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Linear stability analysis

We describe the details of the linear stability analysis of the spring-slider-
dashpot constitutive properties for a point-like element. At equilibrium, and
ignoring radiation damping, we have

K(δ − Vplt) = σ̄

[
µ0 + a ln

(
Vf,ss
V0

)
+ b ln

(
V0θ,ss
L

)]
, (11)

where we have defined
Vf = Vf,ss + ∆Vf

θ = θ,ss + ∆θ
(12)

with θ,ss = L/Vf,ss, and the subscript , ss refers to steady state. We now derive
the perturbation equation by differentiating about steady state, as follows

σ̄

[
µ0+a ln

(
Vf,ss
V0

)
+ a

∂

∂Vf
ln

(
Vf
V0

)∣∣∣∣
Vf,ss

+b ln

(
V0θ,ss
L

)
+ b

∂

∂θ
ln

(
V0θ

L

)∣∣∣∣
θ,ss

]
= K(δ + ∆δ − Vplt)

(13)

Making use of (11), the above expression simplifies to

σ̄

[
a
∂

∂Vf
ln

(
Vf
V0

)∣∣∣∣
Vf,ss

+ b
∂

∂θ
ln

(
V0θ

L

)∣∣∣∣
θ,ss

]
= K ∆δ . (14)

Expanding the derivatives, we obtain

σ̄

(
a

∆Vf
Vf,ss

+ b
∆θ

θ,ss

)
= K ∆δ . (15)

With θ,ss = L/Vf,ss, taking the time derivative, and using ∆δ̇ = ∆Vf + ∆Vd,
we obtain

σ̄

(
a

∆V̇f
Vf,ss

+ b
Vf,ss
L

∆θ̇

)
= K (∆Vf + ∆Vd) . (16)
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In addition, the perturbation of the aging-law gives

∆θ̇ = −∆Vf
Vf,ss

− Vf,ss
L

∆θ . (17)

Similarly expanding the constitutive law (3) for the viscous dashpot about
steady state gives

∆Vd = C

(
a

∆Vf
Vf,ss

+ b
Vf,ss
L

∆θ

)
(18)

where C is a positive constant given by

C = 2WdAσ̄
n exp

(
− Q

RT

)
nµn−1

ss . (19)

For simplicity we have replaced Q+pV with Q. Combining (16), (17), and (18),
we get

σ̄

(
a

∆V̇f
Vf,ss

+ b
Vf,ss
L

∆θ̇

)
= K

(
1 +

aC

Vf,ss

)
∆Vf +KbC

Vf,ss
L

∆θ . (20)

The steady-state velocity of the slider is the fixed point of the following
transcendental equation

Vf,ss + 2WAσ̄n exp

(
− Q

RT

)[
µ0 + (a− b) ln

(
Vf,ss
V0

)]n
= Vpl , (21)

which can be solved numerically for Vf,ss. In turn, we have Vd,ss = Vpl − Vf,ss.
The set of linear ordinary equations for can be written in matrix form(

∆V̇f
∆θ̇

)
=

(
A B

− 1
Vf,ss

−Vf,ss

L

)(
∆Vf
∆θ

)
, (22)

where

A =
bVf,ss
aL

+
K

σ̄

(
C +

Vf,ss
a

)
B =

b

aL2
V 3
f,ss +K

bC

aσ̄

V 2
f,ss

L

(23)

To establish the stability of the system of equations, we consider the eigen-
values of the 2 by 2 stability matrix, which are

1

2aL2Vf,ssσ

(
KL2Vf,ss(aC + Vf,ss) + (b− a)LV 2

f,ss ± LVf,ss
√

radicand
)

(24)

where

radicand = 4aKLVf,ss((a− b)C+Vf,ss)σ+ (aCKL+KLVf,ss− (a− b)Vf,ssσ)2

(25)
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The stability is determined by the sign of the eigenvalue’s real part. If the
radicand is negative for a given set of parameters, then the real part is negative
whenever

K >
σ(b− a)

L

Vf,ss
aC + Vf,ss

(26)

This equation holds for positive values of the stiffness K. For small, nonzero C,
this result is merely a perturbation of the analysis presented in97.

Numerical solver

The equations that specify our system are specified in Section 2. We solve
the dynamic equilibrium using a 4/5th order Runge-Kutta method where the
dynamic variables are recast to write the system in the classic form

ẏ = f(y, t) , (27)

where y is the state vector

y =
(
δ, Vf , Vd, τ, θ, T

)T
(28)

The variables are defined in the main text. The time derivative of the state
variable and temperature are readily provided by the aging law (2) and the dif-
fusion law (8), respectively. Below, we obtain time derivatives of the remaining
dynamic variables. From (2), we have

τ̇ = aσ̄
V̇f
Vf

+ bσ̄
θ̇

θ
. (29)

From (3), we have

V̇d = 2WAτn exp

(
− Q

RT

)(
n
τ̇

τ
+

Q

RT

Ṫ

T

)

= Vd

(
n
τ̇

τ
+

Q

RT

Ṫ

T

)
.

(30)

From (1), (4), and δ̇ = V , we have

τ̇ = K (Vf + Vd − Vpl)−
G

2Vs
(V̇f + V̇d) . (31)

Eqs. (29)-(31) form a system of three linear equations in the unknowns τ̇ , V̇f , V̇d.
Solving, we obtain

V̇f
Vf

=
2Vsτ RT

2(K(Vd + Vf − Vpl)− bσφ̇)−GVd
(
bnσRT 2φ̇+QτṪ

)
RT 2(aσ(2Vsτ +GnVd) +GτVf )

, (32)
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and

V̇d
Vd

=
2acσ

(
KnRT 2(Vd + Vf − Vpl) +QτṪ

)
+GVf

(
bnσRT 2φ̇+QτṪ

)
RT 2(aσ(2Vsτ +GnVd) +GτVf )

,

(33)
where φ̇ ≡ θ̇/θ. After obtaining V̇f and V̇d, τ̇ may be obtained from any of
(29)-(31).
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