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Abstract 

Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we 
implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM 
system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissue-
mimicking samples, both without and with blood mixed. Our results show that PAM has the potential to 
quantitatively image bilirubin in vivo for clinical applications. 
Keywords: photoacoustic microscopy, photoacoustic spectroscopy, bilirubin, scattering medium. 
 

1. Introduction 
Determining the bilirubin level and distribution plays important roles in the diagnosis of jaundice and other 
diseases.1-9 However, current approach to measuring bilirubin concentration involves extracting blood, which is 
invasive; only the total serum bilirubin level can be monitored without any spatial information. Noninvasive 
monitoring methods mainly include diffuse reflectance spectroscopy10-13 and hyperspectral imaging.7, 14 The former 
senses the overall concentration of bilirubin in the skin without spatial resolution, whereas the latter maps the 
relative bilirubin distribution without quantification. Therefore, we still lack a technique for quantitative imaging of 
bilirubin. 
 

Over the past few years, photoacoustic microscopy (PAM) has shown its promising ability for both structural 
and functional imaging.15-20 In PAM, the object is irradiated by a short-pulsed laser. Following the absorption of 
light, a temperature rise generates an initial pressure rise, which is propagated as a photoacoustic wave. This 
photoacoustic wave is then detected by a focused ultrasonic transducer.21 Because the initial pressure is proportional 
to the local energy absorbed, photoacoustic measurements with multiple optical wavelengths can provide spectral 
information of optical absorption. By far, PAM has shown its feasibility to detect many intrinsic contrasts in 
biological tissue, such as hemoglobin,22-23 DNA and RNA in nuclei,24 water,25 lipid,26 cytochrome c,27 and 
melanin.28, 29  

 
Here we show that PAM can quantitatively image the bilirubin distribution. Based on the absorption spectra, 

proper wavelengths were chosen to measure pure bilirubin samples and mixed bilirubin-blood sample. The pure and 
blood mixed bilirubin distributions in tissue-mimicking samples were imaged. We showed for the first time that 
bilirubin, both inside and outside the blood vessels, can be quantitatively imaged by PAM with a high accuracy. 

 

2. System and Materials 
We used a free-space transmission-mode PAM system for bilirubin detection, as shown in Fig. 1(a).27 Briefly 
speaking, the laser pulse with a wavelength tunable from 210 nm to 2600 nm, was generated by an integrated diode-
pumped Q-switched laser and optical parametric oscillator system (NT242-SH, Ekspla). After being filtered by an 
iris with 2 mm aperture size (ID25SS, Thorlabs), reflected by a mirror (PF10-03-G01, Thorlabs), focused by a 
condenser lens (LA4380, Thorlabs), and filtered by a pinhole with 50 µm aperture size (P50C, Thorlabs), the light 
beam was at last focused by an optical objective with 0.3 numerical aperture (NA). The excited photoacoustic waves 
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were detected by a focused ultrasonic transducer. Each laser pulse yields a one-dimensional depth-resolved image 
(A-line) by recording the arrival times of photoacoustic signals. A two-dimensional (2D) scanning stage (PLS-85, 
MICOS) was used to hold the sample and provide lateral scanning. We rendered our result in the form of a 2D 
maximum amplitude projection (MAP) image, which was produced by projecting the maximum amplitude of the 3D 
image along the axial direction. 
 

  
Fig. 1.  (a) Schematic of the PAM system. (b) Absorption spectral of oxyhemoglobin and bilirubin. 

 

Fig. 1(b) shows the absorption spectra of bilirubin and blood30-32. Because bilirubin has a relatively high 
absorption in the wavelength range from 420 nm to 490 nm, we chose this range for the pure bilirubin measurement. 
Likewise, because the absorption ratio between bilirubin and blood is relatively high in the wavelength range from 
460 nm to 490 nm,30-32 which enables an easier differentiation of bilirubin from blood, we chose this range for the 
blood mixed sample detection. Also, the wavelength range from 568 nm to 588 nm was chosen for blood 
measurement, where blood has high absorption, but bilirubin has almost no absorption.31-33  

In the experiments, bilirubin powder (B4126, Sigma-Aldrich) was dissolved in dimethyl sulfoxide solution 
(Fisher Scientific) and further diluted by water. To prepare the pure tissue-mimicking sample, the bilirubin solution 
was mixed with 5% gelatin (G1890, Sigma-Aldrich) and 1% intralipid (Fresenius Kabi). The congealed sample had 
an optical scattering coefficient of approximately 100 cm-1. To prepare the mixed sample (to mimic blood vessels), 
the bilirubin solution was mixed with lysed bovine blood with oxygen (905, Quad Five). The mixture was then 
contained in a microtube (made of platinum-cured silicone) with an inner diameter of 300 µm and an outer diameter 
of 600 µm (60985-700, VWR) to mimic a blood vessel.  

 

3. Results 
We implemented quantitative PAM of pure bilirubin samples. Five solid samples with different volume-averaged 
bilirubin concentrations (1, 2, 3, 4, and 5 mg/dL) were prepared as described above, which covered the normal and 
elevated bilirubin levels in humans. Each sample had a cylindrical shape with a diameter of about 500 µm 
(determined by the inner diameter of the metal tube used as the sample mold), and the space between the samples 
was filled with ultrasonic gel. With a step size of 2 µm, a 3 mm by 0.12 mm area was scanned at 430 nm wavelength, 
where bilirubin has a strong absorption to acquire PAM images of bilirubin distributions [Fig. 2(a)]. The volume-
averaged concentrations of bilirubin in the samples were set to be 1 mg/dL to 5 mg/dL from the top to the bottom. 
Here the sample and the background in the image were separated at a threshold of 5 times of the noise level. The 
measured average concentration of bilirubin in each sample was in accordance with the preset concentration as 
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shown in Fig. 2(b). The results show that the PAM system not only can measure the bilirubin concentration but also 
can provide its spatial information in the pure bilirubin sample. 

 

 

 

 
Fig. 2.  Quantitative PAM of tissue-mimicking samples containing bilirubin with varied concentrations. (a) Bilirubin distribution 

image. From top to bottom in the image, the sample concentrations are 1, 2, 3, 4, and 5 mg/dL, respectively. (b) Volume-
averaged bilirubin concentrations from the PAM measurements in each sample.  

 

We also detected bilirubin distribution in the mixed samples. Wavelengths of 460 nm, 470 nm, 480 nm, 490 nm, 
570 nm, and 578 nm were selected. Solutions with bilirubin-to-blood ratio of 2, 4, 6, 8 and 10 mg/dL to 148 g/L 
were prepared, corresponding to both the normal and the elevated ratios in physiology. Five tubes with the same 
diameters as in the previous experiment were utilized to hold the mixture samples. Here, a 4 mm by 0.5 mm area 
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was scanned with a step size of 2 µm. The image of the bilirubin concentration distribution is shown in Fig. 3(a). 
The average bilirubin concentrations in the sample from top to bottom were set to be 2 mg/dL to 10 mg/dL with 
respect to the blood concentration of 148 g/L. The measured average concentrations of bilirubin are in accordance 
with the preset concentrations, as shown in Fig. 3(b). The results illustrate that PAM can quantitatively image 
bilirubin distributions in the presence of blood. 

 

 

 

 
 

Fig. 3.  Multi-wavelength PAM of the mixtures of bilirubin and blood. (a) Quantitative PAM images at six optical wavelengths. 
(b) Bilirubin distribution image calculated from the multi-wavelength PAM images. From top to bottom in the image, the 

bilirubin concentrations are 2, 4, 6, 8, and 10 mg/dL, respectively, whereas the blood concentration is 148 g/L.  (c) Volume-
averaged bilirubin concentration from the PAM measurements in each tube.  
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4. Conclusion 
In summary, we have demonstrated the ability of PAM for quantitative mapping of bilirubin distribution. The 
bilirubin distribution both in the pure bilirubin samples and in the blood-mixed samples was imaged by multi-
wavelength PAM. Therefore, our method shows promise to quantitatively image bilirubin in vivo for further clinical 
applications, such as the diagnosis of jaundice. 
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