
Layering Assume-Guarantee
Contracts for Hierarchical
System Design
This paper presents a method to algorithmically decompose system-level temporal logic
specifications in CPSs into lower level specifications for individual components, in the
form of assume-guarantee contracts. The automated process ensures that the generated
component specifications are implementable and simpler for further development.

By IOANNIS FILIPPIDIS AND RICHARD M. MURRAY

ABSTRACT | Specifications for complex engineering systems

are typically decomposed into specifications for individual sub-

systems in a manner that ensures they are implementable and

simpler to develop further. We describe a method to algorith-

mically construct component specifications that implement a

given specification when assembled. By eliminating variables

that are irrelevant to realizability of each component, we sim-

plify the specifications and reduce the amount of information

necessary for operation. We parametrize the information flow

between components by introducing parameters that select

whether each variable is visible to a component. The decom-

position algorithm identifies which variables can be hidden

while preserving realizability and ensuring correct composi-

tion, and these are eliminated from component specifications

by quantification and conversion of binary decision diagrams

to formulas. The resulting specifications describe component

viewpoints with full information with respect to the remaining

variables, which is essential for tractable algorithmic synthesis

of implementations. The specifications are written in TLA+,

with liveness properties restricted to an implication of con-

joined recurrence properties, known as GR(1). We define an

operator for forming open systems from closed systems, based

on a variant of the “while-plus” operator. This operator sim-

plifies the writing of specifications that are realizable without

Manuscript received July 5, 2017; revised March 20, 2018; accepted
May 1, 2018. Date of current version September 14, 2018. This work was
supported in part by the TerraSwarm Research Center, one of six centers
supported by the STARnet phase of the Focus Center Research Program (FCRP),
a Semiconductor Research Corporation program sponsored by MARCO and
DARPA. (Corresponding author: Ioannis Filippidis.)

The authors are with the Control and Dynamical Systems Department, California
Institute of Technology, Pasadena, CA 91125 USA (e-mail: ifilippi@caltech.edu;
murray@caltech.edu).

Digital Object Identifier 10.1109/JPROC.2018.2834926

being vacuous. To convert the generated specifications from

binary decision diagrams to readable formulas over integer

variables, we symbolically solve a minimal covering problem.

We show with examples how the method can be applied to

obtain contracts that formalize the hierarchical structure of

system design.

KEYWORDS | Algorithmic game theory; assume-guarantee

contracts; binary decision diagrams; formal languages; open

systems; reactive synthesis; realizability; temporal logic; sym-

bolic algorithms; system specification; TLA+.

I. I N T R O D U C T I O N
A. Motivation

The design and construction of a large system relies on
the ability to divide the problem into smaller ones that

Fig. 1. Anatomy of hierarchical system design in TLA�:

composition is represented by conjunction (∧), hiding of details by

(temporal) existential quantification �∃∃∃∃∃∃ �, and refinement by logical

implication ⇒.

1616 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4704-3334
https://orcid.org/0000-0002-5785-7481

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 2. A component is specified by expressing requirements that

the implementation should fulfill under assumptions about other

parts of the assembled system.

involve parts of the system. Each subproblem may itself
be refined further into smaller problems, as illustrated in
Fig. 1. Typically the subsystems interact with each other,
either physically, via software, or both. This interaction
between modules needs to be constrained, in order to
ensure that the assembled system behaves as intended.
For example, if we consider a component that controls the
manipulator arm of a rover for exploring the geology of
other planets, it depends on a camera for deciding how
to position the arm, and on a power supply, as sketched in
Fig. 2. The maximum manipulator speed that the controller
can safely command is limited by the camera frame rate.
Depending on power supply and type of operation, the
manipulator controller can request a lower frame rate
from the camera, in order to economize on power. During
grasping operations however, the controller requires high
fidelity and frequent frames. Based on the available power
supply, the controller may decide to decline a request
for grasping, due to insufficient power for completing the
operation. Such an issue could arise in rovers that depend
on solar energy, because their power supply is contingent
on environmental conditions.

Systems are built from designs, and designs are created
incrementally. A common direction is to start thinking in
terms of larger pieces, and divide those in smaller ones
that are more detailed, but also more specific and local
in nature [1]. The design activity should be captured
with sufficient accuracy to describe the intended system
operation without ambiguity [2], [3]. A representation
with precise syntax and semantics, or specification, is desir-
able to describe how each component should behave in
the context of other modules. When a specification is
available, we can attempt to prove that a system is safe
to operate and useful. Unsafe designs can have a high
cost, for example in the context of airliners, automotive
subsystems, nuclear power plant controllers, and several
other application areas.

This decomposition involves distributing functionality
among components, and creating interfaces between them
[4], [5]. We are motivated to decompose in order to focus
and isolate. Focus of attention allows for fewer errors.
Isolation makes reasoning easier, and more tractable to
automate [6]. Decomposition also makes possible the use

of off-the-shelf components, and the assignment of tasks
to different subsystem manufacturers. Obtaining conclu-
sions about a system by using facts about its subsystems
comes at an extra cost [7], [8]. But it may be the only
scalable way of approaching the design of a large system
[7, pp. 421–422], [9], [10, p. 168].

A system can be described at different levels of
detail [11], [12, p. 192]. A description that corresponds
closely to available physical elements is directly imple-
mentable [1]. However, writing specifications at this level
of detail is often more difficult than specifying behavior
at a higher level. A specification at the implementation
level can then be derived by hand or using (automated)
synthesis. Synthesis has attracted considerable interest
in the past two decades, and advances both in the-
ory and implementation have been made, as described
in Section II-B [13]–[19]. In this work, we are inter-
ested in automated decomposition of specifications that
yields implementable component specifications. In particu-
lar, we aim at automatically modularizing a design that has
been partially specified by a human. Human input is neces-
sary, in one form or another, because an algorithm cannot
know what the assembled system is intended for, and what
part of the system each component represents. Algorithmic
synthesis can be used to implement the specifications that
result after some iterations of decomposition.

B. Proposed Approach

A component is mathematically represented by a
collection of variables, whose behavior is described by a
temporal logic formula. A component can be studied in
the context of an environment, which is represented by
other variables, in which case the temporal logic formula
describes the desired behavior of the component in the
presence of its environment, for example how the compo-
nent should respond to environmental changes.

In this paper, a contract is a collection of realizable
component specifications that combined imply the
specification we decomposed. We assume synchronous
interaction of components that allows in each step at
most one component to change in a nonunique way,
described using a scheduler that ensures interleaving
changes for other components (see also Remark 14). It is
easier to write a centralized specification, referring to any
variable as needed. But it is simpler to specify internal
details in absence of variables from other components.
We study the problem of eliminating variables during the
decomposition of an overall specification into component
specifications that form an assume-guarantee contract
(a top-down approach [20]). The number of components,
and which variables represent each component are given
as problem input. In order to detect which variables,
from those that represent other components, each
component needs to know about, we use parameters that
prescribe whether each variable is hidden. This can be
regarded as parametrizing the information communicated
between components.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1617

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

We prove that variables selected to be hidden can be
eliminated from the resulting specifications. Thus, infor-
mation is hidden without producing component spec-
ifications that would be computationally expensive or
intractable to implement [21]–[23]. Different interconnec-
tion architectures can be associated to each recurrence
goal, in which case switching between them is controlled
by one component, and can take multiple steps.

Both the property to be decomposed and the
generated component properties are expressed with live-
ness restricted to an implication between conjunctions of
recurrence properties, a fragment called GR(1) [14]. The
polynomial computational complexity of implementing
open-system GR(1) specifications motivates this choice,
discussed more in Section III-C. The fulfillment of liveness
requirements between components is acyclic, in order to
avoid circular dependencies.

A simple example to demonstrate how decomposition
works is the following. Consider a building with secure
doors controlled by some central location. We want to be
able to repeatedly enter and exit the building (overall sys-
tem property), but we do not control the doors. In order for
the building security controller to open a door, we should
both swipe our card near the door we want opened, and
stand in front of a camera. The security controller and
the persons that enter and exit are the two components.
An incorrect decomposition would be to require that if
the doors repeatedly open, then we repeatedly enter and
exit the building. Another incorrect decomposition would
be to assume that swiping our card will lead to the door
eventually opening. We need to assume that if we both
swipe and stand in front of a door, then eventually the door
will be opened (one component specification). The secu-
rity controller is required to eventually respond to such
a request by eventually opening the corresponding door
(the other component specification). The decomposition
approach we propose constructs liveness specifications of
this form that ensure the overall objective, which is to
repeatedly cross through doors.

The second problem that we study is writing the con-
structed specifications in a form that humans can read, so
that they can work with the produced specifications at a
lower level of refinement, for example to specify details
internal to a subsystem before decomposing the subsys-
tem into components. The algorithms that we develop
are symbolic, in that they manipulate binary decision
diagrams (BDDs), which are graph-based data structures
that represent sets of states [24]–[26]. The predicates of
the assume-guarantee component specifications are com-
puted as BDDs first, which are not suitable for reading.
Assuming that shorter formulas are more readable, we for-
mulate as a minimal set covering problem the construc-
tion of minimal formulas in disjunctive normal form of
interval constraints over integer variables. The covering
problem is solved exactly with a symbolic branch and
bound algorithm originally proposed for two-level logic
minimization [27].

In summary, the contributions of this work are a decom-
position algorithm that takes a specification and parti-
tion of variables as input and computes implementable
specifications for the components represented by these
variables, which avoids circular dependence between com-
ponents, a parametric analysis for finding what variables
can be hidden when specifying components that are imple-
mentable, an implementation of an algorithm for convert-
ing binary decision diagrams to minimal formulas that
involve integer-valued variables and its application to spec-
ification construction, a formalization of realizability, and
an operator for defining assume-guarantee properties from
complete-system properties (closed systems).

The paper is organized as follows. A short literature
review is given in Section II. Section III introduces the
mathematical language we use, a formalized notion of
implementability, and some elements from algorithmic
game theory. Assume-guarantee contracts are defined
in Section IV-A and open systems in Section IV-B.
The parametrization of which variables are hidden
when solving a game is developed in Section V. The
decomposition algorithm is described in Section VI. How
minimal specifications are generated is described in
Section VII. An example is analyzed in Section VIII, and
conclusions summarized in Section IX.

II. P R E V I O U S W O R K

A. Modular Design by Contract

The dependence of a component on its outside world
is known as assumption-commitment, or rely-guarantee,
paradigm for describing behaviors [3]. The assumption-
commitment paradigm about reactive systems is an
evolved instance of reasoning about conditions before
and after a terminating behavior. Early formulations
[28, pp. 26–29], [29, p. 4] were the assertion boxes used
by Goldstine and von Neumann [30], and the tabulated
assertions used by Turing [31], [32]. A formalism for
reasoning using triples of a precondition, a program, and a
postcondition was introduced by Hoare [33], following the
work of Floyd [34], [29, pp. 3–4] on proving properties of
elements in a flowchart, based on ideas by Perlis and Gorn
[28, p. 32 and Ref. 25 on p. 44], [35, p. 122].

Hoare’s logic applies to terminating programs. However,
many systems are not intended to terminate, but instead
continue to operate, by reacting to their environment [36].
Francez and Pnueli [37] introduced a first generalization
of Hoare-style reasoning to cyclic programs. They also con-
sidered concurrent programs. Their formalism uses explicit
mention of time and is structured into pairs of assumptions
and commitments.

Lamport [12] observed that such a style of specification
is essential to reason about complex systems in a modular
way [38, p. 131]. Lamport and Schneider [39], [40]
introduced, and related to previous approaches, what they
called generalized Hoare logic. This is a formalism for
reasoning with preconditions and postconditions, in order

1618 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

to prove program invariants. Misra and Chandy introduced
the rely-guarantee approach for safety properties of dis-
tributed systems [41], [42, §6 on p. 532], [158, §2.5
on pp. 247–248]. Stepwise implication in their work con-
strains the immediate future behavior of a system in case
its environment behaved as assumed throughout the past.
The increment of time between constraint and assumption
enables assembling interdependent components without
circular dependence. All properties up to this point were
safety, and not expressed in temporal logic [43]. Two
developments followed, and the work presented here is
based on them.

The first was Lamport’s introduction of proof
lattices [20]. A proof lattice is a finite rooted directed
acyclic graph, labeled with assertions. If u is a node
labeled with property U , and v, w are its successors,
labeled with properties V , W , then if U holds at any
time, eventually either V or W will hold. In temporal
logic, this can be expressed as �(U ⇒ ♦(V ∨W)). Owicki
and Lamport [44] revised the proof lattice approach,
by labeling nodes with temporal properties, instead of
atemporal ones (“immediate assertions”).

The second development was the expression of step-
wise implication operators (+−� and variants) in temporal
logic by Lamport [12], and Pnueli [38], i.e., without
reference to an explicit time variable. In addition, Pnueli
proposed a proof method for liveness properties, which
is based on wellfounded induction. This method can be
understood as starting with some temporal premises for
each component, and iteratively tightening these prop-
erties into consequents that are added to the collection
of available premises, for the purpose of deriving fur-
ther consequents. This method enables proving liveness
properties of modular systems. Informally, the require-
ment of well-foundedness allows using as premises only
properties from an earlier stage of the deductive process
[45], [46]. This prevents circular existential reasoning
about the future, i.e., circular dependencies of liveness
properties [47, §2.2, p. 512], [48, §5.4, p. 264], [49],
[73, Prop. 14, p. 45]. As a simple example, consider Alice
and Bob. Alice promises that, if she sees b, then she will
do a at some time in the future. Reciprocally, Bob promises
to eventually do b, after he sees a. As raw TLA formulas,
these read �(b ⇒ ♦a′) for Alice, and �(a ⇒ ♦b′) for Bob.
If both Alice and Bob default to not doing any of a or b,
then they both satisfy their specifications. This problem
arises because existential quantification over time allows
simultaneous antecedent failure. Otherwise, if Bob was
required to do b for the first time, then Alice would have
to do a, then Bob do b again, etc.

Compositional approaches to verification have treated
the issue of circularity by using the description of the
implementation under verification as a vehicle for carrying
out the proof. The implementation’s immediate behavior
should constrain the system sufficiently much so as to
enable deducing its liveness guarantees. This approach
is suitable for verification, because an implementation

is available at that stage. Specifications intended to be
used for synthesis are more permissive. For this reason,
liveness properties, and minimal reliance on step-by-
step details, are preferred in the context of synthesis.
Stark [49] proposed a proof rule for assumeguarantee
reasoning about a noncircular collection of liveness
properties. McMillan [50] introduced a proof rule for
circular reasoning about liveness. However, this proof
system is intended for verification, so it still relies on the
availability of a model. It requires the definition of a proof
lattice, and introduces graph edges that consume time,
as a means to break simultaneity cycles. The method we
propose in this work constructs specifications that can
have dependencies of liveness goals, but in a way that
avoids circularity (Section VI).

The assumption-guarantee paradigm has since evolved,
and is known by several names. Lamport remarks that
a module’s specification may be viewed as a contract
between user and implementer [12, p. 191]. Meyer [51]
called the paradigm design by contract and supported its
use for abstracting software libraries and validating the
correct operation of software. The notion of a contract has
several forms. For example, an interface automaton [52]
describes assumptions implicitly, as those environments
that can be successfully connected to the interface.
An interface automaton abstracts the internal details of
a module and serves as its “surface appearance” toward
other modules.

More recently, contracts have been proposed for
specifying the design of systems with both physical and
computational aspects [53]–[55]. In this context, contracts
are used broadly, as an umbrella term that encompasses
both interface theories and assume-guarantee contracts
[53], [56]–[58], with extensions to timed and proba-
bilistic specifications. A proof system has been developed
for verifying that a set of contracts refines a contract
for the composite system [59], as well as a verification
tool of contract refinement using an SMT solver [60].
This body of work focuses mainly on using and modify-
ing existing contracts. We are interested in constructing
contracts.

Decomposition of an assume-guarantee contract for an
overall system into assume-guarantee contracts for com-
ponents has been investigated in an approach that checks
whether a candidate decomposition satisfies certain suf-
ficient conditions, and if not amends the contracts in a
sound way in search of a correct decomposition [61]. This
approach is formulated generically for contract theories
whose operators satisfy certain distributivity requirements,
and is demonstrated in theories with trace-based and
modal transition specifications.

An approach to architectural synthesis based on
contracts of components available from a library has been
studied in [62], [63]. In that approach, the components
are automatically selected from an existing library, with
the objective of creating an assembly that satisfies a
given specification.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1619

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

An algorithm for decomposing an LTL contract
by partitioning its variables into subsets that define
projections whose composition refines the given contract is
studied in [159]. The algorithm progressively collects each
subset of variables by detecting variable dependencies
using a model checker. The resulting projections are
used to decompose the synthesis of a composition
of components from a library to smaller problems of
synthesis from the library.

Contract theories in the framework of [53], [55] for-
mulate the notion of contract as a pair of two assertions
(properties) that represent a component and its intended
environment. In our approach, each component is spec-
ified by a single temporal formula, which incorporates
assumptions and guarantees implicitly, as a suitable form
of implication (stepwise for safety, propositional for live-
ness) [42], [64], [65]. For example, the formula ϕ �
�♦(a = 1) ⇒ ♦�(b = 2) is equivalent to �♦(b �=
2) ⇒ ♦�(a �= 1). Which one is intended as assumption,
�♦(a = 1), or �♦(b �= 2)? Formally, we cannot distin-
guish without mentioning a separate formula other than
ϕ. In other words, the formula A ⇒ G describes one
component, without describing an intended environment.
Two formulas A and A⇒ G can describe two components.
Our notion of contract refers to a collection of component
specifications, and for the case of two specifications cor-
responds in descriptive capability to a pair of assertions
as contract [53], [55], [66]. Also, we view a contract as
an agreement that binds multiple components, whereas
a pair of assertions in contract theories is an agreement
that binds one component. Methodologically, in contract
theories, one checks that an assumption formula is fulfilled
by another component’s guarantee [67], whereas in our
approach the conjoined component specifications should
imply the desired overall specification.

The theory of synchronous relational interfaces [67] is
an approach that allows expressing safety contracts, and
reasoning about composition, refinement, and component
substitutability. The refinement calculus of reactive systems
(RCRS) [68] is a framework for describing components
using monotonic property transformers that operate on
sets of traces, and can describe safety and liveness proper-
ties. It is a typed formalism that distinguishes inputs from
outputs, and represents constraints on the environment
in a way that can be regarded as behavioral typing, sup-
porting non-input-receptive representation of systems and
type inference [69], [70]. We use an untyped logic, TLA+,
and suitable forms of implication to specify realizable open
systems. Our approach is state based, and how realizability
is required, i.e., how quantifiers affect variables, indicates
which variables are controlled by each component. Dec-
laration of variables does not annotate them as inputs
or outputs. Which variables are communicated to other
components is determined by the decomposition algo-
rithm. In our approach, (strictly) causal systems are spec-
ified using stepwise implication (in the operators +−� and
WhileP lusHalf). Acausal specifications are unrealizable

with our definition of realizability. RCRS is aimed mainly
at verification and bottomup synchronous composition of
systems and their contracts from components, whereas in
this work we are interested in decomposing specifications
of an overall system.

FOCUS is a typed formalism based on stream processing
functions [71], [72] which can express assume-guarantee
specifications, open and closed systems, and supports rea-
soning about system composition and refinement.

Reactive modules [73] is another formalism for
hierarchical specification and verification of systems,
which supports assume-guarantee reasoning for both syn-
chronous and asynchronous systems, temporal refinement,
and state hiding.

A methodology for decomposing refinement proofs
using assume-guarantee reasoning, abstraction of imple-
mentation details, and witness modules for instantiat-
ing internal state of the specification has been described
in [158], [160].

B. Synthesis of Implementations

This section samples the literature on games of infinite
duration. Synthesizing an implementation from a specifi-
cation can be formulated as a game between component
and environment. The type of game depends on:

• whether one or more components are being designed;
• whether components are designed in groups;
• when components change their state;
• the liveness part of specifications;
• the visibility of variables.
Games can be turn based or concurrent [74]–[76].

Inability to observe external state changes makes a game
asynchronous [22], [77]. If we want to construct a single
component, then the synthesis problem is centralized. Syn-
chronous centralized synthesis from LTL has time complex-
ity doubly exponential in the length of the formula [36],
and polynomial in the number of states. By restricting
to a less expressive fragment of LTL, the complexity can
be lowered to polynomial in the formula [14]. Asyn-
chronous centralized synthesis does not yield to such a
reduction [22]. Partial information games pose a chal-
lenge similar to full LTL properties, due to the need for
a powerset-like construction [78]. To avoid this route
alternative methods have been developed, using universal
co-Büchi automata [18], or antichains [19].

If we want to construct several communicating mod-
ules to obtain some collective behavior, then synthesis
is called distributed. Of major importance in distributed
synthesis is who talks to whom, and how much, called the
communication architecture. A distributed game with full
information is in essence a centralized synthesis problem.
Distributed synchronous games with partial information
are undecidable [23], unless we restrict the communi-
cation architecture to avoid information forks [79], or
restrict the specifications to limited fragments of LTL [80].
The undecidability of distributed synthesis motivates our

1620 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

parametrization for finding a suitable connectivity archi-
tecture, instead of deciding whether a given architecture
suffices. Bounded synthesis circumnavigates this intractabil-
ity by searching for systems with a priori bounded
memory [81]. Asynchronous distributed synthesis is unde-
cidable [77], [82], [83]. In our approach, we find inter-
connections of components that suffice for implementing
the component specifications. Instead of selecting a specific
interconnection, which leads to an undecidable problem,
we search for an interconnection that suffices. This is a
tradeoff of decidability for optimality, in that the result-
ing interconnection can involve more information sharing
between the components than may be necessary.

Besides synthesis of a distributed implementation, the
more general notion of assume-guarantee synthesis [84]
constructs modules that can interface with a set of other
modules, as described by an assumption property. This
is the same viewpoint with the approach proposed here.
A difference is that we are interested in synthesizing
temporal properties with a liveness part, instead of imple-
mentations. In addition, we are interested in “distributed”
also in the sense that the modules will be synthesized
separately. Assumption synthesis has been used for the
verification of existing modules by eliminating variables
to abstract the modules, before reasoning about safety
properties of their composition [85].

Another body of relevant work is the construction of
assumptions that make an unrealizable problem realizable.
The methods originally developed for this purpose have
been targeted at compositional verification, and use the
L� algorithm for learning deterministic automata [86],
and implemented symbolically [87]. Later work addressed
synthesis by separating the construction of assumptions
into safety and liveness [88]. The safety assumption is
obtained by property closure, which also plays a key role
in the composition theorem presented in [42]. Our work
is based on this separate treatment of safety and liveness.
Methods that use opponent strategies [89] to refine the
assumptions of a GR(1) specification, searching over
syntactic patterns were proposed in [90] and [91]. The
syntactic approach of [91] was used in [92] to refine
assume-guarantee specifications of coupled modules.
However, that work cannot handle circularly connected
modules, thus neither circular liveness dependencies.
Another approach is cooperative reactive synthesis, where
a logic with nonclassical semantics is used, and synthesis
corresponds to this semantics [93].

Our work uses parametrization, based on ideas
of approximating asynchronous with GR(1) synthe-
sis [16], [22]. Another form of parametrization studied
in the context of synthesis is that of safety and reach-
ability goals [94]. Instead of hiding specific variables,
an alternative approach in the context of verification [95]
identifies predicates that capture essential information for
carrying out proofs with less coupling between processes.
Also relevant is the separation of GR(1) synthesis into
the design of a memoryless observer (estimating based on

current state only) and of a controller with full informa-
tion [21]. Identifying what variables provide information
essential for realizability (Section V) relates to work on
synthesizing probabilistic sensing strategies [96]. A hier-
archical approach where an observer for the continuous
state is designed separately from synthesizing a discrete
controller from temporal logic specifications [97], and
decomposition of properties for synthesizing implemen-
tations have been studied in the context of aircraft
management systems [98]. Layering as a method for struc-
turing system design has been applied in the context of the
DisCo method, which is based on TLA [5], [99], [100].

The Quine–McCluskey minimization method, which
takes exponential amount of space and time and so is
impractical, has been used before for simplifying Boolean
logic expressions in manuals [101], robot path planning
among planar rectangles [102] and recently for simplifying
enumerated robot controllers [103]. In the context of syn-
thesis, prime implicants (used here for minimal covering)
have been used for refining abstractions [17], and have
been mentioned in the context of debugging specifica-
tions [104]. For theories more general than propositional
logic there has been work on deriving prime implicants in
the context of SMT solvers [105].

III. P R E L I M I N A R I E S

A. Predicate Logic and Set Theory

We use the temporal logic of actions (TLA+) [10],
with some minor modifications that accommodate for a
smoother connection to the literature on games. At places,
we also use “raw” TLA+, which is a fragment that allows
stutter-sensitive temporal properties (stutter invariance is
defined below) [106, §4], [107, p. 34]. The motivation for
choosing TLA+ is its precise syntax and semantics, the use
of stuttering steps and hiding as a refinement mechanism,
and the structuring of specifications, by using modules,
and within modules by definitions and planar arrangement
of formulas.

TLA+ is based on Zermelo–Fraenkel (ZF) set theory
[10, p. 300], which is regarded as a foundation for math-
ematics [108]. Every entity in TLA+ is a set (also called a
value). A function f is a set with the property that, for every
x ∈ DOMAIN f , we know what value f [x] is. Functions can
be defined with the syntax

f � [x ∈ S �→ e(x)]

where e(x) is some expression [10, p. 303, p. 71]. If a
value f equals the function constructor that maps values in
DOMAIN f to the values obtained by function application,
then it is a function

IsAFunction(f) � f = [x ∈ DOMAIN f �→ f [x]].

For any x /∈ DOMAIN f , f [x] is some value, unspecified
by the axioms of TLA+. The collection of functions with

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1621

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

domain S and range R ⊆ T forms a set, denoted by [S →
T].

Operators are defined to equal some expression, with no
domain specified. Unlike functions, which are sets, opera-
tors are a syntactic mechanism for naming. All occurrences
of operators are syntactically replaced by their definitions
before semantic interpretation takes place. Parentheses
instead of brackets distinguish an operator from a func-
tion, for example g(x) � x defines the operator g to
be the identity mapping. Unnamed operators are built
with the construct LAMBDA [109]. A first-order operator
takes as arguments operators without arguments (nullary).
An operator that takes a first-order operator as argu-
ment is called second-order. For example, the expression
F (x,G()) denotes an operator F that takes as argu-
ments a nullary operator x and a unary operator G

[10, §17.1.1]. TLA+ includes [10, §16.1.2] Hilbert’s choice
operator [110], [111]. If ∃x : P (x), then the expression
CHOOSE x : P (x) equals some value that satisfies P (x).
Otherwise, this expression is some unspecified value that
can differ depending on P .

The operator ∧ denotes conjunction, ∨ disjunction, and
¬ negation. Conjunctions and disjunctions can be written
vertically, for example

∧ x = 1 A conjunct

∧ y > x another conjunct .

Vertical lists of this kind can also be nested. Nat denotes
the set of natural numbers [10, §18.6, p. 348], and for i,
j ∈ Nat the set of integers between i and j is denoted by

i..j � {n ∈ Nat : i ≤ n ∨ n ≤ j}.

A function with domain 1..n for some n ∈ Nat is called a
tuple and denoted with angle brackets, for example 〈a, b〉.

There are two kinds of variables: rigid and flexible. Rigid
variables are also called constants. They are unchanged
through steps of a behavior (behaviors are defined below).
Rigid quantification can be bounded, as in the formula
∀x ∈ S : P (x), or unbounded, as ∀x : P (x). The former
is defined in terms of the latter as

∀x ∈ S : P (x) � ∀x : (x ∈ S) ⇒ P (x).

So the “bound” is an antecedent. Substitution of the
expression e1 for occurrences of the identifier x in the
expression e is written as the formula LET x � e1 IN e.
A string is a sequence of characters, for example “ab”. The
expression f [“r”] is also written f.r, for any string “r”.

B. Semantics of Modal Logic

Temporal logic serves for reasoning about dynamics,
because it is interpreted over sequences of states (for linear

Fig. 3. Semantic concepts of the temporal logic TLA�.

semantics). A state s is an assignment of values to all
variables. A step is a pair of states 〈s1, s2〉, and a behavior σ
is an infinite sequence of states, i.e., a function from Nat to
states, as illustrated in Fig. 3. An action (state predicate) is
a Boolean-valued formula over steps (states). Given a step
〈s1, s2〉, the expressions x and x′ denote the values s1�x�

and s2�x�, respectively. We will use the temporal operators:
� “always” and ♦ “eventually.” A behavior σ satisfies the
formula �f , denoted σ |= �f , if every “tail” of σ satisfies f .
More precisely, if

∀n ∈ Nat : σ[n..] |= f

where σ[n..] � [i ∈ Nat �→ σ[i+ n]].
For example, if formula f is TRUE in every state of

behavior σ, then σ |= �f is TRUE. The formula ♦f is TRUE
if f is TRUE at some state of a behavior, i.e., ♦f � ¬�¬f .
Formal semantics are defined in [10, §16.2.4].

A property is a collection of behaviors described by
a temporal formula. An example formula is shown in
Fig. 4, which includes actions within temporal operators,
and a state predicate as initial condition. If a property
ϕ cannot distinguish between two behaviors that differ
only by repetition of states, then ϕ is called stutter-
invariant. Stutter-invariance is useful for refining systems
by adding lower-level details [11]. In TLA+ the constructs
[48, Prop. 2.1]

[A]v � A ∨ (v′ = v)

〈A〉v � ¬[¬A]v = A ∧ (v′ �= v)

where A is an action, are used to ensure stutter invariance.

Fig. 4. Elements of formula and operator definition in TLA�.

1622 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

So, (x = 0) ∧ �[x′ = x + 1]x is satisfied by a behavior
whose each step either increments x by one, or leaves x
unchanged. TLA+ allows writing �[A]v and ♦〈A〉v, but
not the above constructs alone, neither an action A outside
them. The raw logic does not impose these requirements,
so there we can write �A. We use the constructs [A]v and
〈A〉v also as shorthands for the formulas that define them.
Boolean (and other) operators can be applied between any
expressions, for example if A and B are actions, then the
formula A ∧B is an action.

If every behavior σ that violates property ϕ has a finite
prefix that cannot be extended to satisfy ϕ, then ϕ is a
safety property. If any finite behavior can be extended to
satisfy ϕ, then ϕ is a liveness property [112], [35, p. 49].
A property of the form �♦p (♦�p) is called recurrence
(persistence) [113].

We briefly mention a few more concepts that we will
use later. An informal definition is sufficient to follow the
discussion, and a formal one can be found in the semantics
of nonconstant operators [10, Ch. 16.2]. The thick existen-
tial quantifier ∃∃∃∃∃∃ denotes temporal existential quantification
over (flexible) variables. The main purpose of temporal
quantification is to “hide” variables that represent details
internal to a subsystem. The expression ENABLED A is
true at states from where some step could be taken that
satisfies the action A. Using enabledness, weak fairness is
defined as

WFv(A) � (♦�ENABLED 〈A〉v) ⇒ �♦〈A〉v

C. Synthesis of Implementations

Synthesis is the algorithmic construction of an imple-
mentation that satisfies the specification of a component,
given as a temporal formula Phi(x, y), where variable
y represents the component, and variable x its environ-
ment. The purpose of an implementation is to produce
the desired behavior for y, for example the output of a
circuit with input x. An implementation (or realization) of
Phi(x, y) is formally a function f that changes y (so decides
y′), depending on the current values of x, y, in a way
that satisfies Phi(x, y). In addition, an implementation can
include “memory,” which is internal state used to store
useful information. If the variable mem represents this
memory, then the function f depends on mem, and the
implementation includes a function g that changes mem
(so mem′), depending on x, y,mem. A temporal property
Phi(x, y) is called realizable if an implementation exists.

The notion of realizability [36], [114], [115] can be
formalized [116] as shown in Fig. 5, which is based on
a note by Lamport [8] (see also [12, p. 221]). Fig. 5
corresponds to realizability in the literature on synthesis
[117, §4, pp. 46–47], [118, §2.3, pp. 914–915].

The operator Realization describes a temporal property
satisfied by behaviors where the variables mem,y start
from mem0, y0 and change according to the functions
f (for externally visible behavior) and g (for internal

Fig. 5. A definition of realizability. The operator IsFiniteSet

requires finite cardinality [10, p. 341].

behavior). The expression IsRealizable(Phi) means that
the property Phi is implementable (feasible), in that
f, g, y0,mem0 exist such that f, g have finite domains, and
any behavior of x, y that satisfies Realization also satisfies
the given property Phi.

Later in our discussion we mention realizability with
respect to different sets of variables. Formally this
corresponds to writing different versions of Fig. 5, with for
example y1, y2 and x1 in one version, y1, y2, y3 and x2, x3

in another, etc. Instead, we write IsRealizablex1;y1,y2(Phi)

to make explicit the variable names (see also Remark 18).
Tractable liveness: A formula described by the schema

StreettPair �
�

j∈1..m
♦�Pj ∨

�
i∈1..n

�♦Ri

defines a liveness property categorized as generalized
Streett(1), or GR(1) [14]. A formula of this form is useful
for expressing the dependence of a component on its
environment. Rewriting the above as

(
�

j∈1..m
�♦¬Pj) ⇒

�
i∈1..n

�♦Ri

emphasizes this use case. Usually, the formulas ¬Pj express
recurrence properties that the component requires from its
environment in order to be able to realize the properties
Ri. If the environment lets the behavior satisfy ♦�Pj ,
then the component cannot and so is not required to
satisfy the properties �♦Ri. An example that simplifies the
landing gear example of Section VIII is �♦(DoorsOpen) ⇒
�♦(ExtensionRequest ⇒ GearExtended). As a specification
for the gear subsystem of an aircraft, this property requires
that the gear respond to any request to extend under
suitable conditions.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1623

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Conjoining k Streett pairs yields a liveness property
called GR(k), which can be regarded as a modal conjunc-
tive normal form [22], [113]. Synthesis of a controller that
implements a GR(k) property has computational complex-
ity factorial in the number of Streett pairs k [15]. This is
why GR(1) properties are preferred to write specifications
for synthesis. An implementation that satisfies a GR(1)
property can be computed by applying the controllable
step operator (defined in Section III-D) m × n× S3 times,
where S is the number of states (in the worst case expo-
nential in the number of variables) [118]–[120]. When a
symbolic implementation is used, the runtime is in practice
much smaller than the upper bound S3, because the state
space is much “shallower” than the number of states.

A controller that implements a generalized Streett prop-
erty can require additional state (memory) as large as 1..n.
There are properties that admit memoryless controllers,
but searching for them is NP-complete in the number
of states [121], so exponentially more expensive than
GR(1) synthesis [14]. For this reason GR(1) synthesis
algorithms unconditionally add a memory variable that
ranges over 1..n.

D. Elements of Synthesis Algorithms

Fixpoint Operators: Reasoning about open systems
involves computing from which states a controller exists
that can guide the system to a desired set of states (des-
tination). The set of states from where such a controller
exists is called an attractor, and results from iteratively
solving a “one-step” control problem [75]. The “one-step”
control problem involves finding from which states the
system can reach a Target in one step that satisfies the
action SysNext, assuming that the environment satisfies
the actionEnvNext. With x (y) a variable representing the
environment (controller), the one-step control problem is
described by the controllable step operator

Step(x, y, Target(,)) � ∃y′ :

∧SysNext(x, y, y′)
∧∀x′ : EnvNext(x, y, x′) ⇒ Target(x′, y′)

(commonly denoted as CPre; see also Remark 9). A state
satisfies Step if x, y take values in that state such that the
controller can choose a next value y′ allowed by SysNext,
and any next environment value x′ that EnvNext allows
leads to a state that satisfies Target. The above definition
of Step is for specifications where in each step at most
one component can change its state in multiple ways.
An operator for the general case is given in Remark 13.

The set of states (attractor) from where a controller
exists that can guide the system to some state that
satisfies Goal(x, y) (destination) in at most k steps
results by applying the Step operator k times. This
computation is formalized as the operator kStepAttractor
in Fig. 6 [119], [120], where m “counts” down from k

Fig. 6. Operators used for solving games to implement a

specification that involves interaction with an environment.

to 0, and the applications of Step are “chained” together.
The fixpoint that results from applying Step is formalized
as the operator Attractor in Fig. 6.

Another computation we use later is finding the largest
subset of a set of states Stay such that the component can
either keep the behavior forever within Stay, or eventu-
ally let the behavior enter the set of states Escape. This
computation is formalized as the operator Trap in Fig. 6,
and can be thought of as finding a “waiting” area from
where the environment can “service” the component’s
request.

a) Symbolic implementation: Game solving involves rea-
soning about sets of states. Symbolic methods using binary
decision diagrams (BDDs) [24] are used for compactly
representing sets of states, instead of enumeration. To
use BDDs for specifications in untyped logic we need to
identify those (integer) values that are relevant, a common
requirement that arises in automated reasoning [122].
This information is declared as type hints [123] to enable
automatically rewriting the problem in terms of newly
declared variables, so that all relevant values be Boolean

1624 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

(instead of integer), thus enabling use of BDDs. This
process is called bitblasting and bears similarity to program
compilation.

Remark 1: The presentation here is in terms of TLA+.
The approach and results are applicable also to other
frameworks, for example other logics with linear-time
semantics, with suitable adaptation.

IV. C O N T R A C T S

A. Assume-Guarantee Contracts Between
Components

The purpose of a contract is to represent the assump-
tions that each component in an assembly makes about
other components, and the guarantees that it provides
when these assumptions are satisfied. The assignment of
obligations to components should be balanced. It is unrea-
sonable to specify an assumption by one component that
is infeasible by any other component. So the specifications
should suffice for ensuring that the assembly behaves as
desired, and also not overconstrain any of the components.
We can view these requirements as placing a lower and
an upper bound on component specifications. The lower
bound ensures that each component is implementable,
and the upper bound ensures that the assembled system
operates correctly.

These requirements are formalized with the following
definition. A contract [124] for implementing a property
Phi is a collection of n temporal properties, described by
the operators

A(, . . .), . . . ,W (, . . .)

and a partition of variables x, . . . , z among n components,
such that

∧ IsRealizable1(A) ∧ · · · ∧ IsRealizablen(W)

∧ �A(x, . . .) ∧ · · · ∧W (. . . , z)
�⇒ Phi(x, . . . , z)

where IsRealizablei refers to a rewriting of Fig. 5 accord-
ing to what variables represent component i (Remark
18), the symbol represents operator arity [10, §17.1.1]
(Remark 19). The properties A(x, . . .), . . . ,W (. . . , z) can
depend on different subsets of variables. In other words,
a contract is a collection of realizable properties that con-
joined imply the desired behavior for the system assembled
from components that implement these properties. Each
property (A, . . .) is described by a temporal formula
that incorporates an assumption and a guarantee in a
suitable implication (logical implication for the liveness
part, stepwise implication for the safety part). Thus, each
property is of an assume-guarantee form. For example,
if the formula (�♦P) ⇒ �♦Q specifies component F and
�♦P component H, then we can informally call �♦P a
guarantee of H (toward F), and an assumption of F about

Fig. 7. Each component is specified by a property that may allow

behaviors that violate the desired global property. These undesired

behaviors would be caused by arbitrary behavior of other

components. Nonetheless, the conjoined component specifications

imply the global property, because of mutual fulfillment of

assumptions between components.

H. The notion of composition of properties is illustrated in
Fig. 7.

Remark 2: The above notion of contract describes the
obligations that bind each component (in analogy to an
agreement among them). The above notion relates in two
ways to a notion of contract as a pair of an assumption
and a guarantee [53]–[55], [66]. The case of two prop-
erties above, e.g., A,B, can be thought of as describing
an environment and a component, separately, and so to
correspond to a pair of properties. On the other hand, each
property above (A, . . .) incorporates an assumption and a
guarantee using a suitable form of implication, thus it has
the nature of an agreement that binds one component.

Example 1: As an example used throughout the paper,
consider a charging station for mobile robots that has
two charging spots, and a robot that requests a spot for
charging. The robot is represented by its coordinates on the
plane pos x, pos y. The charging station has two charging
spots, with coordinates 1,1 and 2,1.

The charging station keeps track of which spots are
taken (variables spot 1, spot 2, 0 if a spot is free), and sets
the variables free x, free y to the coordinates of the spot
that becomes available for docking, and notifies the robot
by setting the variable free = 1. The robot can request
docking by setting the variable req. When free = 0, the
variables free x, free y do not communicate information
and can take other values.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1625

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 8. Assembled-system specification for the charging station

example (i.e., before decomposition).

Not all spots are free. One other spot can be occupied
by another robot, which forms part of the environment of
the charging station and the robot. This spot is indicated
by the variable occ ∈ 1..3 (3 means that the other robot
is away from charging spots). To keep the example small,
occ remains unchanged through time. So the occupied spot
does not change, but neither the station nor the robot
controls which spot this is. Otherwise, assumptions about
how occ can change need to be included, for example,
to prevent occ from changing to the same spot that the
station has assigned to the first robot. The variable turn
is used to express the assumption that in each step either
variables that represent the robot change and variables
that represent the station remain unchanged, or vice versa.
The specification of the entire system is shown in Fig. 8.

This specification can be extended by adding more spots
at different coordinates, for example, a third spot with
coordinates 10,12.

We wrote the property Phi using implication. In general,
the operator Unzip (defined in Section IV-B) or a variant
should be used instead of implication. Nonetheless, in this
case the environment can realize Env independently of
the two components, so we can simply use implication
(and defer discussing how open systems should be defined
to Section IV-B). An alternative would be to let Phi be the
conjunction Env ∧ Assembly (a closed system). In that
case, we would have to consider components for the sched-
uler and other robots. Note that the property Assembly

defines synchronous and interleaving changes to the com-
ponents.

A contract between the charging station and the robot
has the form of two properties, described by the operators
PhiS, PhiR, such that

∧ IsRealizable1(PhiS)

∧ IsRealizable2(PhiR)

∧ ∨ ¬ ∧ PhiS(spot 1, spot 2, free x, free y, free,

req, occ, turn)

∧ PhiR(req, pos x, pos y,

free x, free, turn)

∨ Phi.

We write the operators PhiS, PhiR with arguments to
indicate the dependence on variables that we will obtain
in Section VI-D (see also Remark 20).

Considering the liveness part of PhiS and PhiR, one
choice would be �♦((req = 1) ⇒ (free = 1 ∧ turn = 2))

for PhiS, and ♦�(free = 0 ∧ req = 1) ∨ ��♦(req =

0) ∧ �♦(req = 1)
�

for PhiR. Examples of the properties
PhiS and PhiR are given in later parts of this running
example, as we incrementally describe the stages of auto-
mated decomposition.

B. Open Systems
1) Defining an Open System: Usually the components

we build rely on their environment in order to operate
as intended. Such a component that interacts with an
environment is called an open system [47], [117, §3.1],
[106, §9.5.3]. For example, a laptop should be able to
connect to the Internet, but this is impossible in absence of
a wired or wireless network compatible with the laptop’s
interface (ports or other). If we describe the laptop as a
system that is able to connect to the Internet, our specifica-
tion is fictitious, because it wrongly predicts that the laptop
will be online in the middle of a desert. We could augment
the specification by adding that there is a wireless network,
and that the laptop connects to it. In this attempt, we are
overspecifying, by promising to deliver both a laptop and a
wireless network. Laptops are usually designed separately
from the buildings that host wireless networks. What we

1626 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

should instead do is to guarantee a connection to the
Internet assuming that a wireless network is available.
In absence of a network, the laptop is free to remain
disconnected.

The notion of an open system can be defined mathe-
matically by whether arbitrary behavior is allowed for any
of the variables. Let x be a variable and P (x) a temporal
property. If P (x) implies that x remains in some fixed
set S throughout a behavior, then P (x) describes a closed
system, i.e.,

IsAClosedSystem(P ()) � ∃S : ∀∀∀∀∀∀ v : P (v) ⇒ �(v ∈ S)

IsAnOpenSystem(P ()) � ¬IsAClosedSystem(P).

Note that IsAnOpenSystem(P) is equivalent to ∀S : ∃∃∃∃∃∃ v :

P (v) ∧ ♦(v /∈ S). So the possibility of diverging behavior
characterizes a system as open. In other words, a property
P defines a closed system if it implies a type invariant that
bounds all the variables that occur in P . Therefore, closed
systems can be defined using Δ0 formulas [125, p. 161].
Diverging behavior is also the main concept in how initial
conditions affect realizability [116, Lemma 6, p. 12].

2) Specifying Interaction With an Environment:
A component’s specification should not constrain
its environment, but constrain the system as long
as the environment behaves as assumed in the
intended application [12], [41], [42], [64], [65].
This form of requirement is expressible with a
formula that spreads implication incrementally over
a behavior [41], [42], [48], [64], [65], [126] (stepwise
implication). The operator WhileP lusHalf in Fig. 9 takes
two temporal operators A,G. The property A(x, y) that
can be thought of as describing what we assume about the
environment (assumption), and G(x, y) what we require
of the system (guarantee). WhileP lusHalf can be thought
of as being true of a behavior σ if every finite prefix of σ
that can be extended to a behavior that satisfies A can also
be extended, starting with a state that satisfies v = y, to a
behavior that satisfies G (see also Remark 16). Specifying
liveness using G, with A describing a safety property is
not restrictive, similarly to +−� [42, §5.1].

We can use WhileP lusHalf to specify how an open
system should behave. Writing a closed-system specifi-
cation P for how component and environment should
behave when assembled is typically easier than reason-
ing about how to split this into two properties A,G.
One reason is avoiding realizability due to an unin-
tended reason, a form of vacuity. Vacuity can arise if
x is not constrained by G as much as it is in A.
Another motivation for writing a closed-system specifica-
tion is that we can then utilize liveness to simplify the
specification (writing specifications that are not machine
closed [127]).

The operator Unzip serves this purpose (Fig. 9), by tak-
ing a closed system described by P , and using it as G,

Fig. 9. The operator Unzip defines an open system from a closed

system. The operator WhilePlusHalf describes stepwise implication

for the safety part of A, G, and implication for the liveness part.

whereas it passes as A a (safety) property weaker than G.
So Unzip takes a closed-system property and yields an
open-system property, and roughly means:

While the environment does not take any step
that definitely blocked the assembly (P), the
component’s next step should not definitely
block the assembly, and the assembly should not
have been blocked in the past.

Blocking the assembly means violating the safety part
of P , by changing the values of some variables in a way
that P can no longer be satisfied. When using more vari-
ables, we write Unzipx1,x2;y1

to signify changes analogous
with those for IsRealizablex1,x2;y1(Phi) (Section III-C).

3) Synthesis From Open-System Properties: For the syn-
thesis of implementations for properties specified using
Unzip, relating this operator to existing results about
synthesis from GR(1) properties is useful [118]. This is
possible by turning temporal quantification (∃∃∃∃∃∃) to rigid
quantification (∃), using the operatorRawWhileP lusHalf

defined in Fig. 10. The second conjunct expresses “stepwise
implication,” so that if at some step the environment
violates the assumed action EnvNext , then the system
is not obliged to satisfy the action SysNext in later steps
and the action Next in that step and later ones. The
operator Earlier abbreviates the composition of the past
LTL operators WeakPrevious and Historically [128].

It can be shown that if P ≡ Init ∧ �[Next]〈x,y〉 ∧
L, where L is a GR(1) liveness property, and the pair
of properties Init ∧ �[Next]〈x,y〉, L is machine closed
(meaning that L does not constrain the safety in the
property Init∧�[Next]〈x,y〉 [42]), then an implementation
synthesized for the property

RawWhileP lusHalf(Init, [∃y′ : Next]x, [∃x′ : Next]y ,

[Next]〈x,y〉, L, x, y)

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1627

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

using existing algorithms [118] also realizes
Unzip(P, x, y).

Remark 3: Open systems can be defined also in other
ways, for example, using game graphs together with live-
ness formulas [117], game structures, alternating-time
temporal logic formulas [74], or modules [129]. The prop-
erty P corresponds to the graph and liveness in a game
graph description.

Remark 4 (Related Operators): The operator
WhileP lusHalf is a slight variant of how the “while-
plus” operator +−� can be defined within TLA+ [10, p.
337], [48, p. 262] (+−� is defined by TLA+ semantics [10,
p. 316]). How Unzip is defined is reminiscent of how +−� is
defined for safety properties in terms of −� [48, p. 262],
[126, Prop. 1, p. 501]. The operator RawWhileP lusHalf
is a modification of [65] to avoid circularity [124],
[64, §5, � on p. 59].

Remark 5 (Symmetry): Dijkstra requires symme-
try from solutions to the mutual exclusion problem
[130, item (a)]. The approach we follow asserts that all
components are implemented as “Moore machines” (the
functions f and g in Fig. 5 are independent of primed
variable values). Alternatives are possible where one com-
ponent is Mealy and its environment Moore [89], [118].
Specifying such components in a way that avoids cir-
cular reasoning leads to using more than one operators
for defining open systems, which is asymmetric. In the
presence of multiple components, a spectrum of Moore to
Mealy machines needs to be considered, not unlike typed
components [75].

Example 2: The specification of the robot in the
charging station example can be defined using the
operator Unzip by first defining a closed-system
property that describes the robot together with
its environment P � Env ∧ Assembly and let
Unzip(P, spot 1, . . . , turn, req, pos x, pos y) specify
the robot (the number of arguments has been adapted,
as in similar remarks above). In the next section,
we will see how some of these external variables
can be eliminated to define a property for the robot

Fig. 10. Expressing the WhilePlusHalf operator in raw TLA� with

past operators.

that mentions fewer details about the rest of the
system.

The concept of interleaving means that in each step the
state of at most one component changes [10, p. 137].
If there are only two components, represented by the
variables x and y, then property Phi(x, y) is interleaving
if it implies that x and y do not both change at once
[42, p. 514], [48], [116, §5, p. 22] (in TLA+ Phi(x, y) ⇒
�[(x′ = x) ∨ (y′ = y)]〈x,y〉)

Phi(x, y) ⇒ �((x′ = x) ∨ (y′ = y))

We can relax interleaving to allow multiple components
to change their state in one step, but multiple changes
be possible for at most one. This relaxed notion is useful
for including a scheduler that changes in a unique way
in each (nonstuttering) step. We consider specifications
that are interleaving in this way, allowing in each step
nonunique changes for at most one component. Compo-
nents move in a fixed order that repeats, so the resulting
interaction can be viewed as a turn-based game between
the components. Each variable is controlled by a single
component throughout time, thus the specifications are
disjoint state [10, p. 144].

V. PA R A M E T R I Z E D H I D I N G O F
VA R I A B L E S

A. Motivation and Overview

Precision is essential for specification, but adding details
makes a specification less manageable by both humans
and machines. Decomposition in general involves as much
computation as solving the problem in a monolithic
way [7]. Structuring the specification hierarchically to
defer introducing lower level details is a solution in
the middle. Hierarchy corresponds to how real systems
are designed, for example airplanes. The deferred details
should be irrelevant to the higher level design, and specific
to subsystems only. Some internal component details may
be relevant to the higher levels, and be mentioned before
decomposition of a specification to component specifica-
tions. Mentioning these details can make writing the speci-
fication easier, or these details may concern the interaction
of some components, but not others.

We want to remove irrelevant details from the specifica-
tion of each component. We do so by detecting which vari-
ables can be eliminated from a component’s specification.
The specification that results after the selected variables
have been eliminated should be realizable, otherwise no
component that implements that specification exists.

Let P (x1, . . . , y1, . . .) be a closed-system property
of the form Init ∧ �[Next]vrs ∧ Liveness, where
Liveness is a GR(1) property, and ϕ(x1, . . . , y1, . . .) �
Unzipx1,...;y1,...(P, x1, . . . , y1, . . .). We are interested in
finite-state specifications, i.e., P allows x1, . . . , y1, . . . to
take values from a finite set. So ϕ is an open-system

1628 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

GR(1) property. We assume that the specification includes
a scheduler that ensures turn-based interleaving changes
for other components, as discussed earlier, and that the
variable that represents the scheduler remains visible to
the components.

Problem 1 (Hiding Variables): Assume that ϕ (defined
above) is realizable by an implementation that can read
the variables x1, . . . , i.e., IsRealizablex1,...;y1,...(ϕ). Find
those subsets of variables xa, xb, . . . such that ϕ remain
realizable by an implementation that can read only
xa, xb, . . . , y1, . . . , i.e., IsRealizablexa,xb,...;y1,...(ϕ).

Exactly solving Problem 1 is computationally hard,
because it requires reasoning about realizability of imple-
mentations with partial information about their environ-
ment. For this reason, in this section, we develop a sound
approach for selecting which variables to hide, i.e., we may
select more xa, xb, . . . than the minimal number neces-
sary. We parametrize the selection of which variables to
hide, by modifying the controllable step operator, which
is used in later sections to construct a property ϕ that is
realizable.

Synthesis of component implementations with partial
information is computationally hard, so we eliminate the
hidden variables from ϕ, using universal quantification,
and express the component specifications with formulas in
which hidden variables do not occur.

Problem 2 (Expressibility): Given a temporal operator
ϕ as in Problem 1, the set of variables xa, . . . from x1, . . . ,
and the remaining of those variables as xp, . . . , express the
formula ∀∀∀∀∀∀xp, · · · : ϕ(x1, . . .) as a quantifier-free formula.

This step requires quantifier elimination. Realizability
remains unchanged, due to how xa, . . . are selected above.
The resulting specification ψ is realizable with full infor-
mation because it mentions variables xa, . . . and does not
mention xp,

In Section V-C, we discuss the abstraction from the con-
trollable step operator for specific variables, and in Section
V-D, we parametrize the choice of which variables to hide.
We start by considering the safety part of the specification
in Section V-B.

B. Preventing Safety Violations

The starting point is a specification for the assembled
system of the form

Assembly � Init ∧ �[Next]vrs ∧ Liveness

where the conjunct Liveness is a conjunction of recurrence
properties, for example �♦Goal1∧�♦Goal2. The property
Liveness can impose safety constraints when conjoined to
the property SM � Init ∧ �[Next]vrs. If this is not the
case, then the pair of properties SM,Liveness is called
machine closed [131, p. 261], [42, p. 519]. We decompose
the safety and liveness parts of the specification separately.

After decomposition, each component specification will
contain only “pieces” of liveness constraints. So the safety
part should be strong enough to prevent any component
from “straying away” to an extent that would violate the
property Liveness.

The property SM may be too permissive to ensure
that Liveness will be satisfiable in the future. We need
to strengthen SM . The weakest safety property W

that suffices is the strongest safety property implied by
Assembly, i.e., such that

|= Assembly ⇒W.

The property W is known as closure of the property
Assembly [132, p. 120], [42, p. 518], [48, pp. 261–262],
[133, Fig. 2] due to topological considerations [112]
(see also Remark 17). If W is written in the form

W ≡ Init ∧ �[Next]vrs ∧ �Inv

then the invariant Inv defines the largest set of states
that can occur in any behavior that satisfies the property
Assembly. The weakest invariant yields also the (unique)
weakest safety assumption necessary in turn-based games
with full information (set of cooperatively winning
states) [88], [124, §III-A].

Computing Inv for recurrence properties is straightfor-
ward [25], [26] and shown for completeness in Algo-
rithm 1. The case of GR(1) liveness is similar [14]. Let
vars be a set of variable names. Let init, next be BDDs that
represent the state predicate I and the action N , which
depend on only primed and unprimed vars. Let goals be
a tuple of BDDs for the state predicates G1, . . . , Gn. Let
Goals �

�
j �♦Gj . Let R � Init∧�N ∧Goals. The proce-

dure LIVESTATES computes the set of states from where the
recurrence goals can be repeatedly visited. The procedure
REACHABLESTATES computes the set of states that can be
reached from the initial condition. Their intersection yields
the set of states that are both reachable from initial condi-
tions and from where the recurrence goals can be repeat-
edly visited. The procedure PRIMEIN(vars, u) substitutes
primed for unprimed identifiers in u, for each (unprimed)
identifier in vars. The procedure UNPRIMEIN performs the
reverse operation. The procedure PRIME(vars) returns the
set resulting from priming each (unprimed) identifier in
vars. The procedure EXIST(vars, u) existentially quantifies
the variables vars in the BDD u.

Theorem 3 (Closure): ASSUME: Let Inv be the
state predicate returned (as a BDD) from the call
CLOSURE(init, next, goals, vars) of the procedure CLOSURE

defined in Algorithm 1.
PROVE: The closure of the property R is equivalent to

the property Q � Init ∧ �Inv ∧ �N .
In the case of the property Assembly from above, the

action N is [Next]vrs.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1629

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 11. An example of the state predicate Inv that results from

closure with respect to the recurrence goal �♦�s3 ∨ s7�.

Example 3: Fig. 11 illustrates the state predicate Inv

that results from closure with respect to the liveness
goal �♦(s3 ∨ s7), and with node s1 as initial condi-
tion. The recurrence goal is attainable from the nodes
s1, s2, s3, s6, s7, but not from the nodes s4, s5 [133, Fig. 2].
So s4, s5 are not included in Inv. Even though s3 ∨ s7
can be repeatedly visited starting from nodes s6, s7, these
nodes are unreachable from the initial condition, thus not
included in Inv.

Example 4: For the charging station example, the assem-
bly invariant Inv (when Env holds) is

∧ turn ∈ 1 .. 2 ∧ free ∈ 0 .. 1

∧ free x ∈ 0 .. 18 ∧ free y ∈ 0 .. 18 ∧ occ ∈ 1 .. 3

∧ pos x ∈ 1 .. 15 ∧ pos y ∈ 1 .. 15

∧ spot 1 ∈ 0 .. 1 ∧ spot 2 ∈ 0 .. 1

∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 .. 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (free x ∈ 1 .. 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0).

This invariant was symbolically computed, and the result-
ing BDD was then converted to a minimal formula in dis-
junctive normal form, with constraints on integer variables
as conjuncts.

A component’s action should constrain the next values
of only variables that the component controls. In addition,
the component should be constrained to preserve the
invariant Inv. The property W can be written as WInit ∧
�[WNext]vrs, where [106, by INV2, Fig. 5, p. 888]

WInit � Inv ∧ Init
WNext � Inv ∧Next ∧ Inv′.

Algorithm 1: Computing the closure of a temporal logic
formula of the form I ∧ �N ∧∧

j �♦Gj . lambda y can
be thought of as an “anonymous” procedure that takes y
as argument.

The property Unzip(W,x, y) is defined using WNext and
the following actions as arguments of the operator
RawWhileP lusHalf :

EnvNext(x, y, x′) � [∃y′ : WNext]x

SysNext(x, y, y′) � [∃x′ : WNext]y

For specifications that are interleaving for all components
except a deterministic scheduler, as those we discuss are
(in general, for specifications that in each step allow
multiple alternatives for state changes for at most one

1630 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

component), the Step operator with the above actions
implies that WNext is satisfied by each step. The reason
is that in each step, at most one component can change in
a nonunique way.

Remark 6: In the charging station example, any non-
stuttering step of the assembly is a nonstuttering step of
the scheduler, which is assumed to take infinitely many
nonstuttering steps. The fixpoint algorithms we develop
correspond to a raw TLA+ context. When transitioning to
the raw logic, after stuttering steps are removed, the prop-
erty �♦〈SchedulerNext〉turn reduces to safety, because
any nonstuttering step of the assembly changes the vari-
able turn.

C. Hiding Specific Variables
Suppose we want to hide variable h in predicate

P (h, x, y, y′). The environment controls variables h and x,
and the component y. If we use unbounded quantification,
∀h : P (h, x, y, y′), then in most cases the result will be too
restrictive, or FALSE. The quantified variable h should be
bounded, so a suitable antecedent Bound is needed. Using
this bound should not permit previously unallowed values
for x and y, thus

∧∃h : Bound(h, x, y)

∧∀h : Bound(h, x, y) ⇒ P (h, x, y, y′)

We will use Inv(h, x, y) as a bound on h. It will be the case
that |= Bound(h, x, y) ⇒ ∃y′ : P (h, x, y, y′). As defined in
Section III, the controllable step operator when the compo-
nent can observe the values of variables x and h takes the
form (to reduce verbosity we omit the argument Target)

Step(x, y, h) � ∃y′ : ∀x′, h′ :

∧SysNext(h, x, y, y′)
∧EnvNext(h, x, y, h′, x′) ⇒ Target(h′, x′, y′)

The component’s decisions cannot depend on the variable
h, leading to the modified operator

StepH(x, y) �
∧ ∃h : Inv(h, x, y)

∧ ∃y′ : ∀x′, h′ : ∀h :

∨ ¬Inv(h, x, y)
∨ ∧ SysNext(h, x, y, y′)

∧EnvNext(h, x, y, h′, x′) ⇒ Target(h′, x′, y′)

Algebraic manipulation yields

StepH(x, y) ≡
∃y′ : ∀x′ :

∧ ∧ ∃h : Inv(h, x, y)

∧ ∀h : Inv(h, x, y) ⇒ SysNext(h, x, y, y′)

∧ ∀h′, h :

∨¬ ∧ Inv(h, x, y)
∧EnvNext(h, x, y, h′, x′)

∨ Target(h′, x′, y′)

If Target is independent of h′ (which is the case in
Section VI), then confining universal quantification to the
first disjunct yields

StepH(x, y) ≡
∃y′ : ∀x′ :

∧ ∧ ∃h : Inv(h, x, y)

∧ ∀h : Inv(h, x, y) ⇒ SysNext(h, x, y, y′)

∧ ∨ ¬∃h, h′ : ∧Inv(h, x, y)
∧EnvNext(h, x, y, h′, x′)

∨ Target(x′, y′)

By defining

SimplerSysNext(x, y, y′) �

∧ ∃h : Inv(h, x, y)

∧ ∀h : Inv(h, x, y) ⇒ SysNext(h, x, y, y′)

SimplerEnvNext(x, y, x′) �
∃h, h′ : ∧ Inv(h, x, y)

∧ EnvNext(h, x, y, h′, x′)

we obtain

StepH(x, y) ≡
∃y′ : ∀x′ :

∧ SimplerSysNext(x, y, y′)

∧ SimplerEnvNext(x, y, x′) ⇒ Target(x′, y′)

The resulting operator StepH is schematically the same
with that for the full information case. So the open-system
specification with hidden variables can be rewritten as
an open-system specification with no hidden variables,
without changing the set of states from where the property
is realizable. The eliminated variables do not appear in the
component specification, so further work focusing on that
component can be carried out in a full information context,
including GR(1) synthesis. This soundly solves Problem 2.
The action SimplerEnvNext abstracts environment
details. Abstraction for the environment is appropriate in
a refined open-system property, because of contravariance
between component and environment (assumptions
should be weakened, guarantees strengthened) [52],
[3, Eq. (4.14), p. 325].

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1631

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Example 5: Consider a 3 by 2 grid, with cell coordi-
nates given by y ∈ 1..3 and h ∈ 1..2, where the component
controls y and the environment h, and these variables can
change in an interleaving way (in one step y may change,
in the next step h may change, and so on, as determined
by variable turn, similarly to Fig. 8). The actions are
SysNext � (turn = 1) ∧ (y ∈ 1..3) ∧ (y′ ∈ 1..3) ∧ (y − 1 ≤
y′)∧ (y′ ≤ y+1) and EnvNext � (turn = 2)∧ (h ∈ 1..2)∧�
(h′ = h) ∨ (h′ = 2)

�
. If the objective is �♦(y = 3),

then the component does not need to know the value of
variable h. During the attractor computation for reasoning
about realizability, the controllable step operator will have
y = 3 as first target, then y ∈ 2..3, and the fixpoint will be
y ∈ 1..3. In this case, the variable h can be hidden from the
component.

In contrast, the objective �♦(y = h) is unrealizable
without variable h being visible to the component, because
the choice of y′ depends on the value of h.

Example 6: To demonstrate the effect of hiding variables
in the context of the charging station example, consider
the action of the charging station’s environment. Without
hiding any state from the station, the environment action
is (shown for steps that it is the robot’s turn to change)

∧ turn = 2 ∧ turn′ = 1 ∧ free ∈ 0..1 ∧ free x ∈ 0..18

∧ free y ∈ 0..18 ∧ occ ∈ 1..3 ∧ occ′ ∈ 1..3

∧ pos x ∈ 1..15 ∧ pos x′ ∈ 1..15 ∧ pos y ∈ 1..15

∧ pos y′ ∈ 1..15 ∧ req ∈ 0..1 ∧ req′ ∈ 0..1

∧ spot 1 ∈ 0..1 ∧ spot 2 ∈ 0..1

∧ ∨ ∧ (free = 1) ∧ (free x ∈ 0..1) ∧ (occ = 3)

∧ (occ′ = 3) ∧ (pos x′ = 1) ∧ (pos y′ = 1)

∨ ∧ (free = 1) ∧ (free x ∈ 2..18) ∧ (occ ∈ 2..3)

∧ (occ′ = 3) ∧ (pos x′ = 2) ∧ (pos y′ = 1)

∨ ∧ (free = 1) ∧ (occ ∈ 1..2) ∧ (occ′ = 1)

∧ (pos x′ = 2) ∧ (pos y′ = 1) ∧ (spot 2 = 0)

∨ ∧ (free = 1) ∧ (occ ∈ 1..2) ∧ (occ′ = 2)

∧ (pos x′ = 1) ∧ (pos y′ = 1) ∧ (spot 1 = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req′ = 1)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req = 0)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req′ = 1)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req = 0)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req′ = 1)

∧ InvH.

After hiding the robot’s coordinates pos x, pos y, the envi-
ronment action is simplified to

∧ turn = 2 ∧ turn′ = 1 ∧ free ∈ 0..1

∧ free x ∈ 0..18 ∧ free y ∈ 0..18

∧ occ ∈ 1..3 ∧ occ′ ∈ 1..3

∧ req ∈ 0..1 ∧ req′ ∈ 0..1

∧ spot 1 ∈ 0..1 ∧ spot 2 ∈ 0..1

∧ ∨ (free = 1) ∧ (occ = 1) ∧ (occ′ = 1)

∨ (free = 1) ∧ (occ = 3) ∧ (occ′ = 3)

∨ ∧ (free = 1) ∧ (occ ∈ 1..2) ∧ (occ′ = 2)

∧ (spot 1 = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req′ = 1)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req = 0)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req′ = 1)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req = 0)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req′ = 1)

∧ InvH.

Details about safe positioning of the robot have been sim-
plified, because they are not necessary information for the
station’s operation. These expressions have been obtained
by using the invariant as a care predicate for the minimal
covering problem that yields the DNF. In particular

InvH
Δ
=

∧ turn ∈ 1..2 ∧ free ∈ 0..1

∧ free x ∈ 0..18 ∧ free y ∈ 0..18

∧ occ ∈ 1..3 ∧ spot 1 ∈ 0..1 ∧ spot 2 ∈ 0..1

∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2..3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (free x ∈ 1..2) ∧ (free y =1) ∧ (occ =3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0).

The concept of a care predicate will be described in
Section VII.

D. Choosing Which Variables to Hide

Which variables can we hide without sacrificing real-
izability? We could enumerate combinations of variables
to hide, and check realizability for each one. This is
inefficient (there are exponentially many combinations to
enumerate). Instead, we parametrize which variables are
hidden. We redo Section V-C, but now the choice of hidden
variables is parametric. For each variable, a mask constant
m is introduced that “routes” the variable to take a visible

1632 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

or hidden value

Mask(m, v, h) � IF (m = TRUE) THEN h ELSE v.

The rigid variable m models the availability or lack of
information. Following Section V-C, we replace h with the
selector expression to define a controllable step operator
with parametrized hiding as follows (where variable v is h
for the case that m = FALSE, meaning h visible):

MaskedInv(h, v, x, y, m) � LET r � Mask(m, v, h)

IN Inv(r, x, y)

PrmInv(v, x, y, m) � ∃h : MaskedInv(h, v, x, y, m)

R(v, x, y, m) �
∃y′ : ∀x′, v′ : ∀h :

LET r � Mask(m, v, h)

IN ∨ ¬Inv(r, x, y)
∨ ∧ SysNext(r, x, y, y′)
∧ ∨¬EnvNext(r, x, y, v′, x′)

∨ Target(v′, x′, y′, m)

PrmStep(v, x, y, m) �
∧PrmInv(v, x, y, m)

∧R(v, x, y, m).

An important point is that we can “push” the substitution
inwards, to obtain a controllable step operator over para-
metrized actions

PrmStep(v, x, y, m) ≡
LET

MskInv(h)
Δ
=

LET r Δ
= Mask(m, v, h)

IN Inv(r, x, y)

PrmInv
Δ
= ∃ h : MskInv(h)

MskSysNext(h, y′) Δ
=

LET r
Δ
= Mask(m, v, h)

IN SysNext(r, x, y, y′)

PrmSysNext(y′) Δ
=

∧ PrmInv
∧ ∀h : MskInv(h) ⇒MskSysNext(h, y′)

MskEnvNext(h, v′, x′) Δ
=

LET r
Δ
= Mask(m, v, h)

IN EnvNext(r, x, y, v′, x′)

PrmEnvNext(v′, x′) Δ
=

∃h : MskInv(h) ∧MskEnvNext(h, v′, x′)

IN

PrmStep(v, x, y, m)
Δ
= ∃ y′ : ∀x′, v′ :

∧ PrmSysNext(y′)
∧ PrmEnvNext(v′, x′) ⇒ Target(v′, x′, y′, m)

The LET expressions can be implemented either with
syntactic substitution of bitvector formulas (provided the
variables v and h can take the same values, and compatible
type hints are declared for them to aid bitblasting), or exis-
tential quantification. We use existential quantification.
The operator PrmStep can be rearranged to obtain an
equivalent result with new actions and the full information
Step, as in Section V-C. The assumption that Target does
not depend on v′, which enables that rewriting, holds only
for m = TRUE so this rewriting takes place for specific
variables, after the parametrization has been used to select
what variables to hide, as described in Section VI. The
above approach soundly solves Problem 1.

The parametrization is separate for each component.
Fresh mask constants are declared for this purpose. These
masks increase the number of Boolean-valued variables
in the symbolic computation, but are not quantified dur-
ing controllable step operations, and are Boolean-valued,
whereas the variables they mask are integer-valued. With
n components and k (integer-valued) variables in total
(over all components), (n − 1)k Boolean mask variables
are introduced. These are parameters, so the number of
reachable states remains unchanged, and thus the same
number of controllable step operations will be applied, and
realizability fixpoints take the same number of iterations,
similar to arguments developed for parametrized synthe-
sis [94]. The number of components n involved in each
individual decomposition step is expected to not be large,
so that the design specification be understandable by a
human.

The masks parametrize the interconnection architecture
between components, and allow for computing symboli-
cally those architectures that allow for decomposing the
high-level specification into a contract. We can think of
the above scheme as a sensitivity analysis of the problem
with respect to the information available to different com-
ponents.

VI. D E C O M P O S I N G A S Y S T E M
I N T O A C O N T R A C T

A. Overview

The decomposition algorithm takes an (open or closed)
system specification and produces open-system specifi-
cations for designated components. Each component is
represented by a collection of variables, whose behavior
is specified by a temporal property that can mention also
other variables that represent the component’s environ-
ment. We assume that the specification allows components
to stutter when variables from other components change.
So component interaction is synchronous, in that nonstut-
tering environment steps are noticed by the component
implementation, but the components are not required to

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1633

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

react immediately to changes. This assumption is use-
ful for transitions between interconnection architectures
(Section VI-G3).

We describe the algorithm incrementally, starting with
the main idea. The first description neglects hidden vari-
ables and complicated cases. We then add these details to
obtain the algorithm’s skeleton. The main idea is reasoning
backwards about goals to create a chain of dependencies
of which component is going to wait until which other
component does what. These obligations can be sketched
roughly as follows:

Component 1 : L1 � �♦R1

Component 2 : L2 � ♦�P2 ∨ �♦R2

Component 3 : L3 � ♦�P3 ∨ �♦R3,

where the chaining is established by the implications

(R1 ⇒ ¬P2) ∧ (R2 ⇒ ¬P3).

Conjoining the above specifications, we can deduce the
recurrence properties

L � �♦R1 ∧ �♦R2 ∧ �♦R3.

Each liveness property listed above should be ensured by
the designated component implementation. So property L1

is a guarantee from the perspective of component 1, and an
assumption from the perspective of component 2. From the
perspective of component 3, property L2 is an assumption,
and property L3 is a guarantee.

There is no notion of a “liveness assumption” in the
context of a single component specification. Viewing live-
ness only as a “guarantee” agrees with real-world practice:
there is no point in a behavior where we can decide that
the liveness assumption “has been violated” [42], [126].
Liveness “assumptions” are meaningful in the context of
multiple components, specified by multiple temporal prop-
erties, a situation similar to possibility properties [134],
[10, §8.9.3]. The liveness part of a property defined by
the Unzip and WhileP lusHalf operators has no distinct
place that could be regarded as “assumption” (notably, if G
is a safety property, then F +−� G is a safety property
[48, §5.2, p. 261]).

A simple but necessary property of the specifications
L1, L2, L3 is the acyclic arrangement of the reason-
ing that derives L [38], forming a proof lattice [44].
Mutual dependence of safety properties is admissible due
to how implication is spread in a “stepwise” fashion
over a behavior, as with the operator WhileP lusHalf

(Fig. 9). So what appears circular for safety properties is
a well-founded chain of implications crisscrossing between
components. Unlike safety properties, liveness properties
allow arbitrary deferment of obligations to the future.
This deferment is what allows circularity to arise when

Fig. 12. The basic idea of the approach.

liveness properties are mutually dependent. Thus, in order
to obtain sound conclusions about liveness properties
of an assembly, there should be no cycles of depen-
dence among liveness properties guaranteed by different
components [49].

All the discussion that follows focuses on liveness and
omits the safety part of specifications. Safety is addressed
by closure and computation of component actions as
described in Section V (see also part B of the Appen-
dix). In the computations, safety is taken into account
in the Step operator within the Attractor and Trap

operators.

B. The Basic Algorithm

Consider two components 1 and 2. Suppose that we
want their assembly to satisfy the property L � �♦Goal.
We want to find liveness properties L1, L2 for each com-
ponent that are realizable and conjoined imply L. If L is
realizable by component 1 alone, then we can let L1 be L
and L2 be TRUE. The interesting case is when accomplish-
ing L requires interaction between components. The basic
idea is shown in Fig. 12. For the objective Goal, the set

A � Attractor1(Goal)

contains those states from where component 1 can control-
lably lead the assembly to the Goal. Component 1 cannot
ensure that Goal will be reached from outside A. So we
need to relax the requirement �♦Goal on component 1,
by disjoining another liveness property. Suppose that we
could find a set TrapUntilA from where component 2 can
reach A and component 1 can keep the assembly inside
TrapUntilA until A is reached. We can then write the
liveness specifications

L2 � �♦¬TrapUntilA
L1 � ♦�TrapUntilA ∨ �♦Goal.

1634 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Property L2 is realizable by component 2 (because it can
reach A, which is outside TrapUntilA). If the set

C � Attractor1(A ∨ TrapUntilA)

covers all of the assembly’s initial conditions, then the
property L1 is realizable by component 1 from these initial
conditions. Realizability ensures that L1 and L2 are imple-
mentable. Assembling the implementations specified by L1

and L2, we can deduce that the assembly satisfies L1 ∧L2,
and by

(L1 ∧ L2) ⇒ �♦Goal

the assembly will operate as desired.
We could have simply found Attractor2(A) (from where

component 2 can lead the assembly to A), and continued
alternating among players, until a fixpoint is reached. The
resulting specifications would be chains of nested implica-
tions between recurrence goals, so not in GR(1) [124]. The
construction described can be regarded as subtracting goals
from each other, in order to avoid nested dependency.

We did not say how traps are computed, which we do
now. Two attributes characterize a trap.

• Component 2 should be able to ensure that the behav-
ior reaches A.

• Component 1 should be able to ensure that the behav-
ior remains within the trap until A is reached.

The largest set that satisfies the first attribute is the
attractor

B � Attractor2(A).

The trap should be a subset of B. The largest subset of B
that satisfies the second attribute can be computed as the
greatest fixpoint

C � Trap1(B,A).

The above is a shorthand for the trap operator defined
in Section III-D, with B corresponding to Stay and A to
Escape. Subscript 1 signifies that component 1 is exis-
tentially quantified within the controllable step operator.
By definition of a trap,

(C ⇒ B) ∧ (A⇒ C).

So the desired trap set is

T � C ∧ ¬A.

These sets are illustrated in Fig. 13. Letting
TrapUntilA � T , we obtain realizable properties L1, L2

(the full specifications include safety, initial conditions,

Fig. 13. How traps are constructed (simple case).

and are defined using Unzip, but this section focuses on
the liveness parts).

The basic decomposition problem we are interested in,
in the presence of full information, is the following (we
use two variables for brevity, the statement generalizes
to multiple variables). A more detailed statement that
includes safety and an environment is given in part B of
the Appendix.

Problem 4: Let variable x represent component 1,
and variable y component 2. Let P (x, y) be a
(satisfiable) closed-system property with �♦Goal(x, y) as
liveness. Assume that P in each step allows nonunique
changes to at most one of x, y.

Algorithm 2: Basic algorithm for decomposing a recur-
rence goal, in the presence of full information. Compo-
nents 1 and 2 are Player, Team, respectively.

def DECOMPOSEGOAL(G, P layer, Team) :
Traps := list()
Y := G
Y old := CHOOSE r : r �= Y
while Y �= Y old :

Y old := Y
A, T := MAKEASSUMPTION(Y, P layer, Team)
Traps.append(T)
Y := A ∨ T

return Y, Traps

def MAKEASSUMPTION(Goal, P layer, Team) :
A := Attr(Goal, P layer)
B := Attr(A, Team)
T := Trap(B, A, P layer) ∧ ¬A
return A, T

Find temporal properties ψ1, ψ2 with GR(1) liveness
such that IsRealizabley;x(ψ1) ∧ IsRealizablex;y(ψ2) and�
ψ1(x, y) ∧ ψ2(x, y)

�⇒ P (x, y).

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1635

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 14. An example where a trap is found.

Theorem 5: ASSUME: Algorithm 2 returns a Y such
that Inv ⇒ Y , and Inv is satisfiable, where Inv as in
Section V.

PROVE: The properties ψ1(x, y), ψ2(x, y), with live-
ness (�♦Goal(x, y)) ∨�i ♦�Ti(x, y) and

�
i �♦¬Ti(x, y),

respectively, solve Problem 4, where Ti are the traps
returned by Problem 2.

The above result can be applied also to other approaches
(e.g., based on raw TLA+ or LTL), with suitable changes to
IsRealizable and the safety part of specifications.

This algorithm derives from an earlier version for the
case without hidden variables [124], [135]. Covering
all initial conditions of the assembly is not possible in
general [124, §III-B], unless either safety is restricted
[136, §V], or a syntactic fragment larger than GR(1)
is used [124, §IV-A], which is equivalent to using auxil-
iary variables hidden by temporal quantification. Although
possible, in this paper, we do not apply any of these
modifications to the specification, because the cases that
require them [124, Prop. 6] indicate that it is better for the
specifier to reconsider the specification.

C. Finding Assumptions in More Cases

Forming a trap is the key step for constructing liveness
assumptions. But the approach of Section VI-B can fail to
find a trap, even in cases when our intuition suggests oth-
erwise. The reason is too small a setB causing Trap1(B,A)

to be empty. We use an example to explain why, and then
a solution.

Example 7: Consider the graph shown in Fig. 14. Com-
ponent 1 chooses the next node when at a disk, and com-
ponent 2 when at a box. A trap is found for Fig. 14, because
component 2 can reach A from both nodes s3 and s4.
Fig. 15 shows a modification with the edge 〈s3, s2〉 added.
No trap is found in this case, because B∧¬A contains only
node s4, so component 2 can move “backwards” from s4 to
s3. So a largerB is needed, but why didB shrink compared
to Fig. 14?

The set B shrunk because component 2 can no longer
reach A from node s3. Nevertheless, this inability is irrel-
evant in the context of constructing a persistence goal
for component 1. While pursuing the persistence goal
T that we are about to construct, component 1 is not
going to move backwards (s3 to s2), because it would
interrupt its attempt to remain forever within T . It is
this behavior that the specifier’s intuition suggests. But

component 2 is unaware of this premise, and neither
can it depend on what component 1 will do, in order to
avoid circularity (remember that we are discussing about
liveness properties).

Enlarging B by the successors of states from where
component 2 can “escape” out of B can avoid the issue
described above. The result is shown in Fig. 16. Let the
state predicate Escape mean that the current node is s3.
Define

Basin � B ∨ Escape.

We seek a trap within Basin, so a trap T that satisfies the
implication

T ⇒ Basin.

If component 1 can escape outside Basin, then it can
escape outside T too, by the contrapositive

(¬Basin) ⇒ ¬T

Thus, there is no loss in relaxing the goal A to A∨¬Basin
for component 2. The corresponding attractor is

D � Attr2(A ∨ ¬Basin) ∧ ¬(A ∨ ¬Basin)

and accounts for the intent of component 1 to remain
forever inside the trap T that is about to be computed.
This relaxation of objective is shown in Fig. 16. The larger
attractor D enables a trap to form; the set of states

T � Trap1(D,A) ∧ ¬A

is nonempty. Moreover, Attr1(T ∨ A) covers all nodes.
So the components can realize the properties

Component 2 : L2 � �♦¬D
Component 1 : L1 � ♦�T ∨ �♦Goal

Fig. 15. The simple approach cannot find a trap in this example.

Compared to Fig. 14, the failure is due to the edge �s�, s��.

1636 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 16. Including the states where component 2 can escape

allows finding the trap suggested by the specifier’s intuition.

Instead of an empty trap, we obtained a contract, because
T ⇒ D, so L2 ⇒ �♦¬T . The issue discussed in this section
does arise in practice; for instance, in the landing gear
example of Section VIII.

The above discussion referred to individual states.
A symbolic approach relies on manipulating collections of
states. Fig. 17 illustrates how what we described above
is symbolically implemented. The Basin is initialized as
(the symbol := indicates that the identifier Basin is going
to change value during the algorithm’s execution, in later
sections)

Basin := Attr2(A).

The states from where component 2 can force a step that
exits the Basin are those in the set

Holes := Basin ∧ Step2(¬Basin).

Steps from Holes to the exterior of Basin lead to the set

Escape := Out ∧ Image(Holes)

where Image is the existential image operator (all
unprimed flexible variables are existentially quantified),
defined as

Image(x,y, Source(,), Next(, , ,)) �
∃p, q : Source(p, q) ∧Next(p, q, x, y)

The resulting Basin is used for computing D := Attr2(A∨
¬Basin)∧Basin∧¬A and Trap1(D,A)∧¬A. If the latter
is nonempty, then we have found a trap. Otherwise, the
above computation is iterated using the larger Basin as
described in the following sections.

Theorem 6: Algorithm 3 solves Problem 4, similarly to
Theorem 5, in more cases than Algorithm 2.

Fig. 16 is a problem where Algorithm 3 returns a decom-
position, whereas Algorithm 2 does not.

D. Taking Observability Into Account

So far we ignored that each component observes dif-
ferent information. What information is available depends

Fig. 17. Collecting escapes that can cause a trap set to not form.

Algorithm 3: Extended algorithm that finds decomposi-
tions in more cases. The procedure DECOMPOSEGOAL is
the same as in Algorithm 2 and is not shown here.

def MAKEASSUMPTION(Goal, P layer, Team) :
A := Attr(Goal, P layer)
Basin := Attr(A, Team)
Escape := TRUE
while (¬ |= Escape ≡ FALSE) :

Out := ¬Basin
Holes := Basin ∧ Step(Out, Team)
Escape := Out ∧ Image(Holes ∧ Inv, Team)
Basin := Basin ∨ Escape
TeamGoal := A ∨ ¬Basin
D := Attr(TeamGoal, Team) ∧ Basin
T := Trap(D, A, P layer) ∧ ¬A

return A, T

on the parameter values (Section V). Each component
specification should be expressed using only variables that
it observes, which is not the case in previous sections.
In order to ensure this property, we use the following
operators. The operator Maybe takes a state predicate
P (r, x, y) and if r is hidden, then Maybe is true at states
that could possibly satisfy P (if r is visible, then Maybe

is equivalent to P). The parameter m determines whether
r is visible. The operator Observable describes states that
could possibly satisfy the state predicate Inv (with respect
to hidden variables), and at which it is possible to observe
whether we are inside P provided that we are inside R

Maybe(v, x, y, m, P (, ,))
Δ
=

∃h : LET r
Δ
= Mask(m, v, h)

IN P (r, x, y)

Observable(v, x, y, m, P (, ,),

R(, ,), Inv(, ,))
Δ
=

∧Maybe(v, x, y, m, Inv)
∧∀ h : LET r

Δ
= Mask(m, v, h)

IN R(r, x, y)

⇒ P (r, x, y) P is observable within R.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1637

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 18. Accounting for observability when computing

assumptions.

Some operator arguments are omitted in the discussion
below. Expressing specification objectives using only visible
variables allows for using the Step operator with suit-
ably parametrized component and environment actions
(Section V-C). Thus, we can apply the Attractor and Trap
operators. The sets of states when observability is taken
into account are shown in Fig. 18. The indices correspond
to components, with the mask parameters that correspond
to each of them. The main difference with Section VI-C
is that observability is required when alternating between
components. Specifically:

• Goal is replaced by G � Obs1(Goal) for computing A;
• A is replaced by U � Obs2(A) for computing D;
• D is replaced by Stay � Obs1(D) for computing T .

The next theorem establishes the connection between
these objectives of components 1 and 2. The theorem is
stated without mentioning the parameters, but applies also
to parametrized computations.

Theorem 7 (Soundness): ASSUME: The sets of states
D and T are computed as in Fig. 18. PROVE: The property

P � �♦¬D

is realizable by component 2. The property

Q
Δ
= � ∨ ¬(T ∨A)

∨ (♦� T) ∨ ♦A

is realizable by component 1. The implication holds

|= (T ∧ Inv) ⇒ D.

A detailed proof can be found in the Appendix.
Proof Sketch: By its definition, D is contained in

Basin∧¬U , so (U∨Out) ⇒ ¬D. States in D are contained

in the attractor of U ∨Out, so the property �(D ⇒ ♦(U ∨
Out)) is realizable by component 2. Thus, �(D ⇒ ♦¬D) is
realizable by component 2, and this property is equivalent
to �♦¬D. This proves the first claim.

From the trap Z � Trap1(Stay,A), component 1 can
either eventually reach A or remain forever within Z∧¬A,
where (Z ∧ ¬A) ≡ T . By definition of T , it follows that
(T ∨A) ⇒ Z. So from any state in T ∨A, component 1 can
realize ♦A ∨ ♦�T . This proves the second claim.

By definition of T , T ⇒ Stay. By definition of Stay,
(Stay ∧ Inv) ⇒ D. Thus, (T ∧ Inv) ⇒ D.

Theorem 7 implies that component 1 cannot prevent
component 2 from reaching ¬D. So it ensures that com-
ponent 1 cannot stay forever within T , and that if the
behavior exits T , then component 1 can ensure A is
reached. As component 2 moves toward ¬D, the behavior
does exit T . Therefore, progress of component 2 can be
utilized by component 1 for progress toward its recur-
rence objective A. Theorem 7 is the building block for
computing more complex dependencies of objectives. For
a single recurrence goal of component 1, multiple traps
may be needed to cover the desired set of states (for
which we use the global invariant Inv). If the procedure
MAKEPINFOASSUMPTION computes A,T,D, then by iterat-
ing this procedure until a least fixpoint is reached, we can
find several traps, such that the corresponding persistence
objectives suffice in order to eventually reach the Goal.
This use is illustrated by the pseudocode

Y := Observable1(Goal)

Y old := CHOOSE r : r �= Y

while Y �= Y old :

Y old := Y

A, T,D := MAKEPINFOASSUMPTION(Y, . . .)

(∗ . . . store D∗)

Y := A ∨ T.

The procedure MAKEPINFOASSUMPTION is defined in
Section VI-F. This computation is in analogy to the least
fixpoint computed for one goal in a GR(1) game [118].

Problem 8: Let variables x1, . . . represent component 1
and variables y1, . . . represent component 2, and turn
a scheduler. Let P (x1, . . . , y1, . . . , turn) be a (satisfiable)
closed-system property, with �♦Goal(x1, . . . , y1, . . . , turn)

as liveness. Assume that P in each step allows nonunique
changes to at most one of the components, in a turn-based
way via the scheduler.

Find those subsets of variables xa, . . . and yp, . . . , and
properties ψ1(x1, . . . , yp, . . . , turn), ψ2(xa, . . . , y1, . . . , turn)

with GR(1) liveness that depend on only the vari-
ables shown, such that IsRealizablex1,...,turn;yp,...(ψ1) ∧
IsRealizablexa,...,turn;y1,...(ψ2), and

�
ψ1(x1, . . . , yp, . . . ,

turn) ∧ ψ2(xa, . . . , y1, . . . , turn)
� ⇒ P (x1, . . . , y1, . . . ,

turn).

1638 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Algorithm 4 soundly solves Problem 8, as follows.

Algorithm 4 : Algorithm for constructing contracts of
recurrence-persistence pairs.

Theorem 9: Let the parameters m take values that
correspond to making variables xa, . . . visible to compo-
nent 2, and yp, . . . to component 1. If Algorithm 4 returns
a Y such that for those m values Maybe1(Inv) ⇒ Y ,
and Inv is satisfiable, then the properties ψ1, ψ2 with
liveness

�♦G(x1, . . . , yp, . . . , turn) ∨
�

i
♦�Ti(x1, . . . , yp, . . . , turn)

and

�

i

�♦¬Di(xa, . . . , y1, . . . , turn)

respectively (and safety as in Section V) solve Problem 8.

Example 8: In the charging station example, for
the recurrence goal �♦(req = 0) the trap that is
computed when the robot can observe the variables
free, free x, turn is

T
Δ
= ∧ turn ∈ 1..2 ∧ free ∈ 0..1 ∧ free x ∈ 0..18

∧ pos x ∈ 1..15 ∧ pos y ∈ 1..15 ∧ req ∈ 0..1

∧ ∨ (turn = 1) ∧ (free x ∈ 1..2) ∧ (req = 1)

∨ (free = 0) ∧ (req = 1)

The goal ♦�T ∨ �♦(req = 0) can be understood as
follows. The robot issues a request for recharging by setting
req = 1. It cannot set req = 0 unless it has reached the
position indicated as free by free = 1. The robot is allowed
to wait while free = 0 (the station has not indicated any
spot as available), or until free = 1 and the station has
indicated an available spot, and it is not the robot’s turn
(turn = 1, not 2). The disjunct that involves turn = 1

appears in order to allow the charging station to satisfy the
generated recurrence goal ¬D (given below). If turn = 1

was absent from that disjunct, then the robot could raise a
request (req = 1), and then simply ignore that the station
did react by offering a spot (free = 1), and idle, without
responding by reaching the spot, in order to be able to
set req = 0. In other words, such a larger T would have
relaxed the objective ♦�T ∨ �♦(req = 0) too much.

The trap T corresponds to the recurrence objective
�♦¬D that is generated for the charging station provided
it observes the variables req, occ, turn

D
Δ
=

∧ turn ∈ 1..2 ∧ free ∈ 0..1

∧ free x ∈ 0..18 ∧ free y ∈ 0..18 ∧ occ ∈ 1..3

∧ req ∈ 0..1 ∧ spot 1 ∈ 0..1 ∧ spot 2 ∈ 0..1

∧ req = 1

∧ ∨ ∧ (turn = 1) ∧ (free x = 1) ∧ (free y = 1)

∧ (occ ∈ 2..3) ∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (turn = 1) ∧ (free x = 2) ∧ (free y = 1)

∧ (occ = 1) ∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (turn = 1) ∧ (free x = 2) ∧ (free y = 1)

∧ (occ = 3) ∧ (spot 2 = 0)

∨ ∧ (turn = 1) ∧ (free x ∈ 1..2) ∧ (free y = 1)

∧ (occ = 3) ∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

This recurrence objective requires from the station to
react by indicating some spot as free, and also make sure
that the spot is not taken (as indicated by the variables
spot 1, spot 2). The above expressions were computed
from BDDs by using the approach described in Section VII,
and the conjunct req = 1 was factored out of the disjuncts
for brevity of the presentation.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1639

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

E. Multiple Recurrence Goals
The results of Section VI-D are about one recurrence

goal. By repeating the computation for different recurrence
goals, for example �♦R1 and �♦R2 for component 1,
suitable realizable properties can be found, for example
♦�P1 ∨ �♦R1 and ♦�P2 ∨ �♦R2. However, conjoining
these two properties would not yield a GR(1) property.
Instead, a GR(1) property can be formed by a suitable com-
bination described below, provided that �♦¬P1 ∧ �♦¬P2

are implemented by components that can realize them irre-
spective of how component 1 behaves (unconditionally).

Relaxing a property preserves realizability. More pre-
cisely, if a property P is realizable, and P implies Q, then
Q is realizable.

Proposition 10 (Relaxation): ASSUME:
TEMPORAL P,Q PROVE: (IsRealizable(P) ∧ (P ⇒
Q)) ⇒ IsRealizable(Q).

For what we are interested in, let

L � ∧ ♦�P1 ∨ �♦R1

∧ ♦�P2 ∨ �♦R2

Q � ∨ ♦�P1 ∨ ♦�P2

∨ �♦R1 ∧ �♦R2.

It is the case that L ⇒ Q, so if a component can realize L,
then it can realize Q. The reverse direction does not hold
in general. Nonetheless, if a behavior σ satisfies

σ |= ¬(♦�P1 ∨ ♦�P2)

and σ arises when using a component that implements Q,
then it follows that σ |= �♦R1 ∧ �♦R2. This establishes
the reverse direction in the presence of other components
that implement �♦¬P1 and �♦¬P2. This reasoning leads
to the following theorem.

Theorem 11: Let Q � ∨ ♦�T1 ∨ ♦�T2

∨ �♦R1 ∧ �♦R2

ASSUME: IsRealizable1(Q) ∧ ∧ ¬D1 ⇒ ¬T1

∧ ¬D2 ⇒ ¬T2

PROVE: ∀f : ∨ ¬ ∧ IsARealization1(f,Q)

∧ Realization1(f,Q)

∧ �♦¬D1 ∧ �♦¬D2

∨ �♦R1 ∧ �♦R2

where IsARealization is the modification of IsRealiz-
able that results from making f, g, y0,mem0 arguments.
To emphasize the main points, we have simplified the
notation, lumping all these arguments as f , and letting
subscript 1 indicate component 1. The discussion above
generalizes to more than two recurrence properties in an
analogous way.

F. Detecting Solutions in the Presence of
Parametrization

The implementation of the computation described in
Section VI-D is shown in Algorithm 4. The controllable

step operator, fixpoint and other computations are
parametrized with respect to the communication between
the components, as described in Section V. The parameters
are indexed by component and current recurrence goal,
which is the purpose of passing Team and P layer as
arguments. P layer corresponds to component 1 and
Team to component 2 in earlier sections. The renaming
is in anticipation of discussing the case of more than two
components in Section VI-G2.

Iteratively enlarging the Basin does not necessarily
lead to a monotonic behavior of the trap ηplayer. To see
why, consider the effect of increasing Basin to the com-
putation within the procedure MAKEPAIR, when T is
empty. The TeamGoal shrinks, so Attr(TeamGoal, Team)
may shrink (not necessarily), but Basin ∧ ¬TeamGoal
becomes larger. Thus, D may become larger, leading to
a larger Stay, thus possibly to a nonempty T . This is
possible, but not necessarily the case. The largest Basin is
TRUE, and corresponds to the basic case of Section VI-B,
which can fail as demonstrated by Fig. 15. So enlarg-
ing the Basin after a trap forms can lead (back) to an
empty trap.

To avoid regressing to an empty trap, as soon as a trap
set is found, the iteration should terminate. In absence
of parameters this is a straightforward check whether
ηplayer is nonempty. However, this does not apply to
parametrized computations. Each parameter valuation
defines a “slice” of the state-parameter space, as shown in
Fig. 19. A different number of iterations can be necessary
for a trap to form in each slice. For this reason, as soon
as a trap is found for some parameter values, those are
“frozen” in further iterations, as illustrated in Fig. 20. The
variable Converged is used for this purpose. The operator
NonEmptySlices(ηplayer) � ∃vars : ηplayer abstracts the
variables of all players, in order to find the parameter
values such that ηplayer is not FALSE. This approach
ensures that traps are recorded when found, and that the
iteration terminates.

Theorem 12 (Termination): ASSUME: A finite number
of states satisfies the global invariant Inv. PROVE: Algo-
rithm 4 terminates in a finite number of iterations.

A proof is given in part C of the Appendix.

1) Characterizing the Parametrization: Parameters are
TLA+ constants, also known as rigid variables [10].
Parametrization has a “static” effect: the controllable step
operator quantifies over only (primed) flexible variables,
so the number of quantified variables remains unchanged.
Each “slice” obtained by assigning values to parameters has
diameter (the farthest two states can be apart in number of
transitions) no larger than the state space of the assembly
without any parametrization.

So the number of iterations until reaching fixpoints in
attractor and other computations is the same with and
without parametrization (because the case of no hidden
variables corresponds to a parameter valuation). Similar

1640 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 19. Slices of the state space that correspond to different

assignments of values to the parameters.

observations have been made for the case of parametrized
reachability goals [94, pp. 69, 80].

One difference with parametrization of goal sets is
that those can be encoded directly with existing game
solvers (by letting the parameters be flexible variables con-
strained to remain unchanged [106, Note 16]), whereas
the parametrization of information studied here requires
using substitution (equivalently, rigid quantification) and
quantification in order to hide the selected variables in the
component actions (the resulting parametrized actions can
still be used with the usual controllable step operator).

G. Other Considerations

1) Covering the Global Invariant: The selection of
interconnection architecture (possibly different for each
recurrence goal) is constrained to ensure that the “root”
component (component 1 in the preceding sections) can
realize its recurrence goals from all states that satisfy the
global invariant Inv. The assumption that specifications
do not force immediate component reactions ensures that
when each recurrence goal is reached, a nonblocking
step is possible in transition to pursuing the next recur-
rence goal. So if the states that satisfy the fixpoint Y in
Section VI-D cover the invariant Inv from the viewpoint of

Fig. 20. In iterations of nonmonotonic operators that depend on

parameters, when a solution is found for some parameter values

(a slice), then no further iterations should occur for those values.

the component, then the generated specification is realiz-
able, in particular

|= Maybei(Inv) ⇒ Y

where i indicates the component under consideration. This
constraint is required in order to restrict the parameter
values that constitute admissible solutions. An alternative
formulation is possible, where an outermost greatest fix-
point is computed in order to find the largest set of states
from where the root component can realize its goals, as a
function of the parameters. Nonetheless, if this set of states
does not cover the global invariant, this indicates that the
assembly specification may need modification, in order to
ensure that the assembled system can work from all states
that it is expected to, based on the assembly specification
before decomposition.

2) Systems With More Than Two Components: By apply-
ing Theorem 7 hierarchically in an acyclic way, we can
deduce properties of the assembled implementations from
the component specifications. The previous sections were
formulated in terms of two components. The same
approach applies to multiple components, as follows. The
components are partitioned into a “root” component, and
the rest form a “team.” The decomposition algorithm is
applied to two players: the root component and the team.
In this step, the team is treated as if it was a single player.
The specification that is generated for the team needs to
be decomposed further. This is achieved by applying the
same algorithm recursively, using as goal the generated
¬D. In other words, what is generated as ¬D for the
team at the top layer becomes the Goal for one of the
team’s components at a lower layer of decomposition.
Components are removed, until the team is reduced to a
singleton. We will see an example of this kind with three
components in Section VIII.

When the procedure MAKEPAIR of Algorithm 4 is called
for decomposing a subsystem, the set of states Stay can
result smaller than intuition suggests. The reason is that
when we write specifications by hand, we reason “locally,”
i.e., under the condition that we are constructing a spec-
ification for the team to reach Goal, so we implicitly
condition our thinking in terms of ¬Goal ∧ Inv. This
condition can be applied to the algorithm in order to
improve observability. This modification is obtained by the
replacement

Stay := Observable(D,Within ∧ Inv, Inv, P layer)

where Within is the set of states within which the con-
structed objectives are needed. The tradeoff is that the
resulting persistence goal can “protrude” outside the set
of states Within. What needs to be checked in that case is
that the intersection of the persistence goal with ¬Within
is outside sets where other components depend on that

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1641

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

component (for example, the root component), or other-
wise subsumed by some other persistence goal of the same
component.

3) Switching Interconnection Architecture: Different
recurrence goals can be associated to different
interconnection architectures between components.
To progress toward each goal with the generated
specifications, the system should switch between the
different interconnections. This switching is controlled by
the root component, which is component 1 at the first stage
of decomposition. In each interconnection mode, different
variables are communicated between components. The
root component switches between interconnections when
it observes that the current recurrence goal has been
reached. Each interconnection is signified by the value
of a variable controlled by the root component (an
additional field in the record discussed below). If this
variable is visible to all other components, then switching
occurs in a single step. Otherwise, the change of mode is
propagated from component to component along a fixed
spanning tree over the components (by copying the value
of the mode variable), starting from the root component,
and takes multiple steps to complete. In configurations
that occur intermediately while transitioning from one
interconnection to another, if a component has insufficient
information to change its state (because its neighboring
components have not yet all switched to the new mode),
then the component takes a stuttering step, which is
allowed by its specification, as assumed earlier.

Each component is required to not violate the shared
invariant Inv (via closure of the overall specification),
so no change of another component would lead out-
side that invariant. The decomposition algorithm ensures
that for each interconnection, the components can sat-
isfy the corresponding liveness objective from within this
invariant.

The information available to each component is a pre-
requisite for realizability of its objectives. In the case of
more than one interconnections, the goals of components
are conditioned on the corresponding interconnection
mode. For example, let cnct ∈ 1..2 represent the current
interconnection mode. If in mode 1 decomposition yields
the liveness objective ♦�P ∨ �♦G for a component, then
this becomes ♦�(P ∧ (cnct = 1)) ∨ �♦((cnct = 1) ⇒ G).
This can be regarded as a component assuming that if it
provides enough information to its environment, then it
can request reactions that become feasible for the environ-
ment when that information is available. While informa-
tion availability does not match any interconnection mode,
a component can stutter, because its liveness requirements
are “turned off.”

To model the switching between different interconnec-
tion architectures in TLA+, we formalize the interface
between each pair of components by using a variable that
takes records as values. A record is a function with a finite
set of strings as domain [10, p. 49]. For example, if x, z

are variables that model component 1, then these are not
declared as variables in the specification of component
2, because doing so would make them uninterruptedly
visible to component 2. Instead, a record-valued variable
vars1 ∈ [SUBSET {“x”, “z”} → Val] models the communi-
cation channel from component 1 to component 2. In dif-
ferent interconnection modes, the variable vars1 takes val-
ues with different domain, thus making different variables
of component 1 visible to component 2.

VII. G E N E R AT I N G M I N I M A L
S P E C I F I C AT I O N S

We use binary decision diagrams [24], [137] for the
symbolic computations described in previous sections.
BDDs are typically used in symbolic model checking for
verifying that a system has certain properties [25], [26],
in synthesis of controllers [138], [139] (e.g., as circuits),
and in electronic design automation [140], [141]. These
applications are directed from user input to an answer
of either a decision problem (yes/no), or some construct
(e.g., a circuit) to be used without the need for a human to
study its internal details. When more details are needed,
for example, if the input needs to be corrected, then in
many cases the interaction between human and machine
becomes enumerative, by listing counterexamples, satisfy-
ing assignments, and other witnesses that demonstrate the
properties under inspection.

The BDDs in our approach represent specifications,
so we want to read them. BDDs themselves are not a
representation that humans can easily inspect and under-
stand. For example, the global invariant of the charging
station example was generated from the BDD shown in
Fig. 21. A simple alternative would be to list the satisfying
assignments for this BDD. However, there are 3.9 million
satisfying assignments, so inspection of a listing would not
be very helpful for understanding what predicate the BDD
corresponds to. An additional difficulty is that we work
with integer-valued variables, and these are represented
using Boolean-valued variables (“bits”) in the BDD. We are
used to reading integers, not bitfields.

We are interested in representing the answer
(a specification) in a readable way. A canonical form
for representing Boolean functions is in disjunctive normal
form (DNF). Having to read less usually helps with
understanding what a formula means, so we formulate
the problem as that of finding a DNF formula with the
minimal number of disjuncts necessary for representing
a given Boolean predicate. The next question is how
the disjuncts should be written. In the propositional
case, each disjunct is a conjunction of Boolean-valued
variables. We are interested in integer-valued variables,
so we choose conjunctions of interval constraints of the
form x ∈ a..b. In the context of circuit design the problem
of finding a minimal DNF is known as two-level logic
minimization [27], [142]–[144]. Logic minimization is
useful for reducing the number of physical elements used
to implement a circuit, thus the circuit’s physical area. The

1642 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 21. The binary decision diagram from which the formula of

the global invariant was generated for the charging station example

in Section V-B. The variable names shown are the “bits” that are

used to represent the integer-valued variables. A BDD is not very

suitable to help a human understand what Boolean expression it

represents.

problem of finding a minimal DNF for a given Boolean
function can be formulated as a minimal set covering
problem, and is NP-hard. Algorithms for logic minimization
are typically based on a branch-and-bound search.

We implemented an exact minimal covering algorithm
[27] that is based on a branch-and-bound search,
together with symbolic computation of the essential
prime implicants and cyclic core (primes that are neither
essential nor dominated by other primes) during the
search [145]–[148]. The original algorithm was formu-
lated for the general case of a finite (complete) lattice, and
symbolically implemented for the case of the Boolean lat-
tice [27], [161]. As remarked above, we use integer-valued
variables, so we are interested in the lattice of integer
hyperrectangles. The propositional minimal covering algo-
rithm is not suitable for the case of integer variables,
because the minimization is in terms of constraints on
individual bits, ignoring the relation between the bits
that are part of the same bitfield. This leads to awk-
ward expressions that are difficult to understand. In other
words, the “palette” of expressions available when working
directly with bits is not easy to understand, as opposed
to constraints of the form x ∈ a..b, where x is an integer-
valued variable. For this purpose, we implemented the
exact symbolic minimization method for the lattice of
integer orthotopes (hyperrectangles aligned to axes). The
implementation is available as part of the Python package
omega [149]. Briefly, the problem of finding a minimal
DNF formula of the form we described can be expressed
as in Fig. 22, where f is the Boolean function that is
represented as a BDD and a formula is to be found. The
Domain in our approach is a Cartesian product of integer
variable ranges.

A useful feature of the approach is the possibility of
defining a care predicate (that defines a care set). A care
set can be thought of as a condition to be taken as “given”
by the algorithm when computing a minimal DNF. For
example, consider the formula

∨ (x ∈ 1..5) ∧ (y ∈ 3..4)
∨ (x ∈ 1..2) ∧ (z ∈ 1..3) ∧ (y ∈ 3..4).

Using the care set defined by Care � y ∈ 3..4, the above
formula can be simplified to

∧ ∨ (x ∈ 1..5)
∨ (x ∈ 1..2) ∧ (z ∈ 1..3)

∧ y ∈ 3..4

This transformation is a form of factorization, where the
care predicate is used as a given conjunct. When working
with specifications, such factorization allows using other
parts of the specification (e.g., an invariant), or other
versions (e.g., a predicate before it is modified) to simplify
the printed expressions. Minimization is performed with
respect to a given care predicate.

Besides reading the final result of a symbolic compu-
tation, we have found the method of decompiling BDDs
as minimal DNF formulas over integer-valued variables
an indispensable aid during the development of symbolic
algorithms. Symbolic operations are implicit: the devel-
oper cannot inspect the values of variables as readily as
for enumerative algorithms. It is highly unlikely that any
symbolic program works on first writing. Bugs will usually

Fig. 22. The problem of finding a minimal DNF formula.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1643

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

be present, and some debugging needed. Being able to
print small expressions for the BDD values of variables in
symbolic code has helped us considerably during devel-
opment efforts. Another area of using the algorithm is
for inspecting controllers synthesized from temporal logic
specifications.

Example 9: We show the usefulness of decompiling
BDDs by revisiting the charging station example from
Section V-B. Fig. 21 shows the BDD that results from
computing the invariant of the assembly in that example
(the bits with names starting with i encode the variable
turn). This BDD was obtained after reordering the bits
using a method known as sifting [150], whose purpose is
to reduce the number of nodes in the BDD. Attempting to
decipher what the BDD means is instructive, but not an
efficient investment of time. By applying the minimal cov-
ering algorithm described above, we obtain the following
minimal DNF formula. The meaning of this formula are all
those states from where the robot can repeatedly request a
spot for charging, and the station can respond by commu-
nicating which spot it has reserved for the robot to use

∧ turn ∈ 1..2 ∧ free ∈ 0..1

∧ free x ∈ 0..18 ∧ free y ∈ 0..18 ∧ occ ∈ 1..3

∧ pos x ∈ 1..15 ∧ pos y ∈ 1..15

∧ spot 1 ∈ 0..1 ∧ spot 2 ∈ 0..1

∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2..3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (free x ∈ 1..2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

That the minimization is performed directly for formulas
over integer variables distinguishes this result from what a
propositional approach would yield in terms of bitfields.

VIII. E X A M P L E

The example we consider concerns the subsystems
involved in controlling the landing gear of an air-
craft [124], [151]. Three modules (components) are
involved, as shown in Fig. 23. The autopilot controls the
altitude, flight speed, and mode of the aircraft. The gear
module positions the landing gear, which can be extended,
retracted, or in some transitory configuration. The third
module operates the doors that seal the gear storage area.
The input to the decomposition algorithm is the overall
system specification described below, together with which
variables represent each component. The output are the

Fig. 23. Landing gear avionics. Arrows that enter the dashed

boundary are connected to both modules inside it.

specifications for each component and the interconnec-
tions between components, as described below.

The variables take integer values, with appropriate units
that can be ignored for our purpose here. We specify the
following main properties collectively for these modules:

• if the gear is not retracted, then the doors will be
open;

• if airspeed is above threshold speed, then the doors
will be closed;

• if the aircraft is flying at or below threshold height,
then the gear will be fully extended;

• on ground the gear will be fully extended;
• in landing mode the gear will be fully extended;
• in cruise mode the gear will be retracted and the

doors closed;
• the autopilot will be able to repeatedly enter the

landing and cruise modes.

The specification of the assembled system is given in
Fig. 24 in TLA+.

For brevity, we will let mode ∈ 0..2 in the discussion
below. The components change in a way interleaving
among them, based on the value of the variable turn.
The scheduler changes its state in every vars-nonstuttering
step, So the scheduler changes in a noninterleaving way
with respect to the other components. As in Remark 6, the
scheduler is required to take infinitely many nonstuttering
steps, i.e., �♦〈SchedulerNext〉turn, which allows fixpoint
algorithms where the variable turn changes in each step.
The specification has constant parameters max height, . . .

that define the range of values that the variables height,
speed, door, gear can take. Increasing the values of these
constants produces instances of the specification with more
states reachable.

The first operation is to restrict the assembly spec-
ification in order to ensure that it is machine closed.
The weakest invariant that ensures machine closure
is computed as the states from where the spec-
ification �[Next]vars ∧ Recurrence can be satisfied.
For the constants max height = 100, max speed =

40, door down = 5, gear down = 5, threshold height =

1644 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

75, threshold speed = 30, the resulting invariant is

Inv(door, gear, turn, height, mode, speed)
Δ
=

∧ turn ∈ 1..3 ∧ door ∈ 0..5

∧ gear ∈ 0..5 ∧ height ∈ 0..100

∧ mode ∈ 0..2 ∧ speed ∈ 0..40

∧ ∨ ∧ (door = 0) ∧ (gear = 0)

∧ (height ∈ 76..100) ∧ (mode ∈ 1..2)

∨ ∧ (door = 5) ∧ (gear = 5)

∧ (mode = 0) ∧ (speed ∈ 0..30)

∨ ∧ (door = 5) ∧ (gear = 5)

∧ (mode = 2) ∧ (speed ∈ 0..30)

∨ ∧ (door = 5) ∧ (height ∈ 76..100)

∧ (mode = 2) ∧ (speed ∈ 0..30)

∨ ∧ (gear = 0) ∧ (height ∈ 76..100)

∧ (mode = 2) ∧ (speed ∈ 0..30).

From these states, a centralized controller would be able
to repeatedly enter landing and cruise mode, while taking
vars-nonstuttering steps that satisfy the action Next.

We next examine the actions of the components.
The result of applying the minimal covering method of
Section VII is

AutopilotStep(door, gear, turn, height, mode, speed,

height′, mode′, speed′) Δ
=

∧ turn = 1 ∧ door ∈ 0..5 ∧ gear ∈ 0..5

∧ height ∈ 0..100 ∧ height′ ∈ 0..100

∧ mode ∈ 0..2 ∧ mode′ ∈ 0..2

∧ speed ∈ 0..40 ∧ speed′ ∈ 0..40

∧ ∨ ∧ (door = 0) ∧ (height′ ∈ 76..100)

∧ (mode′ ∈ 1..2)

∨ (gear = 5) ∧ (height′ ∈ 0..75)

∨ (gear = 5) ∧ (mode′ = 0)

∨ ∧ (height′ ∈ 76..100) ∧ (mode′ = 2)

∧ (speed′ ∈ 0..30)

The two conjuncts below were used as care predicate.

∧ Inv(door, gear, 1, height, mode, speed)

∧ (∃ door, gear :

Inv(door, gear, 2, height, mode, speed))′

The action AutopilotStep applies to steps that change
the autopilot. The action that constrains the autopilot
is

AutopilotNext(door, gear, turn, height, mode, speed,

height′, mode′, speed′) ≡

Fig. 24. Assembled-system specification for the landing gear

example.

∧ Inv(door, gear, turn, height, mode, speed)

∧ ∨ AutopilotStep(door, gear, turn, height, mode,

speed, height′, mode′, speed′)

∨ UNCHANGED 〈height, mode, speed〉

Note that only variables that represent the autopilot appear
primed in the action AutopilotStep.

Suppose that we have selected to hide the variable
door. For this choice of variable, the invariant with door
abstracted is

InvWithDoorHidden
Δ
= ∃ door : Inv(

door, gear, turn, height, mode, speed).

Compared to the general case ∃h : Inv(h, x, y):

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1645

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

• door corresponds to h;
• gear, turn to x;
• height,mode, speed to y;

Writing InvWithDoorHidden is simple, but mysterious
without recalling the definition of Inv. We cannot define
the identifier InvWithDoorHidden twice, but we can write
another expression that is equivalent to it. Define

InvH �
∧ turn ∈ 1..3

∧ gear ∈ 0..5 ∧ height ∈ 0..100

∧ mode ∈ 0..2 ∧ speed ∈ 0..40

∧ ∨ ∧ (gear = 0) ∧ (height ∈ 76..100)

∧ (mode ∈ 1..2)

∨ ∧ (gear = 5) ∧ (mode = 0) ∧ (speed ∈ 0..30)

∨ ∧ (gear = 5) ∧ (mode = 2) ∧ (speed ∈ 0..30)

∨ ∧ (height ∈ 76..100) ∧ (mode = 2)

∧ (speed ∈ 0..30)

This expression was obtained by decompiling the BDD
that results after door has been existentially quantified
in the BDD representing Inv. This fact can be expressed
by writing THEOREM InvH ≡ InvWithDoorHidden. How
InvH was obtained proves this equivalence. Note that the
type hints were used as the care set in this case, because
the invariant implies them. Also, note that InvH constrains
all visible variables to be within the defined bounds. The
autopilot action that results after hiding the variable door
from the autopilot is

SimplerAutopilotStep
Δ
=

∧ gear ∈ 0..5 ∧ height ∈ 0..100 ∧ height′ ∈ 0..100

∧ mode ∈ 0..2 ∧ mode′ ∈ 0..2

∧ speed ∈ 0..40 ∧ speed′ ∈ 0..40

∧ ∨ (gear = 5) ∧ (height′ ∈ 0..75)

∨ (gear = 5) ∧ (mode′ = 0)

∨ ∧ (gear ∈ 0..4) ∧ (height′ ∈ 76..100)

∧ (mode ∈ 0..1) ∧ (mode′ ∈ 1..2)

∨ ∧ (height′ ∈ 76..100) ∧ (mode′ = 2)

∧ (speed′ ∈ 0..30)

∨ ∧ (height′ ∈ 76..100) ∧ (mode′ ∈ 1..2)

∧ (speed ∈ 31..40)

∧ LET turn = 1 IN InvH

∧ (∃ turn, gear : InvH)′

where again we used the invariant as care set,
in order to structure the resulting formulas more clearly,
and modularize the covering problem. The operator
SimplerAutopilotStep defines the autopilot action by

letting

SimplerAutopilotNext(gear, turn, height, mode, speed,

height′, mode′, speed′) Δ
=

∧ InvH

∧ ∨ (turn = 1) ∧ SimplerAutopilotStep

∨ UNCHANGED 〈height, mode, speed〉

We chose to structure the autopilot action in this way
because we already knew that the specification has an
interleaving form. Hiding did not change the interleaving,
but it did change how the autopilot is constrained when
turn = 1. The environment action SimplerEnvNext is
obtained after existential quantification of door and door′

from the environment action. The scheduler remains the
same, changing turn in each step. In the gear module’s turn
(turn = 3), the action is

SimplerGearModuleNext
Δ
=

∧ gear ∈ 0..5 ∧ gear′ ∈ 0..5

∧ height ∈ 0..100 ∧ mode ∈ 0..2

∧ speed ∈ 0..40

∧ ∨ (gear ∈ 0..4) ∧ (gear′ = 0)

∨ (gear ∈ 1..5) ∧ (gear′ = 5)

∨ ∧ (height ∈ 76..100) ∧ (mode = 2)

∧ (speed ∈ 0..30)

∧ LET turn
Δ
= 3 IN InvH

∧ (LET turn Δ
= 1

IN ∃ height, mode, speed : InvH)′

This action includes primed values of both gear module
and scheduler, because both form part of the autopilot’s
environment. The invariant has been used to define the
care predicate (the last two conjuncts), which allowed for
a simpler formula to be found.

The next step is the construction of the liveness parts
of component specifications. Writing liveness specifications
in this example is not as simple as it may appear. If we
were to write these specifications by hand, a naive first
attempt could be to assert that whenever the autopilot
requests that the doors open and the landing gear is
extended, the door and gear modules react accordingly.
Such a specification would be incorrect, because it is too
strong an assumption by the autopilot module, and too
strong a guarantee for the door module. The door module
cannot realize this requirement, because the autopilot is
allowed to require this reaction while keeping the airspeed
above threshold speed. This would prevent the doors from
opening, thus the door module cannot realize this objec-
tive. Errors of this kind cannot result from the contract
construction algorithm, because the way that it finds the
module specifications ensures that each module can realize
its own specification.

1646 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

For constructing liveness specifications, we start with the
autopilot as the “root” module, and the door module and
gear module lumped into a “team.” The basic algorithm
described in Section VI-B cannot find a trap set, which
demonstrates why the algorithm described in Section VI-C
is needed. The reason is illustrated in Fig. 25, when the
current goal of the autopilot is to enter cruise mode. The
autopilot can enter cruise mode from the intermediate
mode when the gear is retracted (up). The gear can retract
when extended, but it could also idle, leading to the node
on the bottom left (each node corresponds to several
states). In that node, it is the autopilot’s turn, and the
autopilot could idle, or change the height to less than or
equal to threshold height. This would prevent the gear
from retracting. Therefore, the bottom left node is not
in the team’s attractor of A (the autopilot’s attractor of
cruise mode). This leads to an empty trap when the basic
algorithm is used. By using the approach of Section VI-C,
the Basin is enlarged to incorporate the bottom left node,
and a weaker goal is generated for the gear. This goal takes
into account that the gear should reach eitherA, or the top
left node. The autopilot has a choice to not go backwards,
thus it can keep the behavior within the two bottom left
nodes, until the gear does retract.

Algorithm 4 produces specifications for the autopilot
and the lumped door and gear modules. Different mask
parameters are used for each recurrence goal, thus dif-
ferent interconnection architectures. The goal that is gen-
erated for the lumped modules is used as the goal in a
recursive call to Algorithm 4. This recursive call refines
the interconnection architecture further, by generating
separate specifications for the gear module and the door
module. We show next the generated specifications for
when the goal of the autopilot is to enter cruise mode. The
autopilot trap is

AutopilotTrap
Δ
=

∧ turn ∈ 1..3 ∧ door ∈ 0..5 ∧ height ∈ 0..100

∧ mode ∈ 0..2 ∧ speed ∈ 0..40

∧ ∨ ∧ (turn = 2) ∧ (height ∈ 76..100)

∧ (mode = 2) ∧ (speed ∈ 0..30)

∨ ∧ (door ∈ 1..5) ∧ (height ∈ 76..100)

∧ (mode = 2) ∧ (speed ∈ 0..30)

and the resulting persistence objective ♦�(AutopilotTrap∧
(cnct = 0)). As expected, the autopilot is allowed to keep
waiting while the doors are still open (door ∈ 1..5 in
second disjunct), and until the gear reacts, only provided
the autopilot has reached and maintains the height above
the threshold (height ∈ 76..100), and it keeps the mode
to intermediate. The last two constraints are required
because height below the threshold, or mode equal to
landing would prevent the gear from being able to retract.

Notice that the autopilot does not need to observe the
gear state, only the door state, because when the doors
close, the global invariant Inv implies that the gear
has been retracted too. Therefore, the specification of
the autopilot in this interconnection mode is expressed
without occurrence of the variable gear.

The corresponding recurrence goal �♦((cnct �= 0) ∨
¬DTeam) for the door-gear subsystem is defined by

DTeam
Δ
=

∧ turn ∈ 1..3 ∧ door ∈ 0..5 ∧ gear ∈ 0..5

∧ height ∈ 0..100 ∧ mode ∈ 0..2

∧ ∨ ∧ (turn = 2) ∧ (gear = 0)

∧ (height ∈ 76..100) ∧ (mode = 2)

∨ ∧ (door = 5) ∧ (height ∈ 76..100)

∧ (mode = 2)

∨ ∧ (door ∈ 1..5) ∧ (gear = 0)

∧ (height ∈ 76..100) ∧ (mode = 2).

While the doors are open (door = 5 in second disjunct,
or door ∈ 1..5), the subsystem is required to change by
closing the door, which implies retracting the gear. When
both gear have been retracted (gear = 0) and doors closed
(door = 0), then the subsystem needs to wait until the
autopilot’s turn. The earliest this can happen is by the
gear retracting (turn = 3) and then the doors closing
(turn = 2), hence the turn = 2 in the first disjunct.

From the subsystem’s viewpoint, both of the variables
door and gear are visible, so its specification in this inter-
connection mode mentions both. Notice that there is no
mention of speed, because it is unnecessary information for
reaching cruise mode. If the doors are already closed, then
they need not open while transitioning from intermediate
to cruise mode, so they need not know the airspeed.
If the doors are currently open, then the invariant Inv
implies that the airspeed is below the threshold, and that
the autopilot will maintain this invariant. The airspeed is
unnecessary information while the doors transition from
open to closed.

The variable cnct is introduced to define the current
interconnection mode, and is controlled by the autopilot.
When cnct changes, the other modules are constrained to
change the information that they communicate, by chang-
ing the domains of the record-valued variables that are
used for communication between the modules.

When the subsystem of gear module and door module is
decomposed into two separate components, using ¬DTeam
as the goal, the generated specifications are as follows. For
the gear module

Gear Trap
Δ
=

∧ turn ∈ 1..3 ∧ door ∈ 0..5

∧ gear ∈ 0..5 ∧ height ∈ 0..100 ∧ mode ∈ 0..2

∧ ∨ ∧ (turn = 2) ∧ (gear = 0)

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1647

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

Fig. 25. The reason why the algorithm of Section VI-C is useful in

the landing gear example. This description is simplified, in that it

corresponds to a specification with the constraint

�mode � “cruise”�⇒ �gear � 0� in AutopilotNext .

∧ (height ∈ 76..100) ∧ (mode = 2)

∨ ∧ (door ∈ 1..5) ∧ (gear = 0)

∧ (height ∈ 76..100) ∧ (mode = 2)

and for the door module

D Door module
Δ
=

∧ turn ∈ 1..3 ∧ door ∈ 0..5 ∧ gear ∈ 0..5

∧ ∨ (turn = 2) ∧ (gear = 0)

∨ (door ∈ 1..5) ∧ (gear = 0)

Again, these goals are conditioned using the current inter-
connection cnct. The above specifications can be under-
stood as follows. The gear assumes that the doors will
close, provided the gear has retracted itself (conjunct
gear = 0). The gear cannot assume that the doors will
close while the gear is still extended, because that would
be too strong an assumption. It would be realizable by
the gear, but unrealizable by the doors. Similar to what
we remarked about the autopilot earlier, this is an error
that could arise if we specified the subsystem goals by
hand, instead of generating them automatically. Provided
the gear has retracted, it is allowed to wait until the
door retracts, and also until it is the autopilot’s turn. Note

Fig. 26. Communicated variables when goal is cruise mode.

Fig. 27. Communicated variables when goal is landing mode.

that the gear does not receive speed information in this
interconnection, which is shown in Fig. 26. For the doors,
the requirement is that if the gear has retracted (gear = 0),
then the doors should not be open (door ∈ 1..5).

The above discussion corresponds to the interconnec-
tion architecture while the autopilot has cruise mode as
its current goal. A different interconnection architecture,
shown in Fig. 27, is computed to allow the autopilot to
reach landing mode. The resulting specifications have an
analogous structure with those described above, though
the direction of change for the entire system is the opposite
(the autopilot should lower the airspeed to allow the doors
to open, and also change from cruise to intermediate
mode, then the autopilot is allowed to wait for the doors to
open, and for the landing gear to extend, then the autopi-
lot can enter landing mode). An interesting observation
regarding the connectivity in Fig. 27 is that the gear needs
to observe both mode and speed. This requirement results
because the gear module needs to be able to observe
globally that the doors are still within D Door module,
which requires information about the mode and speed.
However, we would expect this to be information necessary
only to the door module. Indeed, by using the complement
of the subsystem goal as Within to change Stay :=

Observable(D, Inv, Inv, P layer) in Algorithm 4 to Stay :=

Observable(D,Within ∧ Inv, Inv, P layer), as described in
Section VI-G2, the generated specification for the gear
becomes independent of mode and speed, and those signals
are removed from the interconnection architecture. The
resulting persistence goal for the gear becomes weaker.
In this example, there is one trap formed for the subsystem,
so this weakening is admissible. In problems where this
is not the case, either an interconnection architecture
with more information sharing needs to be used, or the
weaker persistence goals checked to ensure that they do
not intersect with other traps, or are contained within the
persistence goal for the same component within another
subsystem trap.

The above example demonstrated the applicability of
the proposed approach to systems with multiple com-
ponents, by recursive decomposition, and by construc-
tion of interconnection architectures with only necessary
information shared between components. An implementa-
tion of the algorithms described is available in a Python
package [152].

1648 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

IX. C O N C L U S I O N A N D F U T U R E W O R K

In this paper, we developed an approach for decom-
posing the temporal logic specification of an assembly to
opensystem component specifications that form a contract.
We defined contracts based on a formalized definition of
realizability, the notion of open-system, and defined an
operator for forming open-systems from closed-systems.
The decomposition approach relies on generating liveness
requirements for individual components in a way that
leads to acyclic dependencies. In order to hide unnecessary
external information from each component, we parame-
trized contract construction with respect to the intercon-
nection architecture, and showed how variables can be
eliminated from component specifications. The generated
specifications were decompiled from BDDs by using a
symbolic minimal covering algorithm, adapted to the case
of integer variables. Directions for future investigation
include reducing the sharing of information further, relax-
ing the scheduling assumptions (about the turn variable),
generating more readable specifications, and comparing
different formalizations of contracts and synthesis.

A P P E N D I X

A. General Remarks

Remark 7: When we refer to “sets” of variables, these
sets are not sets in the object language (here TLA+), but in
the metatheory [153].

Remark 8: It is possible to define the operator Earlier
(Section IV-B3) by using a modified satisfaction relation |=
in raw TLA+, but we will omit this definition here.

Remark 9: The expression ∃y′ is ungrammatical in TLA+

[10, p. 281, p. 110]. Instead we should write fresh rigid
variables, for example ∃v. Having said this, we use ∃y′
because it makes reading easier (see also [154, Sec. 2.2.2
on p. 6]).

Remark 10 (Recursive Operator Definitions): Recur-
sive operator definitions (as those in Fig. 6) are part of
TLA+2 [109].

Remark 11 (Collection Versus Set): Not every state-
ment in ZF defines a set. Some statements describe collec-
tions that are too large to be sets [10, p. 66]. In naive set
theory, this phenomenon gives rise to Rusell’s and other
paradoxes [108]. A collection that is not a set is called a
proper class [155, p. 20]. The semantics of TLA+ involve
states that assign values to all variable names. Any finite
formula we write will omit some variable names. For each
state that satisfies the formula, we can assign arbitrary
values to variables that do not occur in the formula, and
thus obtain another state that satisfies the same formula.
Thus, the collection of states that satisfy a formula is not
a set [116, p. 65] (within the theory that the semantics
is discussed). So to accommodate for TLA+ semantics we
should use the term “collection” instead of “set.” However,
to use common terminology and for brevity, we will refer

to “sets” of states, even when “collection” would be appro-
priate.

Remark 12: Realizability can be defined without design
of initial conditions for the component (y0 in Fig. 5).
In that case the component specification should not con-
strain the initial condition [116, §3.3, pp. 14–16]. Initial
conditions then become part of an antecedent. In con-
sequence, a conjunction of realizable component speci-
fications would not imply a closed-system property. The
choice between these different definitions is a matter of
specification style.

Remark 13: The operator Step defined in Section III-D
corresponds to specifications where in each step at most
one component can change its state in multiple ways.
For more general specifications, the corresponding Step

operator is

GeneralStep(x, y, Target(,))
Δ
= ∃ y′ :

∧ SysNext(x, y, y′)

∧ ∀ x′ : ∨ ¬EnvNext(x, y, x′)

∨ ∧ AssemblyNext(x, y, x′, y′)

∧ Target(x′, y′)

The general case is mentioned for completeness.

Remark 14: In the full information case, the assumption
that in each step at most one component can change
in a nonunique way ensures determinacy [119], which
allows for decomposition with an algorithm that extends
Algorithm 2 [136, Ch. 10], [124]. The algorithms we
described can be extended also to a setting without the
assumption about nonunique changes, by using the opera-
tor GeneralStep in fixpoint computations [136, §9.5].

Remark 15: In Fig. 6, Goal is a first-order operator.
An attractor definition with Goal being a set is possible
too [156, §IV-A].

Remark 16 (Comparison of WhileP lusHalf to +−�):
Only v is constrained in the first state of the suffix, thus
the “half” in the name of WhileP lusHalf . In contrast, the
operator +−� constrains both u and v in the first state of
the suffix. For disjoint-state specifications, this additional
constraint results in unrealizability, using the definition
of synthesis from Section III-C. To obtain a realizable
property, the property G should be sufficiently permissive
[116, §5.2.4, pp. 26–27]. Relaxing G can lead to under-
specification, which motivates defining WhileP lusHalf .

Remark 17 (Defining Closure): The closure of a tempo-
ral property can be defined as follows [8], [48, Sec. 5.3],
[64, Sec. 2.1 on p. 52]:

MustUnstep(b)
Δ
= ∧ b = TRUE

∧ �[b′ = FALSE]b

∧ ♦(b = FALSE)

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1649

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

SamePrefix(b, u, x)
Δ
= �(b⇒ (u = x))

Front(P (), x, b)
Δ
= ∃∃∃∃∃∃u : P (u) ∧ SamePrefix(b, u, x)

Cl(P (), x)
Δ
= ∀∀∀∀∀∀ b : MustUnstep(b) ⇒ Front(P, x, b)

Remark 18: Let Phi(x1, . . . , y1, . . .) be a temporal prop-
erty. The notation IsRealizablexa,xb,...;y1,...(Phi) is a short-
hand for

Realization(xa, xb, . . . , y1, . . . , f1, . . . , g,
y01, . . . ,mem0) �

∃∃∃∃∃∃mem :
LET v � 〈mem,xa, xb, . . . , y1, . . . 〉

A � ∧ y′1 = f1[v]
∧ y′2 = f2[v]
...
∧mem′ = g[v]

IN ∧ 〈mem,y1, . . . 〉 = 〈mem0, y01, . . . 〉
∧ �[A]v ∧ WF〈mem,y1,... 〉(A)

IsRealizable(Phi(, . . .)) �
∃f1, . . . , g, y01, . . . ,mem0 :

∧ IsAFiniteFcn(f1) ∧ · · · ∧ IsAFiniteFcn(g)

∧ LET R(ua, ub, . . . , v1, . . .) � Realization(

ua, ub, . . . , v1, . . . , f1, . . . , g,

y01, . . . ,mem0)

IN ∀∀∀∀∀∀x1, . . . , y1, . . . :

R(xa, xb, . . . , y1, . . .) ⇒ Phi(x1, . . . , y1, . . .)

Remark 19: In the definition of a contract
(Section IV-A), we use operators A(, . . .), . . . to specify
components, and refer to variables x, . . . , w. Formally,
a statement of the form VARIABLES x, . . . , w declares
these variables in the current context [10, §3.1, §17.3,
§17.5.2].

Alternatively, we can use temporal quantification, as fol-
lows:

∧ IsRealizable1(A) ∧ · · · ∧ IsRealizablen(W)

∧ ∀∀∀∀∀∀x, . . . , z :
�
A(x, . . .) ∧ · · · ∧W (. . . , z)

�⇒ Phi(x, . . .)

The effect of a temporal quantifier includes declaring
the variables that it bounds [10, p. 41, p. 110]. The
position of each operator argument determines the role
of each variable. We could rename the bound variables
(including those bound by ∀∀∀∀∀∀ within IsRealizable) without
changing the formula’s meaning. Instead of distinguishing
arguments, values can be used as identifiers [10, §10.2],
with IsRealizable defined accordingly.

Remark 20: In a formula of the form (as in Example 1)

∨ ¬∧ PhiS(. . .)
∧ PhiR(. . .)

∨ Phi,

the negation applies to the entire conjunction list
[10, §15.2.2 on p. 286], and the disjunction is equivalent
to the implication (PhiS(. . .) ∧ PhiR(. . .)) ⇒ Phi, pro-
vided the operators PhiS, PhiR, Phi are Boolean-valued [10,
§16.1.3].

Remark 21 (Quantifier Elimination and Operators):
In Section V-C, we defined the operator SimplerEnvNext as

SimplerEnvNext(x, y, x′) Δ
=

∃ h, h′ : Inv(h, x, y)∧EnvNext(h, x, y, h′, x′)

When we compute a quantifier-free formula equiva-
lent to the above formula, by eliminating quantifiers,
we should define a new operator, for example, Foo.
We cannot reuse the name SimplerEnvNext, even
though we can prove that Foo ≡ SimplerEnvNext

(equivalent).
These observations arise because we cannot define the

same operator twice. A nullary operator stands for the
expression on the right hand side of its definition [10,
p. 319]. For example, the definition f � x2 defines the
nullary operator f to be the expression x2. We may define
g � x × x and prove that |= (x ∈ Nat) ⇒ (f = g) under
the usual definitions of superscript and ×, but f and g

are defined to be different expressions. The act of defining
symbols, and how this act relates to declaring symbols as
constants and introducing axioms about those symbols can
be understood as extending a formal theory by definitions
[153, §74, Vol. 1, p. 405].

B. Detailed Problem and Theorem Statements

Below are more detailed versions of Problem 4 and The-
orem 5, including an environment and details about safety.
The statement below generalizes to multiple variables.

Problem 13: Let variable x represent component 1,
variable y component 2, and variable z their environment.
Let P (x, y, z) be a (finite-state) closed-system property of
the form I ∧�[N]〈x,y,z〉∧�♦Goal(x, y, z) that in each step
allows nonunique changes to at most one of x, y, z. Let
ϕ(x, y, z) � Unzipz;x,y(P, z, x, y) (z env) and assume that
IsRealizablez;x,y(ϕ).

Find temporal properties ψ1, ψ2 with GR(1) liveness
such that IsRealizablez,y;x(ψ1)∧IsRealizablez,x;y(ψ2) and�
ψ1(x, y, z) ∧ ψ2(x, y, z)

�⇒ ϕ(x, y, z).

Theorem 14: ASSUME: Algorithm 2 returns a Y such
that Inv ⇒ Y (Inv is satisfiable by realizability of ϕ). Pick
x0, y0 such that (∃w : WInit(x0, y0, w)) ∧ ∀w : (∃u, v :

WInit(u, v, w)) ⇒ WInit(x0, y0, w). Let Q(u, v, w) � (u =

x0) ∧ (v = y0) ∧ W (u, v, w), where Inv, W, WInit as in
Section V.

1650 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

PROVE: The specifications

ψ1(x, y, z) � LET P1(w, v, u) �
∧ Q(u, v, w)

∧ �♦Goal(u, v, w) ∨�i ♦�Ti(u, v, w)

IN Unzipz,y;x(P1, z, y, x)

and

ψ2(x, y, z) � LET P2(w, u, v) �
∧ Q(u, v, w)

∧ �i �♦¬Ti(u, v, w)

IN Unzipz,x;y(P2, z, x, y)

solve Problem 4, where Ti are the traps returned by
Algorithm 2.

Initial conditions x0, y0 are selected above to ensure that
the system starts from a state that satisfies WInit, which
is possible due to realizability of ϕ, the stepwise form of
Unzip, and the assumption Inv ⇒ Y .

Remark 22: The above result can be applied also to
other approaches (e.g., based on raw TLA+ or LTL), with
suitable changes to IsRealizable and Unzip, or using
RawWhileP lusHalf .

C. A Detailed Proof of Theorem 12
A structured proof style is used [109], [157].

〈1〉 k Δ
= CHOOSE n ∈ Nat : TRUE

〈1〉 SUFFICES ∨ Terminates(iter = k)

∨ EnlargesStrictly(Basin, iter = k)

BY ASSUMPTION

Finitely many relevant states satisfy Basin.

〈1〉1.CASE At(L1, iter = k) :|= Escape ≡ FALSE

〈2〉1. Terminates(iter = k)

BY 〈1〉1, WhileGuard
〈2〉 QED

BY 〈2〉1
〈1〉2.CASE At(L1, iter = k + 1) : ¬ |= Escape ≡ FALSE)

〈2〉1. At(L2, iter = k) : |= Out′ ⇒ ¬Basin
〈2〉2. At(L3, iter = k) : |= Escape′ ⇒ Out

〈2〉3. At(L3, iter = k) : |= Escape′ ⇒ ¬Basin
BY 〈2〉1, 〈2〉2

〈2〉4. At(L4, iter = k) :

|= (Escape∧ Basin) ≡ FALSE

BY 〈2〉3
〈2〉5. At(L4, iter = k) : |= Escape⇒ Basin′

〈2〉6. At(L4, iter = k) :

¬ |= (Basin′ ∧ ¬Basin) ≡ FALSE

BY 〈1〉2, 〈2〉4, 〈2〉5

〈2〉7. At(L4, iter = k) : |= Basin⇒ Basin′

〈2〉8. EnlargesStrictly(Basin, iter = k)

BY 〈2〉7
〈2〉 QED

BY 〈2〉8
〈1〉 QED

BY 〈1〉1, 〈1〉2

D. A Detailed Proof of Theorem 7

Below is the proof of Theorem 7. The proof is structured
in levels [109], [157].

Proof:

〈1〉1. IsRealizable2(�♦¬D)

〈2〉1. IsRealizable2(�(D ⇒ ♦(U ∨Out)))
〈3〉DEFINE Z � Attr2(U ∨Out)
〈3〉2. D ⇒ Z

BY DEF D

〈3〉3. IsRealizable2(�(Z ⇒ ♦(U ∨ Out)))
BY DEF Attr

〈3〉4. QED

BY 〈3〉2, 〈3〉3
〈2〉2. (U ∨Out) ⇒ ¬D

〈3〉1. D ⇒ ¬Out
〈4〉1. Basin⇒ ¬Out

BY DEF Out

〈4〉2. D ⇒ Basin

BY DEF D

〈4〉3. QED

BY 〈4〉1, 〈4〉2
〈3〉2. D ⇒ ¬U

BY DEF D

〈3〉3. QED

BY 〈3〉1, 〈3〉2
〈2〉3. IsRealizable2(�(D ⇒ ♦¬D))

BY 〈2〉1, 〈2〉2
〈2〉4. �(D ⇒ ♦¬D) ≡ �♦¬D

Proof:

�(D ⇒ ♦¬D) ≡ � ∨ ¬D
∨ D ∧ (D ⇒ ♦¬D)

≡ �(¬D ∨ ♦¬D)

〈2〉5. QED

BY 〈2〉3, 〈2〉4
〈1〉2. IsRealizable1(� ∨ ¬(T ∨A)

∨ ♦A ∨ ♦�T)

〈2〉1. DEFINE Z � Trap1(Stay,A)

〈2〉2. IsRealizable1(�(Z ⇒ ∨ ♦A
∨ ♦�(Z ∧ ¬A)))

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1651

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

BY DEFS Z, Trap

〈2〉3. T ≡ Z ∧ ¬A
BY DEFS T, Z

〈2〉4. (T ∨ A) ⇒ Z

〈3〉1. (T ∨A) ⇒ ((Z ∧ ¬A) ∨A)

BY 〈2〉3
〈3〉2. (T ∨A) ⇒ (Z ∨ A)

BY 〈3〉1
〈3〉3. (Z ∨A) ⇒ Z

〈4〉1. A⇒ Z

BY DEF Z, Trap

〈4〉2. QED

BY 〈4〉1
〈3〉4. QED

BY 〈3〉2, 〈3〉3
〈2〉5. QED

BY 〈2〉2, 〈2〉3, 〈2〉4

〈1〉3. (Inv ∧ T) ⇒ D

〈2〉1. T ≡ Trap1(Stay,A) ∧ ¬A
BY DEF T

〈2〉2. Trap1(Stay,A) ⇒ (Stay ∨A)

BY DEF Trap

〈2〉3. T ⇒ (Stay ∧ ¬A)

BY 〈2〉1, 〈2〉2
〈2〉4. (Inv ∧ Stay) ⇒ D

BY DEFS Stay,Obs1

〈2〉5. QED

BY 〈2〉3, 〈2〉4
〈1〉4. QED

BY 〈1〉1, 〈1〉2, 〈1〉3

A c k n o w l e d g m e n t s
In studying the meaning and form of open-system prop-

erties the authors benefited from discussions with N. Özay
and S. Livingston.

R E F E R E N C E S
[1] N. Wirth, “Program development by stepwise

refinement,” Commun. ACM, vol. 14, no. 4,
pp. 221–227, 1971.

[2] L. Lamport, “Who builds a house without drawing
blueprints?” Commun. ACM, vol. 58, no. 4,
pp. 38–41, 2015.

[3] C. B. Jones, “Specification and design of (parallel)
programs,” in Proc. Inf. Process., 1983,
pp. 321–332.

[4] J. C. Willems, “The behavioral approach to open
and interconnected systems,” IEEE Control Syst.,
vol. 27, no. 6, pp. 46–99, Dec. 2007.

[5] R. Kurki-Suonio, “Component and interface
refinement in closed-system specifications,” in
Proc. Formal Methods, 1999, pp. 134–154.

[6] R. P. Kurshan and L. Lamport, “Verification of a
multiplier: 64 bits and beyond,” in Proc. Comput.
Aided Verification, 1993, pp. 166–179.

[7] L. Lamport, “Composition: A way to make proofs
harder,” in Compositionality: The Significant
Difference, 1997, pp. 402–423.

[8] L. Lamport. (Apr. 21, 1991). Miscellany, TLA
Mailing List. [Online]. Available:
http://lamport.azurewebsites.net/tla/notes/91-
04-21.txt

[9] T. Bourke, M. Daum, G. Klein, and R. Kolanski,
“Challenges and experiences in managing
large-scale proofs,” in Proc. Intell. Comput. Math.,
2012, pp. 32–48.

[10] L. Lamport, Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers. Boston, MA, USA: Addison-Wesley,
2002.

[11] L. Lamport, “What good is temporal logic?” in
Proc. Inf. Process., 1983, pp. 657–668.

[12] L. Lamport, “Specifying concurrent program
modules,” ACM Trans. Program. Lang. Syst., vol. 5,
no. 2, pp. 190–222, 1983.

[13] R. Rosner, “Modular synthesis of reactive systems,”
Ph.D. dissertation, Weizmann Inst. Sci., Rehovot,
Israel, 1991. [Online]. Available: http://lib-
phds1.weizmann.ac.il/Dissertations/rosner
roni.pdf

[14] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of
Reactive(1) designs,” in Proc. Verification, Model
Checking, Abstract Interpretation, 2006,
pp. 364–380.

[15] N. Piterman and A. Pnueli, “Faster solutions of
Rabin and Streett games,” in Proc. LICS, 2006,
pp. 275–284.

[16] U. Klein, N. Piterman, and A. Pnueli, “Effective
synthesis of asynchronous systems from GR(1)
specifications,” in Proc. Verification, Model
Checking, Abstract Interpretation, 2012,
pp. 283–298.

[17] A. Walker and L. Ryzhyk, “Predicate abstraction
for reactive synthesis,” in Proc. FMCAD, 2014,
pp. 219–226.

[18] O. Kupferman and M. Y. Vardi, “Safraless decision
procedures,” in Proc. FOCS, 2005, pp. 531–540.

[19] M. de Wulf, L. Doyen, and J.-F. Raskin, “A lattice
theory for solving games of imperfect
information,” in Proc. Hybrid Syst. Comput.
Control, 2006, pp. 153–168.

[20] L. Lamport, “Proving the correctness of
multiprocess programs,” IEEE Trans. Softw. Eng.,
vol. 3, no. 2, pp. 125–143, Mar. 1977.

[21] R. Ehlers and U. Topcu, “Estimator-based reactive
synthesis under incomplete information,” in Proc.
HSCC, 2015, pp. 249–258.

[22] A. Pnueli and U. Klein, “Synthesis of programs
from temporal property specifications,” in Proc.
MEMOCODE, 2009, pp. 1–7.

[23] A. Pnueli and R. Rosner, “Distributed reactive
systems are hard to synthesize,” in Proc. FOCS,
vol. 2, 1990, pp. 746–757.

[24] R. E. Bryant, “Graph-based algorithms for Boolean
function manipulation,” IEEE Trans. Comput.,
vol. 35, no. 8, pp. 677–691, Aug. 1986.

[25] Y. Kesten, A. Pnueli, and L.-o. Raviv, “Algorithmic
verification of linear temporal logic
specifications,” in Proc. ICALP, 1998, pp. 1–16.

[26] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled,
Model Checking. Cambridge, MA, USA: MIT Press,
1999.

[27] O. Coudert, “Two-level logic minimization: An
overview,” Integr., VLSI J., vol. 17, no. 2,
pp. 97–140, 1994.

[28] C. B. Jones, “The early search for tractable ways
of reasoning about programs,” IEEE Ann. Hist.
Comput., vol. 25, no. 2, pp. 26–49, Apr./Jun.
2003.

[29] D. E. Knuth, “Robert W Floyd, In memoriam,”
ACM SIGACT News, vol. 34, no. 4, pp. 3–13, 2003.

[30] H. H. Goldstine and J. von Neumann, Planning
and Coding Problems for an Electronic Computing
Instrument: Report on the Mathematical and
Logical Aspects of an Electronic Computing
Instrument, Part II, vol. 1. Princeton, NJ, USA:
IAS, 1947. [Online]. Available:

https://library.ias.edu/files/pdfs/ecp/
planningcodingof0103inst.pdf

[31] A. M. Turing, “Checking a large routine,” Report
Conf. High Speed Autom. Calculating Machines.
Mathematical Laboratory, Cambridge, U.K.
Jun. 1949, pp. 67–69. [Online]. Available:
http://www.turingarchive.org/browse.php/B/8

[32] F. L. Morris and C. B. Jones, “An early program
proof by Alan Turing,” Ann. Hist. Comput., vol. 6,
no. 2, pp. 139–143, Apr./Jun. 1984.

[33] C. A. R. Hoare, “An axiomatic basis for computer
programming,” Commun. ACM, vol. 12, no. 10,
pp. 576–580, 1969.

[34] R. W. Floyd, “Assigning meanings to programs,” in
Mathematical Aspects of Computer and Information
Sciences (Theoretical Computer Science and
General Issues), vol. 19. Providence, RI, USA:
AMS, 1967, pp. 19–32.

[35] F. B. Schneider, On Concurrent Programming. New
York, NY, USA: Springer, 1997.

[36] A. Pnueli and R. Rosner, “On the synthesis of a
reactive module,” in Proc. POPL, 1989,
pp. 179–190.

[37] N. Francez and A. Pnueli, “A proof method for
cyclic programs,” Acta Inf., vol. 9, no. 2,
pp. 133–157, 1978.

[38] A. Pnueli, “In transition from global to modular
temporal reasoning about programs,” in Logics
and Models of Concurrent Systems (NATO ASI
Series F: Computer and Systems Sciences),
vol. 13. Springer, 1985, pp. 123–144.

[39] L. Lamport, “The ‘Hoare logic’ of concurrent
programs,” Acta Inf., vol. 14, no. 1, pp. 21–37,
1980.

[40] L. Lamport and F. B. Schneider, “The ‘Hoare Logic’
of CSP, and all that,” ACM Trans. Program. Lang.
Syst., vol. 6, no. 2, pp. 281–296, 1984.

[41] J. Misra and K. M. Chandy, “Proofs of networks of
processes,” IEEE Trans. Softw. Eng., vol. 7, no. 4,
pp. 417–426, Jul. 1981.

[42] M. Abadi and L. Lamport, “Conjoining
specifications,” ACM Trans. Program. Lang. Syst.,
vol. 17, no. 3, pp. 507–535, 1995.

[43] A. Pnueli, “The temporal logic of programs,” in
Proc. FOCS, 1977, pp. 46–57.

[44] S. Owicki and L. Lamport, “Proving liveness
properties of concurrent programs,” ACM Trans.
Program. Lang. Syst., vol. 4, no. 3, pp. 455–495,
1982.

[45] G. Rock, W. Stephan, and A. Wolpers, “Modular

1652 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

reasoning about structured TLA specifications,” in
Tool Support for System Specification, Development
and Verification (Advances in Computing Science).
Vienna, Austria: Springer, 1999, pp. 217–229.

[46] A. Wolpers and W. Stephan, “Modular verification
of programmable logic controllers with TLA,” in
Proc. IFAC INCOM, 1998, vol. 31, no. 15,
pp. 159–164.

[47] M. Abadi and L. Lamport, “Open systems in TLA,”
in Proc. PODC, 1994, pp. 81–90.

[48] M. Abadi and S. Merz, “On TLA as a logic,” in
Proceedings of the NATO Advanced Study Institute
on Deductive Program Design (NATO ASI Series F:
Computer and Systems Sciences), vol. 152.
Springer, 1996, pp. 235–272. [Online]. Available:
https://members.loria.fr/SMerz/papers/
mod94.html

[49] E. W. Stark, “A proof technique for rely/guarantee
properties,” in Found. Softw. Technol. Theor.
Comput. Sci., vol. 206. 1985, pp. 369–391.

[50] K. L. McMillan, “Circular compositional reasoning
about liveness,” in Proc. CHARME, 1999,
pp. 342–346.

[51] B. Meyer, “Applying ‘Design by contract,”’
Computer, vol. 25, no. 10, pp. 40–51, 1992.

[52] L. de Alfaro and T. A. Henzinger, “Interface
automata,” ACM SIGSOFT Softw. Eng. Notes, vol.
26, no. 5, pp. 109–120, 2001.

[53] A. Benveniste et al., “Contracts for systems
design,” INRIA, Rennes, France, Tech. Rep. 8147,
2012. [Online]. Available:
https://hal.inria.fr/hal-00757488

[54] A. Benveniste et al., “Contracts for system design,”
Found. Trends Electron. Design Autom., vol. 12,
nos. 2–3, pp. 124–400, 2018.

[55] A. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone, “Taming Dr. Frankenstein:
Contract-based design for cyber-physical systems,”
Eur. J. Control, vol. 18, no. 3, pp. 217–238, 2012.

[56] P. Nuzzo, “Compositional design of cyber-physical
systems using contracts,” Ph.D. dissertation, Dept.
Electr. Eng. Comput. Sci., Univ. California,
Berkeley, Berkeley, CA, USA, Aug. 2015. [Online].
Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2015/EECS-2015-189.html

[57] P. Nuzzo, A. Iannopollo, S. Tripakis, and
A. Sangiovanni-Vincentelli, “Are interface theories
equivalent to contract theories?” in Proc.
MEMOCODE, 2014, pp. 104–113.

[58] P. Nuzzo et al., “A contract-based methodology for
aircraft electric power system design,” IEEE Access,
vol. 2, pp. 1–25, 2014.

[59] A. Cimatti and S. Tonetta, “A property-based proof
system for contract-based design,” in Proc.
EUROMICRO, 2012, pp. 21–28.

[60] A. Cimatti, M. Dorigatti, and S. Tonetta, “Ocra: A
tool for checking the refinement of temporal
contracts,” in Proc. ASE, 2013, pp. 702–705.

[61] T. T. H. Le, R. Passerone, U. Fahrenberg, and
A. Legay, “Contract-based requirement
modularization via synthesis of correct
decompositions,” ACM Trans. Embedded Comput.
Syst., vol. 15, no. 2, pp. 33:1–33:26, 2016.

[62] A. Iannopollo, P. Nuzzo, S. Tripakis, and
A. Sangiovanni-Vincentelli, “Library-based
scalable refinement checking for contract-based
design,” in Proc. DATE, 2014, pp. 1–6.

[63] A. Iannopollo, S. Tripakis, and
A. Sangiovanni-Vincentelli, “Constrained synthesis
from component libraries,” in Formal Aspects of
Component Software. 2016, pp. 1–6.

[64] B. Jonsson and Y.-K. Tsay, “Assumption/guarantee
specifications in linear-time temporal logic,” Theor.
Comput. Sci., vol. 167, no. 1, pp. 47–72, 1996.

[65] U. Klein and A. Pnueli, “Revisiting synthesis of
GR(1) specifications,” in Proc. HVC, 2010,
pp. 161–181.

[66] S. S. Bauer et al., “Moving from specifications to
contracts in component-based design,” in Proc.
Fundamental Approaches Softw. Eng., 2012,
pp. 43–58.

[67] S. Tripakis, B. Lickly, T. A. Henzinger, and
E. A. Lee, “A theory of synchronous relational
interfaces,” ACM Trans. Program. Lang. Syst., vol.

33, no. 4, pp. 14:1–14:41, 2011.
[68] V. Preoteasa and S. Tripakis, “Refinement calculus

of reactive systems,” in Proc. EMSOFT, 2014,
pp. 2:1–2:10.

[69] V. Preoteasa and S. Tripakis, “Towards
compositional feedback in non-deterministic and
non-input-receptive systems,” in Proc. LICS, 2016,
pp. 768–777.

[70] V. Preoteasa, I. Dragomir, and S. Tripakis, “Type
inference of Simulink hierarchical block diagrams
in Isabelle,” in Proc. Formal Techn. Distrib. Objects
Compon. Syst.. 2017, pp. 194–209.

[71] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs,
T. F. Gritzner, and R. Weber, “The design of
distributed systems: An introduction to FOCUS,”
Tech. Univ. München, München, Germany, Tech.
Rep., 1992.

[72] M. Broy and K. Stølen, Specification and
Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. New York, NY,
USA: Springer, 2001.

[73] R. Alur and T. A. Henzinger, “Reactive modules,”
Formal Methods Syst. Design, vol. 15, no. 1,
pp. 7–48, 1999.

[74] R. Alur, T. A. Henzinger, and O. Kupferman,
“Alternating-time temporal logic,” J. ACM, vol. 49,
no. 5, pp. 672–713, 2002.

[75] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang,
“The control of synchronous systems,” in Proc.
CONCUR, 2000, pp. 458–473.

[76] L. de Alfaro and M. Faella, “Information flow in
concurrent games,” in Proc. ICALP, 2003,
pp. 1038–1053.

[77] S. Schewe and B. Finkbeiner, “Synthesis of
asynchronous systems,” in Proc. LOPSTR, 2007,
pp. 127–142.

[78] O. Kupferman and M. Y. Vardi, “Synthesis with
incomplete informatio,” in Advances in Temporal
Logic, vol. 16. Dordrecht, The Netherlands:
Springer, 2000, pp. 109–127.
https://doi.org/10.1007/
978-94-015-9586-5 6

[79] B. Finkbeiner and S. Schewe, “Uniform distributed
synthesis,” in Proc. LICS, 2005, pp. 321–330.

[80] K. Chatterjee, T. A. Henzinger, J. Otop, and
A. Pavlogiannis, “Distributed synthesis for LTL
fragments,” in Proc. FMCAD, 2013, pp. 18–25.

[81] B. Finkbeiner and S. Schewe, “Bounded
synthesis,” Int. J. Softw. Tools Technol. Transf., vol.
15, no. 5, pp. 519–539, 2013.

[82] H. Lamouchi and J. Thistle, “Effective control
synthesis for DES under partial observations,” in
Proc. CDC, vol. 1, 2000, pp. 22–28.

[83] S. Tripakis, “Undecidable problems of
decentralized observation and control,” in Proc.
CDC, vol. 5, 2001, pp. 4104–4109.

[84] K. Chatterjee and T. A. Henzinger,
“Assume-guarantee synthesis,” in Proc. TACAS,
2007, pp. 261–275.

[85] R. Alur, L. de Alfaro, T. A. Henzinger, and
F. Y. C. Mang, “Automating modular verification,”
in Proc. CONCUR, 1999, pp. 82–97.

[86] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Păsăreanu, “Learning assumptions for
compositional verification,” in Proc. TACAS, 2003,
pp. 331–346.

[87] W. Nam and R. Alur, “Learning-based symbolic
assume-guarantee reasoning with automatic
decomposition,” in Proc. Autom. Technol. Verif.
Anal., 2006, pp. 170–185.

[88] K. Chatterjee, T. A. Henzinger, and B. Jobstmann,
“Environment assumptions for synthesis,” in Proc.
CONCUR, 2008, pp. 147–161.

[89] R. Könighofer, G. Hofferek, and R. Bloem,
“Debugging formal specifications: A practical
approach using model-based diagnosis and
counterstrategies,” Int. J. Softw. Tools Technol.
Transf., vol. 15, no. 5, pp. 563–583, 2013.

[90] W. Li, L. Dworkin, and S. A. Seshia, “Mining
assumptions for synthesis,” in Proc. MEMOCODE,
2011, pp. 43–50.

[91] R. Alur, S. Moarref, and U. Topcu,
“Counter-strategy guided refinement of GR(1)
temporal logic specifications,” in Proc. FMCAD,
2013, pp. 26–33.

[92] R. Alur, S. Moarref, and U. Topcu, “Pattern-based
refinement of assume-guarantee specifications in
reactive synthesis,” in Proc. TACAS, 2015,
pp. 501–516.

[93] R. Ehlers, R. Könighofer, and R. Bloem,
“Synthesizing cooperative reactive mission plans,”
in Proc. IROS, 2015, pp. 3478–3485.

[94] S. Moarref, “Compositional reactive synthesis for
multi-agent systems,” Ph.D. dissertation, Univ.
Pennsylvania, Philadelphia, PA, USA, 2016.
[Online]. Available:
https://repository.upenn.edu/edissertations/1902

[95] A. Cohen and K. S. Namjoshi, “Local proofs for
global safety properties,” in Proc. FMSD, 2009,
vol. 34, no. 2, pp. 104–125.

[96] J. Fu and U. Topcu, “Integrating active sensing
into reactive synthesis with temporal logic
constraints under partial observations,” in Proc.
ACC, 2015, pp. 2408–2413.

[97] O. Mickelin, N. Ozay, and R. M. Murray, “Synthesis
of correct-by-construction control protocols for
hybrid systems using partial state information,” in
Proc. ACC, 2014, pp. 2305–2311.

[98] N. Ozay, U. Topcu, and R. M. Murray, “Distributed
power allocation for vehicle management
systems,” in Proc. CDC, 2011, pp. 4841–4848.

[99] T. Mikkonen, “Abstractions and logical layers in
specifications of reactive systems,”
Ph.D. dissertation, Tampere Univ. Technol.,
Tampere, Finland, Feb. 1999.

[100] M. Katara and T. Mikkonen, “Design approach for
real-time reactive systems,” in Proc. Int. Work.
Real-Time Constraints, 1999. [Online]. Available:
https://www.cs.ccu.edu.tw/~pahsiung/cp99-
rtc/proceedings.html

[101] H. W. Thimbleby and P. B. Ladkin, “From logic to
manuals again,” Inst. Electr. Eng. Proc.—Softw.
Eng., vol. 144, no. 3, pp. 185–192, Jun. 1997.

[102] S. Singh and M. Wagh, “Robot path planning
using intersecting convex shapes: Analysis and
simulation,” IEEE J. Robot. Automat., vol. JRA-3,
no. 2, pp. 1743–1748, Apr. 1987.

[103] B. Hayes and J. A. Shah, “Improving robot
controller transparency through autonomous
policy explanation,” in Proc. Human-Robot
Interaction, 2017, pp. 303–312.

[104] R. Ehlers and V. Raman, “Low-effort specification
debugging and analysis,” Electron. Proc. Theor.
Comput. Sci., vol. 157, pp. 117–133, 2014.

[105] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken,
“Minimum satisfying assignments for SMT,” in
Proc. CAV, 2012, pp. 394–409.

[106] L. Lamport, “The temporal logic of actions,” ACM
Trans. Program. Lang. Syst., vol. 16, no. 3,
pp. 872–923, 1994.

[107] S. Merz, “Rules for abstraction,” in Advances in
Computing Science—ASIAN. 1997, pp. 32–45.

[108] H.-D. Ebbinghaus, Ernst Zermelo: An Approach to
His Life and Work. Berlin, Germany: Springer,
2007.

[109] L. Lamport, “TLA+2: A preliminary guide,” Tech.
Rep., Jan. 2014.

[110] D. Hilbert and P. Bernays, Grundlagen der
Mathematik II. Berlin, Germany: Springer, 1970.

[111] A. C. Leisenring, Mathematical Logic and Hilbert’s
ε-Symbol. London, U.K.: MacDonald Technical &
Scientific, 1969.

[112] B. Alpern and F. B. Schneider, “Defining liveness,”
Inf. Process. Lett., vol. 21, no. 4, pp. 181–185,
1985.

[113] Z. Manna and A. Pnueli, “A hierarchy of temporal
properties,” in Proc. PODC, 1990, pp. 377–410.

[114] M. Abadi, L. Lamport, and P. Wolper, “Realizable
and unrealizable specifications of reactive
systems,” in Proc. ICALP, 1989, pp. 1–17.

[115] A. Pnueli and R. Rosner, “A framework for the
synthesis of reactive modules,” in Proc.
CONCURRENCY, 1988, pp. 4–17.

[116] I. Filippidis and R. M. Murray, “Formalizing
synthesis in TLA+,” California Inst. Technol.,
Pasadena, CA, USA, Tech. Rep.
CaltechCDSTR:2016.004, 2016. [Online].
Available: http://resolver.caltech.edu/
CaltechCDSTR:2016.004

[117] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1653

Filippidis and Murray: Layering Assume-Guarantee Contracts for Hierarchical System Design

the gap between fair simulation and trace
inclusion,” Inf. Comput., vol. 200, no. 1, pp.
35–61, 2005.

[118] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli,
and Y. Sa’ar, “Synthesis of reactive(1) designs,”
J. Comput. Syst. Sci., vol. 78, no. 3, pp. 911–938,
2012.

[119] W. Thomas, “On the synthesis of strategies in
infinite games,” in Proc. STACS, 1995, pp. 1–13.

[120] W. Thomas, “Solution of Church’s problem: A
tutorial,” New Perspect. Games Interaction, vol. 4.
Amsterdam, The Netherlands: Amsterdam Univ.
Press, 2008, pp. 211–236.

[121] B. Jobstmann, A. Griesmayer, and R. Bloem,
“Program repair as a game,” in Proc. CAV, 2005,
pp. 226–238.

[122] H. Vanzetto, “Proof automation and type synthesis
for set theory in the context of TLA+,”
Ph.D. dissertation, Comput. Sci., Univ. Lorraine,
Lorraine, France, Dec. 2014. [Online]. Available:
https://hal.inria.fr/tel-01096518

[123] L. Lamport and L. C. Paulson, “Should your
specification language be typed?” ACM Trans.
Program. Lang. Syst., vol. 21, no. 3, pp. 502–526,
May 1999. [Online]. Available:
https://lamport.azurewebsites.net/pubs/lamport-
types.pdf

[124] I. Filippidis and R. M. Murray, “Symbolic
construction of GR(1) contracts for systems with
full information,” in Proc. ACC, Jul. 2016,
pp. 782–789.

[125] K. Kunen, The Foundations of Mathematics
(Studies in Logic: Mathematical Logic and
Foundations), vol. 19. London, U.K.: College
Publications, 2012.

[126] M. Abadi and S. Merz, “An abstract account of
composition,” in Proc. Int. Symp. Math. Found.
Comput. Sci. (MFCS), 1995, pp. 499–508.

[127] M. Abadi et al., “Preserving liveness: Comments
on safety and liveness from a methodological
point of view,” Inf. Process. Lett., vol. 40, no. 3,
pp. 141–142, 1991.

[128] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory
of the past,” in Proc. Conf. Logics Programs,
vol. 193. 1985, pp. 196–218.

[129] M. Y. Vardi, “Verification of open systems,” in Proc.
FSTTCS, 1997, pp. 250–266.

[130] E. W. Dijkstra, “Solution of a problem in
concurrent programming control,” Commun. ACM,
vol. 8, no. 9, p. 569, 1965.

[131] M. Abadi and L. Lamport, “The existence of
refinement mappings,” Theor. Comput. Sci.,
vol. 82, no. 2, pp. 253–284, 1991.

[132] B. Alpern and F. B. Schneider, “Recognizing safety
and liveness,” Distrib. Comput., vol. 2, no. 3,
pp. 117–126, 1987.

[133] M. Abadi and L. Lamport, “Composing
specifications,” ACM Trans. Program. Lang. Syst.,

vol. 15, no. 1, pp. 73–132, 1993.
[134] L. Lamport, “Proving possibility properties,” Theor.

Comput. Sci., vol. 206, no. 1, pp. 341–352, 1998.
[135] I. Filippidis and R. M. Murray, “Symbolic

construction of GR(1) contracts for synchronous
systems with full information,” California Inst.
Technol., Pasadena, CA, USA, Tech. Rep., 2015.
[Online]. Available:
https://arxiv.org/abs/1508.02705

[136] I. Filippidis, “Decomposing formal specifications
into assume-guarantee contracts for hierarchical
system design,” Ph.D. dissertation, California Inst.
Technol., Pasadena, CA, USA, 2019. [Online].
Available:
http://resolver.caltech.edu/CaltechTHESIS:
07202018-115217471

[137] R. E. Bryant, “On the complexity of VLSI
implementations and graph representations of
Boolean functions with application to integer
multiplication,” IEEE Trans. Comput., vol. 40,
no. 2, pp. 205–213, Feb. 1991.

[138] B. Jobstmann, S. Galler, M. Weiglhofer, and
R. Bloem, “Anzu: A tool for property synthesis,” in
Proc. CAV, 2007, pp. 258–262.

[139] A. Pnueli, Y. Sa’ar, and L. D. Zuck, “JTLV: A
framework for developing verification
algorithms,” in Proc. CAV, 2010, pp. 171–174.

[140] T. Villa, T. Kam, R. K. Brayton, and
A. Sangiovanni-Vincentelli, Synthesis of Finite
State Machines: Logic Optimization. New York, NY,
USA: Springer, 1997.

[141] G. D. Hachtel and F. Somenzi, Logic Synthesis and
Verification Algorithms. Boston, MA, USA: Kluwer,
1996.

[142] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli,
“ESPRESSO-SIGNATURE: A new exact minimizer
for logic functions,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 1, no. 4, pp. 432–440,
Dec. 1993.

[143] R. L. Rudell, “Logic synthesis for VLSI design,”
Ph.D. dissertation, Dept. Electr. Eng. Comput. Sci.,
Univ. California, Berkeley, Berkeley, CA, USA,
1989.

[144] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. L. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis. Boston, MA, USA:
Kluwer, 1984.

[145] O. Coudert and J. C. Madre, “New ideas for
solving covering problems,” in Proc. Design Autom.
Conf. (DAC), 1995, pp. 641–646.

[146] O. Coudert, J. C. Madre, H. Fraisse, and H. Touati,
“Implicit prime cover computation: An overview,”
in Proc. Synthesis Simul. Meeting and Int.
Interchange (SASIMI), 1993.

[147] O. Coudert, J. C. Madre, and H. Fraisse, “A new
viewpoint on two-level logic minimization,” in
Proc. Design Autom. Conf. (DAC), Jun. 1993,

pp. 625–630.
[148] O. Coudert and J. C. Madre, “Implicit and

incremental computation of primes and
essential primes of Boolean functions,”
in Proc. Design Autom. Conf. (DAC), Jun. 1992,
pp. 36–39.

[149] I. Filippidis, R. M. Murray, and G. J. Holzmann, “A
multi-paradigm language for reactive synthesis,”
in Proc. 4th Workshop on Synthesis (SYNT), 2015,
pp. 73–97. [Online]. Available:
https://doi.org/10.4204/EPTCS.202.6

[150] R. Rudell, “Dynamic variable ordering for ordered
binary decision diagrams,” in Proc. ICCAD,
Nov. 1993, pp. 42–47.

[151] F. Boniol, V. Wiels, Y. Ait Ameur, and K.-D. Schewe,
Eds., ABZ 2014: The Landing Gear Case Study.
Cham, Switzerland: Springer, 2014.

[152] Contract Construction Implementation. [Online].
Available: https://github.com/johnyf/contract
maker

[153] S. C. Kleene, Introduction to Metamathematics.
Amsterdam, The Netherlands: North-Holland,
1971.

[154] L. Lamport, “A temporal logic of actions,” Syst.
Res. Center Digit. Equipment Corporation,
Palo Alto, CA, USA, Tech. Rep. 47, Apr. 1990.

[155] K. Kunen, Set Theory (Studies in Logic:
Mathematical Logic and Foundations), vol. 34.
London, U.K.: College Publications, 2013.

[156] I. Filippidis, S. Dathathri, S. C. Livingston,
N. Ozay, and R. M. Murray, “Control design for
hybrid systems with TuLiP: The temporal logic
planning toolbox,” in Proc. IEEE Conf. Control
Appl. (CCA), Sep. 2016, pp. 1030–1041.

[157] L. Lamport, “How to write a 21st century proof,”
J. Fixed Point Theory Appl., vol. 11, no. 1,
pp. 43–63, 2012.

[158] T. A. Henzinger, S. Qadeer, and S. K. Rajamani,
“Decomposing refinement proofs using
assume-guarantee reasoning,” in Proc. ICCAD,
2000, pp. 245–253. Available:
https://doi.org/10.1109/ICCAD.2000.896481

[159] A. Iannopollo, S. Tripakis, and
A. Sangiovanni-Vincentelli, “Specification
decomposition for synthesis from libraries of LTL
Assume/Guarantee contracts,” in Proc. DATE,
2018, pp. 1574–1579. [Online]. Available:
https://doi.org/10.23919/DATE.2018.8342266

[160] T. A. Henzinger, S. Qadeer, and S. K. Rajamani,
“You assume, we guarantee: Methodology and
case studies,” in Proc. CAV, 1998, pp. 440–451.
Available: https://doi.org/10.1007/BFb0028765

[161] A. Mishchenko, “An introduction to
zero-suppressed binary decision diagrams,” Tech.
Rep., Univ. California, Berkeley, Berkeley, CA,
USA, 2014. See also EXTRA library v1.3. Available:
http://www.eecs.berkeley.edu/~alanmi/research/
extra

A B O U T T H E A U T H O R S

Ioannis Filippidis graduated with a
Diploma in mechanical engineering from
the National Technical University of Athens,
Athens, Greece, in 2011 and the Ph.D.
degree in control and dynamical systems
from the California Institute of Technology,
Pasadena, CA, USA, in 2018.
During the summers of 2013 and 2014

he was an intern at the Laboratory for
Reliable Software, Jet Propulsion Laboratory, California Institute
of Technology. He is a Postdoctoral Scholar with the Networked
Control Systems Group in Control & Dynamical Systems, Computing
and Mathematical Sciences Department, California Institute of
Technology.

Richard M. Murray received the B.S.
degree in electrical engineering from Cal-
ifornia Institute of Technology (Caltech),
Pasadena, CA, USA, in 1985 and the M.S.
and Ph.D. degrees in electrical engineering
and computer sciences from the University
of California at Berkeley, Berkeley, CA, USA,
in 1988 and 1991, respectively.
He is currently the Thomas E. and Doris

Everhart Professor of Control & Dynamical Systems and Bioengi-
neering at Caltech. His research is in the application of feedback
and control to networked systems, with applications in biology
and autonomy. Current projects include analysis and design of bio-
molecular feedback circuits, synthesis of discrete decision-making
protocols for reactive systems, and design of highly resilient archi-
tectures for autonomous systems.

1654 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

