutant and wt Raf-1 constructs using Lipofectamine 3000

(ThermoFisher Scientific, L3000). Stable expression was selected using puromycin at a concentration

of 1.5 mg/mL for 2 weeks.

Reagents and antibodies
The following antibodies were purchased from Cell Signaling Technologies: anti-Phospho-p44/42

MAPK (Erk1/2) (Thr202/Tyr204) (E10) Mouse mAb #9106, anti-histone H3 (D1H2) XP Rabbit mAb

#4499, anti-c-Raf Antibody #9422, anti-phospho-LRP6 (Ser1490) Antibody #2568, anti-GAPDH

(D4C6R) Mouse mAb #97166. Anti-Beta-catenin mouse mAb was purchased from BD Transduction

Laboratories (#610153) and anti-GAPDH rabbit antibody was purchased from Abcam (ab9485). The

following fluorescent secondary antibodies were purchased from Fisher Scientific: IRDye 800CW

Goat anti-Mouse IgG (926–32210) and IRDye 680LT Goat anti-Rabbit IgG (926-68021).

Recombinant human Wnt3A was purchased from Fisher Scientific (5036WN), and recombinant

human EGF was purchased from Sigma (E9644). CHIR99021 was purchased from Sigma (SML1046).

Halt Protease and Phosphatase Inhibitor Cocktail (100X) was purchased from Fisher Scientific

(78440).

CHIR99021 treatment
RKO cells were pre-treated with 1 mM CHIR99021 for 24 hr before adding replacement media con-

taining 1 mM CHIR99021 and Wnt3A for 6 hr.

Cell lysis
RKO cells at 70% confluency were scraped in PBS, pelleted, and snap-frozen, and then thawed in

NP-40 lysis buffer containing Halt inhibitor cocktail. Samples were spun down, and the supernatants

were transferred to Laemmli sample buffer and boiled. The samples were then run onto a Bolt 4–

12% Bis-Tris Plus Gel (Thermofisher, NW04120BOX). H1299 cells at 70% confluence were scraped in

NP-40 lysis buffer containing Halt inhibitor cocktail, and further lysed in Laemmli sample buffer. Sam-

ples were spun down, and the supernatants were boiled. The samples were then run onto a Novex

4–20% Tris-Glycine Mini Gel (ThermoFisher, XP04200BOX).

Quantitative Western blots
Proteins were transferred onto nitrocellulose membranes, blocked for one hour at

room temperature (RT) with blocking buffer (Odyssey Blocking Buffer (TBS) (927–50000) or 5% milk

powder in TBS) and stained overnight at 4˚C with primary antibody diluted in blocking buffer. The

membranes were then stained with fluorescent IR secondary antibodies diluted in blocking buffer for

one hour at RT. The fluorescent signal was then imaged using the LiCOR Odyssey Imager and quan-

tified using Odyssey Application software version 3.0. The background-subtracted intensity of the

protein bands were normalized to the loading control, GAPDH and/or Histone H3 (for RKO) or His-

tone H3 (for H1299). These values were then normalized to the reference lanes within each gel, to

allow comparison across gels. For b-catenin and phospho-LRP5/6, variation in the fold-activation

from experiment to experiment could artificially stretch the data along the x- and y-axis, and intro-

duce artifacts into the relationship between phospho-LRP5/6 and b-catenin. Therefore, for Wnt3A

dose responses, the data from each gel was scaled such that the mean of 80 ng/mL and 160 ng/mL

samples was equal to the mean across all gels. Finally, for each antibody used in the study, we did
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careful characterization of the linear range, and verified that our measurement conditions were

within the linear range of the antibody. Technical variability of Western blot quantitation. To con-

firm the effects reported, we verified that quantitation of the same sample loaded in multiple lanes

in a gel gives CV < 10%, and quantitation of the same sample across multiple independent gels

gives CV < 10% (Figure 3—figure supplement 7). As further control, we verified that normalization

with loading control did not produce artificial distortion of the input-output relationship: linearity

was observed without normalization in cases where loading was already uniform (Figure 3—figure

supplement 8).

L-1 and L2-norm analysis
L1-norm analysis was performed as described in Nevozhay et al. (2013). Briefly, the data is fitted

with a cubic Hermite polynomial, and rescaled along the x and y axis to [0, 1]. The L1-norm is com-

puted as the area between the polynomial fit and the diagonal. Linearity is defined in this context as

L1-norm < 0.1. L2-norm analysis for Wnt pathway data was performed using a Pearson’s coefficient,

and L2-norm analysis for ERK pathway data was performed using the coefficient of correlation, r2.

Akaike information criterion
To score the validity of nonlinear model fits for Figure 3D, we used the bias-corrected Akaike Infor-

mation Criterion as described in ref. (Spiess and Neumeyer, 2010), which assesses goodness-of-fit

and model parsimony. The weighted Aikaike w AICð Þ provides a comparison of all considered mod-

els, which in our case is the nonlinear ERK pathway model fit and a linear fit, with the higher score

indicating a more valid model.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.33617.025

1. Variable elimination
We use a variable elimination technique from Feliu and Wiuf (2012) to derive analytic

expressions for the steady-states of the Tgfb and ERK pathways. This technique was

developed to handle the complexity of large chemical reaction networks. By eliminating

variables from the steady-state solution, we can express the steady-state of the system in

terms of a smaller subset of variables. This is a useful tool for analyzing the Tgfb and ERK

models, as the steady-state solution consists of a large set of variables, each with a polynomial

equation describing its steady-state.

The technique works as follows: if we can identify a cut set within the reaction network, we

can reduce the system to a set of first-order homogeneous equations with respect to that cut.

This set of equations can then be solved using linear algebra.

A cut is a set of species such that for every reaction involving those species, there is exactly

one reactant and one product that falls within that cut. For example, let us consider a network

of four interacting species, A, B, C, and D.

Appendix 1—scheme 1. Network of four proteins.

DOI: https://doi.org/10.7554/eLife.33617.026

In this network, there is a cut A;B;Cf g that contains exactly one product and one reactant

for each reaction. We have highlighted this cut in the reaction set:

Appendix 1—scheme 2. Reaction set corresponding to protein network.

DOI: https://doi.org/10.7554/eLife.33617.027

The species D cannot belong in the cut, since it appears twice as a reactant in the first

reaction. The behavior of this network is described by four differential equations,

A½ �
:

¼�k1 A½ � � ½D�2 þk3½C� ¼ 0 (A1)

B½ �
:

¼ k1 A½ � � ½D�2 �k2½B� ¼ 0 (A2)

C½ �
:

¼ k2 B½ �� k3 C½ � ¼ 0 (A3)
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D½ �
:

¼�2k1 A½ � �D2 þk2½B�þ k3½C� ¼ 0 (A4)

which are set to zero at steady-state, and two additional conservation equations:

T1 ¼ A½ �þ B½ � þ C½ � (A5)

T2 ¼ 2 B½ �þ C½ �þ D½ � (A6)

The variable elimination technique allows us to reduce the steady-state system of equations

by four (three equations for the cut set, and one conservation equation). We do this by

expressing each member of the cut set as a dependent variable of D, shown below. We utilize

the fact that the differential equations for A, B, and C are first-order and homogenous with

respect to our cut, and rewrite them in matrix form. We use the subscript ‘ss’ to denote

steady-state:

�k1 D½ �2ss 0 k3

k1 D½ �2ss �k2 0

0 k2 �k3

0

B

@

1

C

A

c A½ �ss
B½ �ss
C½ �ss

0

B

@

1

C

A
¼ 0 (A7)

Feliu and Wiuf (2012) provides a proof of why a cut set guarantees that we can rewrite the

corresponding equations in matrix form. It can be understood intuitively from the fact that a

cut contains exactly one reactant of each reaction, and therefore each rate is first-order with

respect to the cut. Homogeneity also follows from this, since there are no rate terms that do

not include members of the cut.

For a complex model, there is no guarantee that we can derive closed-form analytical

solutions for steady-state. The matrix formulation and variable elimination technique

immediately provides us with a set of solvable variables. The solution to the matrix equation

above is:

A½ �ss¼ c � k2k3 (A8)

B½ �ss¼ c �k1k3D2
ss (A9)

C½ �ss¼ c � k1k2D2
ss (A10)

c is a scaling factor not constrained by the matrix equation. With the use of the conservation

Equation 5, we can calculate c and express the steady state of all three species solely in terms

of the parameters of the network, and D½ �ss. For instance, the solution for C½ �ss is below.

C½ �ss¼
k1k2 D½ �2ss

k2k3 þ k1 D½ �2ss k2 þ k3ð Þ
T1 (A11)

The solutions for A½ �ss, B½ �ss, and C½ �ss derived from the variable elimination technique still

depend on D½ �ss. If we plug in the solutions for the cut species, we can obtain polynomial

equations for the remaining species (in this case D½ �ss), but closed form expressions are not

necessarily obtainable. In all the cases analyzed in this paper, variables that appear in the

analytical solutions for the cut set happen to be approximately constant across a wide range

of input values, as they are present in excess relative to other species.

Finally, each parameter group is physically meaningful. For instance, k2k3, k1k3 D½ �2ss, and
k1k2 D½ �2ss represent the un-normalized fraction of T1 that exists as A, B, and C, respectively.

The normalization factor for these fractions is c=T1, or in this case, simply the sum of all

parameter groups. This provides an intuitive way of analyzing how parameter groups affect

the overall distribution of T1. For instance, increasing the value of k1 will increase the amount

of T1 that exists as B and C, while necessarily decreasing the amount of A (assuming D½ �ss
does not change significantly).
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2. Wnt model
We analyzed a mathematical model of the canonical Wnt pathway built by Lee et al., 2003.

The model is illustrated in Figure 2A, and consists of 7 ODEs and 22 parameters, reproduced

in Appendix 1—table 1.

Solving the Wnt model at steady-state
We previously derived an expression for b-catenin in steady-state (Goentoro and Kirschner,

2009):

bcat½ �ss¼K17

1�gþ a
u Wntð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4g

1�gþ a
u Wntð Þ

� �2

v

u

u

t

� 1

0

B

@

1

C

A
(A12)

where the parameters are dimensionless groups of the binding rate constants and protein

concentrations:

a¼ k4 �k6 � k9 �v14 �GSK3tot �APCtot

k5 �k 6 �K7 �K8 � k13 � k15
(A13)

g¼ v12

k13 �K17

(A14)

u Wntð Þ ¼ 1þ k3 �Dvltot

k 6

� k1 �Wnt

k2 þ k1 �Wnt
(A15)

The input function u ¼ u Wntð Þ corresponds to the rate at which Wnt stimulation inhibits the

destruction complex, normalized by k�6. The value of Wnt ranges from 0 to 1 in the model.

Please refer to Goentoro and Kirschner (2009) for the physical intuition of each parameter

group.

Derivation of linear behavior
We calculate the value of the parameter groups, as well as the value of the input function at

saturating Wnt stimulation:

a¼ 66

g¼ 1:4

u Wnt¼ 1ð Þ ¼ 6:0

Within the parameter regime measured in cells, the analytical expression for b-catenin

dramatically simplifies. We can perform the following first-order Taylor expansion:

ffiffiffiffiffiffiffiffiffiffiffi

1þ2
p

»1þ 1

2
2; 2� 1 (A16)

2¼ 4g

1�gþ a
u

� �2
(A17)

This holds true for a
u
� g. Furthermore, we can make the approximation 1� g þ a

u
» a

u
as

long as a
u
� 1 also holds. We can encompass these two inequalities within a=u � 1þ g. The

equation simplifies to:
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bcat½ �ss » K17

g

a
u (A18)

3. ERK model
We analyzed a mathematical model built by Huang and Ferrell (1996), and revised by

Sturm et al. (2010). The model is illustrated in Figure 2B, and contains 26 ODEs and 46

parameters, reproduced in Appendix 1—table 2.

We changed two parameters from the original model, which are shown in Appendix 1—

table 2. k25 characterizes the negative feedback from dpERK to unphosphorylated Raf, and k27

characterizes the negative feedback from dpERK to phosphorylated Raf. In Sturm et al.

(2010), the values of these parameters were estimated, rather than measured. Experimental

measurements indicate that dpERK mostly interacts with Raf, and that this feedback causes

strong repression of Raf (Dougherty et al., 2005). We therefore increased the value of k25,

and set k27 to zero.

Solving the ERK model at steady-state
In the ERK pathway, doubly phosphorylated ERK is produced by the Raf/MEK/ERK cascade of

phosphorylation,

dpERK½ �ss¼ g pRaf½ �ss
� �

(A19)

There is a negative feedback within the pathway, such that,

pRaf½ �ss¼ f u; dpERK½ �ss
� �

(A20)

where u is the input function, the concentration of RasGTP (a function of ligand dose).

We first focus on deriving the negative feedback function in Equation A20. Using the

variable elimination techniques in section ‘Variable Elimination’, we identify the following cut

set:

Raf; Raf:RasGTP;pRaf;pRaf:P1;MEK:pRaf;pMEK:pRaf;Raf:ppERK;Rafi;Rafi:P4f g

This allows us to express the steady-state concentration of pRaf as a function of

parameters, and the remaining species in the ERK pathway. Specifically, members of this cut

interact directly with, and have dependencies on, the following set:

P1;MEK;pMEK;dpERK;P4f g

With this, we derive the expression for pRaf½ �ss,

pRaf½ �ss¼
a �u

b � ½dpERK�ss þðaþgÞ �uþ d
�Raftot (A21)

where the parameter groups are:

a¼ k3 � ðk8 þkb7Þ
k7 � ½P1�ss � k8

þ � � � (A22)

b¼ k25 � ðk30þkb29þk29 � ½P4�ssÞ
k29 � ½P4�ss � k30

þ� � � (A23)

g¼ k3 � ðk8 þkb7Þ � ðk9 � ½MEK�ssÞ
k7 � ½P1�ss �k8 � k10

þ� � � (A24)
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d¼ k26þ kb25

k26
þ . . . (A25)

The ellipses indicate additional small terms (i.e. <10% of the previous terms, numerically

calculated using the model parameters and u ¼ 4:5e4 molecules). All the calculations for this

paper use these truncated parameter groups. The complete parameter groups are written

below:

a¼ k3 � k8 þ kb7ð Þ � k10 þ kb9ð Þ � k12 þ kb11ð Þ � k26 þ kb25ð Þð Þ=
P1½ �ss�k7 �k8 � k10 � k12 � k26
� �

b¼ k25 � k4 þ kb3ð Þ � k10 þ kb9ð Þ � k12 þ kb11ð Þ � k26 �k30 þ k26 � kb29 þ P4½ �ss�k26
��

�k29 þ P4½ �ss�k29 �k30
��

= P4½ �ss�k4 �k10 � k12 � k26 � k29 �k30
� �

g¼ k3 � k26 þ kb25ð Þ � k4 �k8 � k10 �k12 þ k4 � k8 �k10 �kb11 þ k4 �k8 � k12 � kb9 þ k4ðð
�k10 �k12 �kb7 þ k4 �k8 � kb9 �kb11 þ k4 � k10 �kb7 �kb11 þ k4 �k12 �kb7
�kb9 þ k4 �kb7 �kb9 � kb11 þ MEK½ �ss�k4 �k8 �k9 �k12 þ MEK½ �ss�k4 �k8
�k9 �kb11 þ MEK½ �ss�k4 �k9 � k12 � kb7 þ MEK½ �ss�k4 � k9 �kb7 � kb11
þ P1½ �ss�k4 � k7 �k10 �k12 þ P1½ �ss�k7 �k8 � k10 �k12 þ P1½ �ss�k4 � k7 �k10
�kb11 þ P1½ �ss�k4 � k7 �k12 �kb9 þ P1½ �ss�k7 � k8 �k10 �kb11 þ P1½ �ss�k7
�k8 �k12 � kb9 þ P1½ �ss�k4�k7 �kb9 � kb11 þ P1½ �ss�k7 � k8 �kb9 �kb11
þ k4 � k8 �k10 �k11 � pMEK½ �ss þ k4 � k8 �k11 �kb9 � pMEK½ �ss þ k4 � k10
�k11 �kb7 � pMEK½ �ss þ k4 � k11 �kb7 �kb9 � pMEK½ �ss

��

=
P1½ �ss�k4 � k7 �k8 � k10 � k12 �k26
� �

d¼ k4 þ kb3ð Þ � k10 þ kb9ð Þ � k12 þ kb11ð Þ � k26 þ kb25ð Þð Þ= k4 � k10 � k12 �k26ð Þ

Physical significance of parameter groups
Next, we would like to develop an intuition for the physical significance of these parameter

groups. As discussed in section 1, a � u relates to the amount of free, phosphorylated Raf since

a � u= aþ gð Þ � uþ b dpERK½ �ssþd
� �

is the fraction of Raf present as pRaf. Thus, as a � u increases

relative to g � uþ b dpERK½ �ssþd, the amount of pRaf also increases.

We can define three subpopulations of Raf: Raf inhibited by dpERK, Ri½ �; Raf activated by

RasGTP (input), Ra½ �; and unphosphorylated Raf Rn½ �. Specifically:

Ri½ � ¼ Raf:dpERK½ �þ Rafi½ � þ Raf:P4½ � (A26)

Ra½ � ¼ pRaf½ � þ pRaf:P1½ �þ MEK:pRaf½ � þ pMEK:pRaf½ � þRaf:RasGTP� (A27)

Rn½ � ¼ Raf½ � (A28)

We can calculate the steady-state of each subpopulation as:

Ri½ �ss¼
b � ½dpERK�ss

ðaþgÞ �uþb½dpERK�ss þ d
� �Raftot (A29)

Ra½ �ss¼
g �u

ðaþgÞ �uþb½dpERK�ss þ d
� �Raftotþ½pRaf�ss (A30)

Rn½ �ss¼
d

aþgð Þ �uþb½dpERK�ss þ d
� � �Raftot (A31)

Thus, in the same sense that a � u relates to the amount of free phosphorylated Raf,

b � dpERK½ �ssrelates to the amount of inhibited Raf, g � u relates to the amount of
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phosphorylated Raf bound to other proteins (not free), and d relates to the amount of

unphosphorylated Raf.

Derivation of linear behavior
Now that we have derived the negative feedback function from Equation A20, we examine

Equation A19. The relationship dpERK½ �ss¼ g pRaf½ �ss
� �

is analytically intractable, because of

the complexity of the phosphorylation cascade. But we know from simulations and

experimental observations that it is an ultrasensitive function. From simulations, we find that a

1.3-fold change in pRaf leads to a 9-fold change in dpERK (from 10% to 90% of max,

Figure 2—figure supplement 1B-C).

We therefore approximate pRaf½ �ss by a value Rs within this range, as indicated by the

dashed line in Figure 2—figure supplement 1B. Substituting this into the equation above and

rearranging, we find that dpERK½ �ss becomes a linear function of input:

dpERK½ �ss »
a

b
� Raftot

Rs

� 1� g

a

� �

�u� d

b
(A32)

Lastly, we write the value of two terms in Equation A32 below, numerically calculated using

the parameter values of the model:

a

b
�Raftot

Rs

¼ 140

a

b
1þ g

a

� �

¼ 13

We can neglect the second term, yielding:

dpERK½ �ss »
a1

b
�Raftot

Rs

�u� d

b
(A33)

Derivation for treating pRaf as a constant
Next, we analyze exactly how the level of pRaf changes with the input u. From earlier, we have

that

dpERK½ �ss¼ g pRaf½ �ss
� �

(A34)

pRaftot½ �ss¼ f u; dpERK½ �ss
� �

(A35)

We can now derive a general expression for the relative change of pRaf½ �ss with respect to a

relative change in u. We use the notation dx ¼ d ln x ¼ dx=x.

df̂

dû
¼ qf

qu
�u
f
� 1� qf

q½dpERK�ss
� dg

d½pRaf�ss

� ��1

(A36)

Next, we define the response coefficient K between dpERK½ �ss and pRaf½ �ss:

K¼4 dg

d½pRaf�ss
� ½pRaf�ss½dpRaf�ss

(A37)

From Equation A21, we get the partial derivatives:

qf

qu
¼ f

u
� b½dpERK�ss þ d

b½dpERK�ss þðaþgÞuþ d
(A38)

Nunns and Goentoro. eLife 2018;7:e33617. DOI: https://doi.org/10.7554/eLife.33617 25 of 37

Research article Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.33617


qf

q dpERK½ �ss
¼�f � b

b½dpERK�ssþðaþgÞuþ d
(A39)

Using these two equations, we find that:

df̂

dû
¼ b dpERK½ �ssþd

1þkð Þ �b½dpERK�ss þauþ d
(A40)

When K � 1 and b dpERK½ �ss ~ aþ gð Þ � uþ d, we see that

df̂

dû
»K�1 (A41)

Therefore, pRaf½ �ss is held constant in the region where the kinase cascade is ultrasensitive

and feedback is strong. In this region, it is easy to show that dpERK½ �ss becomes a linear

function of input.

dg�̂g0
dû

»1; g0 ¼ � d

b
(A42)

It is not guaranteed that the system is stable as K increases, but we see from simulations

that our parameter regime provides a stable output.

Toy model of the ERK pathway
Here we utilize a toy model to illustrate how ultrasensitivity and strong negative feedback

combine to generate input-output linearity. In this model, induction of the output species E is

a two-step process:

1. An input u increases the amount of species R, which in turn influences E as E ¼ g Rð Þ. There
is negative feedback from E to R, which in the limit of strong negative feedback is inversely

proportional to E.

2. Next, we specify the function g Rð Þ such that K ¼ K0, where K is the relative change of E with

respect to R. As K0 increases, therefore, the function g Rð Þ becomes more ultrasensitive.

Solving for E, we see that in the limit of K ¼ K0 � 1, E becomes a linear function of u, and

R is held constant at Rs.

While we do not have an explicit function for g Rð Þ for the full ERK model, we include

derivations in section “Derivation for treating pRaf as a constant” that show that these

results hold for any function g Rð Þ in the region where K � 1. We also show that these results

hold outside the limit of strong negative feedback, as long as the feedback-inhibited pool of R

is comparable to the remaining pool.
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Appendix 1—scheme 3. Toy model of the ERK pathway.

DOI: https://doi.org/10.7554/eLife.33617.028

4. Tgfb model
We analyzed a mathematical model built by Schmierer et al. (2008). The model is illustrated

in Figure 2C, and consists of 10 ODEs and 14 parameters, reproduced in Appendix 1—tables

3.

Solving the Tgfb model at steady-state
We use the variable elimination technique described in section ‘Variable Elimination’ to derive

an analytical expression for the steady-state concentration of nuclear Smad complex. First,

based on the measured parameter values, and as confirmed by simulations, the extent of

Smad2-Smad2 binding is limited. We therefore neglect this reaction in subsequent analysis.

We identify the following cut of the Tgfb model:

S2c;pS2c;S24c;S2n;pS2n;S24nf g

which is subject to the conservation equation:

S2c½ � þ pS2c½ �þ S24c½ �ð Þþ 1

a
S2n½ �þ pS2n½ �þ S24n½ �ð Þ ¼ S2tot (A43)

Thus, we can eliminate these variables from the steady-state polynomial solution, with

dependence only on variables outside this cut:

S4c;S4nf g

Using this relationship, we derive an expression for the nuclear Smad complex S24nð ) at

steady-state,
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S24n½ �ss¼
a �a �u

ðaþgÞ �uþb
S2tot (A44)

where the parameter groups are:

a¼ a � ðkon½S4n�ss þ a � kex2Þ
koff

þ� � � (A45)

b¼PPase � kdephos

kphos �Rtot � kex2
a�kex2þkin2

þ � � � (A46)

g¼ a � ða �kex2 þPPase �kdephosÞ
1

a �kex2
þ 1

CIF � kin2

� �

þ � � � (A47)

Here the input function u ¼ u Tgfbð Þ is the fraction of receptors activated by Tgfb ligands.

The ellipses indicate additional small terms (i.e. <10% of the previous terms, as calculated

using the model parameters, with the variables S4c½ �ss and S4n½ �ss calculated for u ¼ 0). All

calculations for the paper use these truncated parameter groups. The complete parameter

groups are written below:

a¼ a � S4n½ �ss�koff þ CIF � S4n½ �ss�kin2 þ CIF �PPase � S4c½ �ss�kdephos þ CIF
��

� S4c½ �ss� S4n½ �ss�kon þ CIF � S4c½ �ss�a � kex2
��

= CIF � S4c½ �ss�koff
� �

b¼ PPase �kdephos � kin2 þ a � kex2ð Þ � koff þ CIF � kin2 þ CIF � S4c½ �ss�kon
� �� �

=
CIF �Rtot � S4c½ �ss�kex2 �kon � kphos
� �

g¼ PPase �kdephos þ a �kex2
� �

� kin2 �koff þ CIF � k2in2 þ a �kex2 � koff þ CIF � S4c½ �ss
��

�kin2 � kon þ CIF � a �kex2 � kin2 þ S4c½ �ss�a �kex2 �kon
��

=
CIF � S4c½ �ss�kex2 � kin2 �kon
� �

Physical significance of parameter groups
Next, we would like to develop an intuition for the physical significance of these parameter

groups. As discussed in section 1, a � u relates to the amount of nuclear Smad complex since

a � u= aþ gð Þ � uþ bð Þ is the fraction of Smad2 present as S24n. Thus, as a � u increases relative

tog � uþ b, the amount of S24n also increases.

By definition, the parameter groups b and g � u capture the remaining input-independent

and input-dependent polynomials, respectively. Nevertheless, we would like to understand the

physical significance of the parameter groups. We can calculate the amount of

unphosphorylated Smad2 as:

S2c½ �ssþ
1

a
S2n½ �ss¼

bþ d �u
bþðaþgÞ �uS2tot (A48)

d¼PPase �kdephos �
koff þCIF �kin2þCIF � ½S4c�ss �kon

CIF � ½S4c�ss � kex2 �kon
(A49)

d captures the dependence of nuclear, unphosphorylated Smad on the input. With the

measured parameters, b � d � u, so we have

S2c½ �ssþ
1

a
S2n½ �ss »

b

bþ aþgð Þ �uS2tot (A50)

This means that b relates to the amount of unphosphorylated Smad2 in the same sense

that a � u relates to nuclear Smad complex. We can also express the remaining Smad2 species

as:
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pS2c½ �ssþ S24c½ �ssþ
1

a
pS2n½ �ss¼

ðg� dÞ �u
ððaþgÞ �uþbÞ �S2tot (A51)

However, as d is of the same order of magnitude as g, the parameter group g only loosely

relates to these remaining species of Smad2.

Derivation of linear behavior
Within the parameter values measured in cells, the behavior of Smad complex dramatically

simplifies. Using the measured values (Appendix 1—table 3), the parameter groups are

a �u¼ 3:1

g �u¼ 1:3

b¼ 46

where we have used a non-saturating input (u ¼ 0:2). Therefore, with measured parameters,

b � aþ gð Þ � u. With this, the denominator in the S4n½ �ss equation simplifies, and the

concentration of Smad complex becomes a linear function of the input:

S24n½ �ss »
a �S2tot

b
�u (A52)

Appendix 1—table 1. Parameters, variables, and equations of the Wnt model.

Parameter Label Value

Activation rate of Disheveled/Dvl by Wnt k1 0:182 min�1

Inactivation rate of Dvl k2 1:82 � 10�2 min�1

Dissociation of destruction complex (DC) by active Dvl k3 5:00 � 10�2 nM�1 min�1

Phosphorylation of DC k4 0:267 min�1

Dephosphorylation of DC k5 0:133 min�1

Forward rate for DC binding k6 9:09 � 10�2 nM�1 min�1

Reverse rate for DC binding k�6 0:909 min�1

Dissociation constant for APC:axin binding K7 50 nM

Dissociation constant for b-catenin:DC binding K8 120 nM

Phosphorylation rate of b-catenin k9 206 min�1

Rate of phosphorylated b-catenin release from DC k10 206 min�1

Degradation rate of phosphorylated b-catenin k11 0:417 min�1

Synthesis rate of b-catenin v12 0:423 nM min�1

Degradation rate of b-catenin k13 2:57 � 10�4 min�1

Synthesis rate of axin v14 8:22 � 10�5 nM min�1

Degradation rate of axin k15 0:167 min�1

Dissociation constant for b-catenin:TCF binding K16 30 nM

Dissociation constant for b-catenin:APC binding K17 1200 nM

Total concentration of Disheveled Dvltot 100 nM

Total concentration of adenomatous polyposis coli APCtot 100 nM

Total concentration of T-cell factor TCFtot 15 nM

Total concentration of glycogen synthase kinase 3b GSK3tot 50 nM

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Parameter Label Value

Independent Variable Label

Active Disheveled X2

APC*/axin*/GSK3 (* denotes phosphorylated) X3

APC/axin/GSK3 X4

b-catenin*/APC*/axin*/GSK3 X9

b-catenin* X10

b-catenin X11 bcatð Þ
axin X12

Dependent Variable Label

Inactive Disheveled X1

GSK3 X5

APC/axin X6

APC X7

b-catenin/APC*/axin*/GSK3 X8

TCF X13

b-catenin/TCF X14

b-catenin/APC X15

Differential Equations

_X2½ � ¼ k1 �Wnt � ðDvltot � ½X2�Þ � k2 � ½X2�

1þ X11½ �
K8

� �

� _½X3� þ ½X3 �
K8

� _½X11� ¼ k4 � ½X4� � k5 � ½X3� � k9 �½X3 ��½X11�
K8

þ k10 � ½X9�

_X4½ � ¼ � k3 � ½X2� þ k4 þ k�6ð Þ � ½X4� þ k5 � ½X3� þ k6 �GSK3tot � K17 �½X12 ��APCtot

K7�ðK17þ½X11 �Þ

_X9½ � ¼ k9 �½X3 ��½X11 �
K8

� k10 � ½X9�

_X10½ � ¼ k10 � ½X9� � k11 � ½X10�

1þ X3½ �
K8

þ K16�TCFtot

ðK16þ½X11 �Þ2
þ K17 �APCtot

ðK17þ½X11 �Þ2
� �

� _½X11� þ ½X11 �
K8

� _½X3� ¼ v12 � k9 �½X3�
K8

þ k13

� �

� ½X11�

1þ K17�APCtot

K7�ðK17þ½X11 �Þ

� �

� _½X12� � K17 �½X12 ��APCtot

K7 �ðK17þ½X11 �Þ2
� _½X11�

¼ k3 � ½X2� � ½X4� � k6 �GSKtot � K17 �½X12 �APCtot �
K7 �ðK17þ½X11 �Þ þ k�6 � ½X4� þ v14

�k15 � ½X12�

Equations for fast equilibrium reactions

X1½ � ¼ Dvltot � X2½ �
X5½ � ¼ GSK3tot

X6½ � ¼ K17 �½X12 �APCtot �
K7 �ðK17þ½X11 �Þ

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Parameter Label Value

X7½ � ¼ K17 �APCtot

K17 �ðK17þ½X11 �Þ

X8½ � ¼ ½X3 ��½X11 �
K8

X13½ � ¼ K16 �TCFtot

K16þ½X11 �

X14½ � ¼ ½X11 ��TCFtot

K16þ½X11 �

X15½ � ¼ X11½ ��APCtot

K17þ X11½ �

DOI: https://doi.org/10.7554/eLife.33617.029

Appendix 1—table 2. Parameters, variables, and equations of the ERK model. Values

highlighted in yellow have been changed from the original model (explained in section ‘ERK

Model’).

Parameter Label Value

Forward rate for Raf:RasGTP binding k3 1:67 � 10�6 molecule�1s�1

Reverse rate for Raf:RasGTP binding kb3 5:3 � 10�3 s�1

Phosphorylation rate for Raf by RasGTP k4 1 s�1

Forward rate of pRaf:P1 binding k7 1:18 � 10�4 molecule�1s�1

Reverse rate of pRaf:P1 binding kb7 0:2 s�1

Dephosphorylation rate of pRaf by P1 k8 1 s�1

Forward rate of MEK:pRaf binding k9 1:95 � 10�5 molecule�1s�1

Reverse rate of MEK:pRaf binding kb9 3:3 � 10�2 s�1

Phosphorylation rate of MEK by pRaf k10 3:5 s�1

Forward rate of pMEK:pRaf binding k11 1:95 � 10�5 molecule�1s�1

Reverse rate of pMEK:pRaf binding kb11 3:3 � 10�2 s�1

Phosphorylation rate of pMEK by pRaf k12 2:9 s�1

Forward rate of dpMEK:P2 binding k13 2:38 � 10�5 molecule�1s�1

Reverse rate of dpMEK:P2 binding kb13 0:8 s�1

Dephosphorylation rate of dpMEK by P2 k14 5:8 � 10�2 s�1

Forward rate of pMEK:P2 binding k15 4:5 � 10�7 molecule�1s�1

Reverse rate of pMEK:P2 binding kb15 0:5 s�1

Dephosphorylation rate of pMEK by P2 k16 5:8 � 10�2 s�1

Forward rate of ERK:dpMEK binding k17 8:9 � 10�5 molecule�1s�1

Reverse rate of ERK:dpMEK binding kb17 1:83 � 10�2 s�1

Phosphorylation rate of ERK by dpMEK k18 16 s�1

Forward rate of pERK:dpMEK binding k19 8:9 � 10�5 molecule�1s�1

Reverse rate of pERK:dpMEK binding kb19 1:83 � 10�2 s�1

Phosphorylation rate of pERK by dpMEK k20 5:7 s�1

Forward rate of pERK:P3 binding k21 8:33 � 10�6 molecule�1s�1

Reverse rate of pERK:P3 binding kb21 0:5 s�1

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Parameter Label Value

Dephosphorylation rate of pERK by P3 k22 0:246 s�1

Forward rate of dpERK:P3 binding k23 2:35 � 10�5 molecule�1s�1

Reverse rate of dpERK:P3 binding kb23 0:6 s�1

Dephosphorylation rate of dpERK by P3 k24 0:246 s�1

Forward rate of Raf:dpERK binding k25 1 � 10�6 molecule�1s�1

Reverse rate of Raf:dpERK binding kb25 1 s�1

Hyper-phosphorylation rate of Raf by ppERK k26 10 s�1

Forward rate of pRaf:dpERK binding k27 0 molecule�1s�1

Reverse rate of pRaf:dpERK binding kb27 1 s�1

Hyper-phosphorylation rate of phosphorylated Raf by dpERK k28 10 s�1

Forward rate of Rafi:P4 binding k29 5 � 10�5 molecule�1s�1

Reverse rate of Rafi:P4 binding kb29 0:2 s�1

Dephosphorylation rate of Rafi by P4 k30 0:5 s�1

Total Raf Raftot 4 � 104 molecules

Total MEK MEKtot 2:1 � 107 molecules

Total ERK ERKtot 2:21 � 107 molecules

Total phosphatase P1 P1tot 4 � 104 molecules

Total phosphatase P2 P2tot 4 � 105 molecules

Total phosphatase P3 P3tot 1 � 107 molecules

Total phosphatase P4 P4tot 4 � 104 molecules

Variable Label

Unphosphorylated Raf Raf

Raf bound to RasGTP Raf:RasGTP

Phosphorylated Raf pRaf

Phosphatase for phosphorylated Raf P1

Phosphorylated Raf bound to its phosphatase pRaf:P1

Unphosphorylated MEK MEK

MEK bound to its kinase MEK:pRaf

Phosphorylated MEK pMEK

Phosphorylated MEK bound to its kinase pMEK:pRaf

Doubly-phosphorylated MEK dpMEK

MEK phosphatase P2

Doubly-phosphorylated MEK bound to its phosphatase dpMEK:P2

Phosphorylated MEK bound to its phosphatase pMEK:P2

Unphosphorylated ERK ERK

ERK bound to its kinase ERK:dpMEK

Phosphorylated ERK pERK

Phosphorylated ERK bound to its kinase pERK:dpMEK

Doubly-phosphorylated ERK dpERK

ERK phosphatase P3

Phosphorylated ERK bound to its phosphatase pERK:P3

Doubly-phosphorylated ERK bound to its phosphatase dpERK:P3

Raf bound to doubly-phosphorylated ERK Raf:dpERK

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Parameter Label Value

Hyper-phosphorylated, ‘inactive’ Raf Rafi

Phosphorylated Raf bound to doubly-phosphorylated ERK pRaf:dpERK

Phosphatase for hyper-phosphorylated Raf P4

Hyper-phosphorylated Raf bound to its phosphatase Rafi:P4

Differential Equations

_Raf½ � ¼ �k3 � ½Raf� � uðEGFÞ þ kb3 � ½Raf : RasGTP� þ k8 � ½pRaf : P1� � k25 � ½Raf�
�½dpERK� þ kb25 � ½Raf : dpERK� þ k30 � ½Rafi : P4�

_Raf:RasGPT½ � ¼ k3 � ½Raf� � uðEGFÞ � ðkb3 þ k4Þ � ½Raf : RasGTP�

_pRaf½ � ¼ k4 � ½Raf : RasGTP� � k7 � ½pRaf� � ½P1� þ kb7 � ½pRaf : P1� � k9 � ½MEK� � ½pRaf�
þðkb9 þ k10Þ � ½MEK : pRaf� � k11 � ½pMEK� � ½pRaf� þ ðkb11 þ k12Þ
�½pMEK : pRaf� � k27 � ½pRaf� � ½dpERK� þ kb27 � ½pRaf : dpERK�

_P1½ � ¼ �k7 � ½pRaf� � ½P1� þ ðkb7 þ k8Þ � ½pRaf : P1�

_pRaf:P1½ � ¼ k7 � ½pRaf� � ½P1� � ðkb7 þ k8Þ � ½pRaf : P1�

_MEK½ � ¼ �k9 � ½MEK� � ½pRaf� þ kb9 � ½MEK : pRaf� þ k16 � ½pMEK : P2�

_MEK:pRaf½ � ¼ k9 � ½MEK� � ½pRaf� � ðkb9 þ k10Þ � ½MEK : pRaf�

_pMEK½ � ¼ k10 � ½MEK : pRaf� � k11 � ½pMEK� � ½pRaf� þ kb11 � ½pMEK : pRaf� þ k14
�½dpMEK : P2� � k15 � ½pMEK� � ½P2� þ kb15 � ½pMEK : P2�

_pMEK:pRaf½ � ¼ k11 � ½pMEK� � ½pRaf� � ðkb11 þ k12Þ � ½pMEK : pRaf�

_dpMEK½ � ¼ k12 � ½pMEK : pRaf� � k13 � ½dpMEK� � ½P2� þ kb13 � ½dpMEK : P2� � k17 � ½ERK�
�½dpMEK� þ ðkb17 þ k18Þ � ½ERK : dpMEK� � k19 � ½pERK� � ½dpMEK�
þðkb19 þ k20Þ � ½pERK : dpMEK�

_P2½ � ¼ �k13 � ½dpMEK� � ½P2� þ ðkb13 þ k14Þ � ½dpMEK : P2� � k15 � ½pMEK� � ½P2�
þðkb15 þ k16Þ � ½pMEK : P2�

_dpMEK:P2½ � ¼ k13 � ½dpMEK� � ½P2� � ðkb13 þ k14Þ � ½dpMEK : P2�

_pMEK:P2½ � ¼ k15 � ½pMEK� � ½P2� � ðkb15 þ k16Þ � ½pMEK : P2�

_ERK½ � ¼ �k17 � ½ERK� � ½dpMEK� þ kb17 � ½ERK : dpMEK� þ k22 � ½pERK : P3�

_ERK:dpMEK½ � ¼ k17 � ½ERK� � ½dpMEK� � ðkb17 þ k18Þ � ½ERK : dpMEK�

_pERK½ � ¼ k18 � ½ERK : dpMEK� � k19 � ½pERK� � ½dpMEK� þ kb19 � ½pERK : dpMEK� � k21
�½pERK� � ½P3� þ kb21 � ½pERK : P3� þ k24 � ½dpERK : P3�

_pERK:dpMEK½ � ¼ k19 � ½pERK� � ½dpMEK� � ðkb19 þ k20Þ � ½pERK : dpMEK�
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Appendix 1—table 2 continued

Parameter Label Value
_dpERK½ � ¼ k20 � ½pERK : dpMEK� � k23 � ½dpERK� � ½P3� þ kb23 � ½dpERK : P3� � k25 � ½Raf�

�½dpERK� þ ðkb25 þ k26Þ � ½Raf : dpERK� � k27 � ½pRaf� � ½dpERK�
þðkb27 þ k28Þ � ½pRaf : dpERK�

_P3½ � ¼ �k21 � ½pERK� � ½P3� þ ðkb21 þ k22Þ � ½pERK : P3� � k23 � ½dpERK� � ½P3�
þðkb23 þ k24Þ � ½dpERK : P3�

_pERK:P3½ � ¼ k21½pERK� � ½P3� � ðkb21 þ k22Þ � ½pERK : P3�

_dpERK:P3½ � ¼ k23 � ½dpERK� � ½P3� � ðkb23 þ k24Þ � ½dpERK : P3�

_Raf:dpERK½ � ¼ k25 � ½Raf� � ½dpERK� � ðkb25 þ k26Þ � ½Raf : dpERK�

_Rafi½ � ¼ k26 � ½Raf : dpERK� þ k28 � ½pRaf : dpERK� � k29 � ½Rafi� � ½P4� þ kb29 � ½Rafi : P4�

_pRaf:dpERK½ � ¼ k27 � ½pRaf� � ½dpERK� � ðkb27 þ k28Þ � ½pRaf : dpERK�

_P4½ � ¼ �k29 � ½Rafi� � ½P4� þ ðkb29 þ k30Þ � ½Rafi : P4�

_Rafi:P4½ � ¼ k29 � ½Rafi� � ½P4� � ðkb29 þ k30Þ � ½Rafi : P4�

Algebraic Equations for conserved species

Raftot ¼ Raf½ � þ Raf:RasGTP½ � þ pRaf½ � þ pRaf:P1½ � þ MEK:pRaf½ � þ pMEK:pRaf½ � þ Raf:dpERK½ � þ
Rafi½ � þ pRaf:dpERK½ � þ Rafi:P4½ �
MEKtot ¼ MEK½ � þ MEK:pRaf½ � þ pMEK½ � þ pMEK:pRaf½ � þ dpMEK½ � þ dpMEK:P2½ � þ pMEK:P2½ � þ
ERK:dpMEK½ � þ pERK:dpMEK½ �
ERKtot ¼ ERK½ � þ ERK:dpMEK½ � þ pERK½ � þ pERK:dpMEK½ � þ dpERK½ � þ pERK:P3½ � þ dpERK:P3½ � þ
Raf:dpERK½ � þ pRaf:dpERK½ �
P1tot ¼ P1½ � þ pRaf:P1½ �
P2tot ¼ P2½ � þ dpMEK:P2½ � þ pMEK:P2½ �
P3tot ¼ P3½ � þ pERK:P3½ � þ dpERK:P3½ �
P4tot ¼ P4½ � þ Rafi:P4½ �

DOI: https://doi.org/10.7554/eLife.33617.030
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Appendix 1—table 3. Parameters, variables and equations of the Tgfb model.

Parameter Label Value

Phosphorylation rate of Smad2 kphos 4:0 � 10�4 nM�1s�1

Dephosphorylation rate of Smad2 kdephos 6:6 � 10�3 nM�1s�1

Nuclear import rate of Smad2 kin2 2:6 � 10�3 s�1

Nuclear export rate of Smad2 kex2 5:6 � 10�3 s�1

Nuclear import rate of Smad4 kin4 2:6 � 10�3 s�1

Nuclear export rate of Smad4 kex4 2:6 � 10�3 s�1

Smad complex import factor CIF 5:7

Forward rate for Smad complex binding kon 1:8 � 10�3 nM�1s�1

Reverse rate for Smad complex binding koff 1:6 � 10�2 s�1

Cytoplasmic to nuclear volume ratio a 2:3

Total Smad2 (initialized to cytoplasm) S2tot 73:0 nM

Total Smad4 (initialized to cytoplasm) S4tot 73:0 nM

Total phosphatase in nucleus PPase 1 nM

Total Receptors Rtot 1 nM

Variable Label

Cytoplasmic Smad2 S2c

Cytoplasmic phosphorylated Smad2 pS2c

Cytoplasmic Smad4 S4c

Cytoplasmic Smad2:Smad4 complex S24c

Cytoplasmic Smad2:Smad2 complex S22c

Nuclear Smad2 S2n

Nuclear phosphorylated Smad2 pS2n

Nuclear Smad4 S4n

Nuclear Smad2:Smad4 complex S24n

Nuclear Smad2:Smad2 complex S22n

Differential Equations

_S2c½ � ¼ �kphos � uðTgfbÞ � ½S2c� � kin2 � ½S2c� þ kex2 � ½S2n�

_pS2c½ � ¼ kphos � uðTfgbÞ � ½S2c� � kin2 � ½pS2c� � kon � ½pS2c� � ð½S4c� þ 2 � ½pS2c�Þ þ koff
�ð½S24c� þ 2 � ½S22c�Þ þ kex2 � ½pS2n�

_S4c½ � ¼ �kin4 � ½S4c� � kon � ½pS2c� � ½S4c� þ koff � ½S24c� þ kex4 � ½S4n�

_S24c½ � ¼ kon½pS2c� � ½S4c� � koff � ½S24c� � kin2 � CIF � ½S24c�

_S22c½ � ¼ kon � ½pS2c�2� koff � ½S22c� � kin2 � CIF � ½S22c�

_S2n½ � ¼ a � kin2 � ½S2c� � a � kex2 � ½S2n� þ kdephos � PPase � ½pS2n�

_pS2n½ � ¼ a � kin2 � ½pS2c� � a � kex2 � ½pS2n� � kdephos � PPase � ½pS2n� � kon � ½pS2n�
�ð½S4n� þ 2 � ½pS2n�Þ þ koff � ð½S24n� þ 2 � ½S22n�Þ
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Appendix 1—table 3 continued

Parameter Label Value

_S4n½ � ¼ a � kin4 � ½S4c� � a � kex4 � ½S4n� � kon � ½pS2n� � ½S4n� þ koff � ½S24n�

_S24n½ � ¼ a � kin2 � CIF � ½S24c� þ kon � ½pS2n� � ½S4n� � koff � ½S24n�

_S22n½ � ¼ a � kin2 � CIF � ½S22c� þ kon � ½pS2n�2� koff � ½S22n�

Algebraic Equations for conserved species

S2tot ¼ S2c½ � þ pS2c½ � þ S24c½ � þ 2 � ½S22c� þ ð2 � ½S22n� þ ½S24n� þ ½pS2n� þ ½S2n�Þ

S4tot ¼ S4c½ � þ S24c½ � þ 1

a
S24n½ � þ S4n½ �ð Þ

DOI: https://doi.org/10.7554/eLife.33617.031

Appendix 1—table 4. Examples of biological systems where the Wnt, ERK, and Tgfb

pathways have been shown to produce graded response in single-cell level.

Pathway
Systems where graded
response has been observed References

Live imaging of single cells

Tgfb path-
way

Mouse myoblasts Frick et al., 2017; Warmflash et al. (2012)

Human epidermal keratino-
cytes

Nicolás et al. (2004); Warmflash et al. (2012) ;
Schmierer et al. (2008); Vizán et al. (2013)

Human cervical epithelial cells Nicolás et al. (2004)

Human breast epithelial cells Strasen et al. (2018)

Canonical
Wnt pathway

Human embryonic kidney cells Kafri et al. (2016) (this is the only published live single-
cell imaging study in the Wnt pathway so far)

ERK pathway Mouse fibroblasts Toettcher et al. (2013)

Mouse embryonic fibroblasts Mackeigan et al. (2005)

Human non-small cell lung
carcinoma

Cheong et al., 2011

Human mammary gland cells Selimkhanov et al. (2014); Perrett et al.,
2013Perrett et al., 2013

Human cervical epithelial cells Voliotis et al. (2014); Whitehurst et al. (2004);
Perrett et al., 2013Perrett et al., 2013

Human foreskin fibroblasts Whitehurst et al. (2004)

Immunofluorescence and FACS studies

Tgfb path-
way

Xenopus embryo Schohl and Fagotto (2002)

Mouse testes Itman et al. (2009)

Zebrafish embryo Dubrulle et al. (2015)

Canonical
Wnt pathway

Xenopus embryo Schneider et al. (1996); Fagotto and Gumbiner (1994);
Schohl and Fagotto (2002)

Mouse embyo Aulehla et al., 2008

Planaria Sureda-Gómez et al., 2016

Sea anemone embryo Wikramanayake et al., 2003
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Appendix 1—table 4 continued

Pathway
Systems where graded
response has been observed References

ERK pathway Chick embryo Delfini et al. (2005)

Xenopus embryo Schohl and Fagotto (2002)

Human T lymphocyte cells Lin et al. (2009)

Rat adrenal gland cells Santos et al., 2007

DOI: https://doi.org/10.7554/eLife.33617.032
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