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Linear stability analysis

We describe the details of the linear stability analysis of the spring-slider-
dashpot constitutive properties for a point-like element. At equilibrium, and
ignoring radiation damping, we have
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where we have defined
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with 6 s = L/V} ss, and the subscript , ss refers to steady state. We now derive
the perturbation equation by differentiating about steady state, as follows
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Making use of (11), the above expression simplifies to
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Expanding the derivatives, we obtain
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With 6 ;s = L/Vy s, taking the time derivative, and using A§ = AV + AVy,
we obtain .
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In addition, the perturbation of the aging-law gives

AV; Vi
Vies L

Af = — Af . (17)

Similarly expanding the constitutive law (3) for the viscous dashpot about
steady state gives
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where C' is a positive constant given by
C =2W4AG" exp @ L. (19)
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For simplicity we have replaced Q@+ pV with Q. Combining (16), (17), and (18),
we get
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The steady-state velocity of the slider is the fixed point of the following
transcendental equation
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which can be solved numerically for V¢ s,. In turn, we have Vy o5 = Vi1 — Vi gs.
The set of linear ordinary equations for can be written in matrix form
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To establish the stability of the system of equations, we consider the eigen-
values of the 2 by 2 stability matrix, which are
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where
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The stability is determined by the sign of the eigenvalue’s real part. If the
radicand is negative for a given set of parameters, then the real part is negative
whenever
(b — a) Vf,ss
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This equation holds for positive values of the stiffness K. For small, nonzero C,
this result is merely a perturbation of the analysis presented in””.

K>Z

(26)

Numerical solver

The equations that specify our system are specified in Section 2. We solve
the dynamic equilibrium using a 4/5th order Runge-Kutta method where the
dynamic variables are recast to write the system in the classic form

y=[f¥1), (27)
where y is the state vector
y=(6,V;,Va,7,0,T)" (28)

The variables are defined in the main text. The time derivative of the state
variable and temperature are readily provided by the aging law (2) and the dif-
fusion law (8), respectively. Below, we obtain time derivatives of the remaining
dynamic variables. From (2), we have
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From (3), we have
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From (1), (4), and é = V, we have
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Eqs. (29)-(31) form a system of three linear equations in the unknowns 7, Vy, Vy.
Solving, we obtain
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and
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where ¢ = 0/6. After obtaining Vy and Vg, 7 may be obtained from any of
(29)-(31).




