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Abstract
We show that it is NP-hard to approximate, to within an additive constant, the maximum
success probability of players sharing quantum entanglement in a two-player game with classical
questions of logarithmic length and classical answers of constant length. As a corollary, the
inclusion NEXP ⊆ MIP∗, first shown by Ito and Vidick (FOCS’12) with three provers, holds with
two provers only. The proof is based on a simpler, improved analysis of the low-degree test of
Raz and Safra (STOC’97) against two entangled provers.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory, The-
ory of computation → Interactive proof systems, Theory of computation → Complexity classes

Keywords and phrases low-degree testing, entangled nonlocal games, multi-prover interactive
proof systems

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.20

1 Introduction

Interactive proofs are a fundamental concept in theoretical computer science, with applications
to complexity theory, cryptography, and more. A classic result [19, 24] shows that interaction
is a powerful resource: the class IP of problems that a polynomial-time verifier can solve
with access to a single, untrusted prover is equal to PSPACE. A subsequent line of works
culminating in [3] showed that even more power can be gained by interacting with multiple
provers: the class MIP of problems decidable by a polynomial-time verifier interacting with
multiple non-communicating provers is equal to NEXP. This result was an important catalyst
in the discovery of the PCP theorem [2, 1], a seminal result in complexity theory that has had
broad-ranging implications for hardness of approximation [9, 12]. More recently, increasingly
efficient probabilistically checkable proofs (PCPs) have played a major role in the design of
protocols for delegated computation of space [11] or time-bounded [18] circuits.

What happens when one considers a verifier that has the increased power of quantum
polynomial-time computation, or provers that may use the non-local properties of quantum
entanglement? In the single-prover setting, it is a highly non-trivial result that a quantum
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verifier, having the ability to exchange quantum messages with the prover, cannot decide
more languages than a classical polynomial-time verifier: QIP = IP = PSPACE [15].

The story for multi-prover interactive proof systems is more complex. Cleve et al. [6] were
the first to explore the consequences of entanglement for complexity theory. The class MIP∗

is the class of languages having multi-prover interactive proofs between a classical polynomial-
time verifier and quantum provers who may share entanglement. (The class QMIP∗ allows
a quantum verifier and quantum messages; it is known that QMIP∗ = MIP∗ [23].) It has
been known since the early days of quantum mechanics [8], and more specifically the work of
Bell [4], that allowing spatially isolated provers to perform local measurements on a shared
entangled state may allow them to generate correlations between their (classical) outputs
that cannot be reproduced by any local model, even using shared randomness. In general,
quantum strategies have a higher success probability than classical ones, and this can affect
both the completeness and soundness parameters of a proof system. As a result, the only
trivial lower bound on MIP∗ is IP, since the verifier can ignore one of the provers, and there
are no trivial upper bounds, as the size of entangled-prover strategies can be arbitrary. Cleve
et al. [6] showed that entanglement could at least in some cases lead to a collapse of a
complexity class based on an interactive proofs: they studied XOR proof systems and showed
that ⊕MIP∗ ⊆ PSPACE (for any constant completeness-soundness gap), while it follows
from Håstad’s work [12] that ⊕MIP = NEXP (for some choice of constant completeness and
soundness parameters).

Nevertheless, a sequence of works established techniques to limit the power of entangled
provers, eventually leading to a proof that MIP ⊆ MIP∗ [14] for proof systems involving four
provers, a single round of interaction, and sufficiently large, but constant, answer size. The
result is a corollary of the inclusion NEXP ⊆ MIP∗, whose proof follows the same structure
as Babai et al.’s celebrated proof [3] that NEXP ⊆ MIP. The main technical component of
the proof is an analysis of the soundness of Babai et al.’s multilinearity test with entangled
provers. The result was later refined in [26], who obtained a scaled-down version that applies
to multiplayer games specified in explicit form: the main result of [26] is that it is NP-hard to
approximate the value of a three-player entangled game specified in explicit form (in contrast
to an interactive proof system, which is specified by a family of circuits for the verifier). The
proof rests on an analysis of the soundness of the “plane-vs-point” low-degree test [22], an
improvement over Babai et al.’s multilinearity test, with entangled provers.

A rather intriguing limitation of the results in [14, 26] is that they only apply to games,
or interactive proof systems, with three or more entangled players, or provers. Even though
in any interaction the verifier in the proof systems considered in those works only exchanges
messages with two out of the three provers,3 the proof seems to crucially require that the joint
Hilbert space supporting the provers’ strategies can be decomposed in at least three tensor
factors. Most importantly, this requirement is used in the proof of the “self-improvement
lemma” that is key to control the accumulation of approximation errors in the inductive
analysis of both the multilinearity and low-degree tests. Intuition for the requirement that
there are three players is based on the phenomenon of monogamy of entanglement: it has
been known at least since the work of Toner [25] that this kind of “embedding” of a two-player
game in a three-player game can effectively limit the players’ ability to take advantage of their
shared entanglement, in some cases drastically lowering their maximum success probability in

3 More precisely, all tests considered, including the low-degree test, take the form: (i) the verifier selects
two provers at random, and calls them “Alice” and “Bob”; (ii) the verifier plays a two-prover game with
Alice and Bob.



A. Natarajan and T. Vidick 20:3

the game. Could it be that the two-prover entangled value of the game can be approximated
in polynomial time, while the three-player entangled value is NP-hard?

We answer this question by showing that the same plane-vs-point low-degree test analyzed
in [26] remains sound even when it is played with two, instead of three, entangled provers.
As a consequence, we obtain the first non-trivial hardness results for the class MIP∗(2, 1) of
two-prover one-round entangled proof systems. (The best prior result is hardness for inverse-
exponential completeness-soundness gap [13], which cannot be amplified by a polynomial-time
verifier using e.g. parallel repetition.)

I Theorem 1. The inclusion NEXP ⊆ MIP∗(2, 1) holds. Furthermore, it still holds when
MIP∗(2, 1) is restricted to one-round proof systems with constant answer size.

Theorem 1 is obtained by scaling up a stronger NP-hardness result for two-player entangled
projection games,4 see Theorem 15 and Corollary 16 in Section 4.

Theorem 1 shows that allowing the provers to share entanglement does not weaken the
power of two-prover one-round interactive proof systems. As mentioned earlier, entanglement
may also have the effect of increasing the complexity of such proof systems, by allowing the
verifier to implement protocols whose completeness can only be achieved by provers sharing
entanglement. In fact, this is known to occur when the completeness-soundness gap is allowed
to be exponentially small. In this regime, it was shown by [10] that the class QMIP∗ of
multi-prover interactive proof systems with a quantum verifier and messages contain QMAEXP,
the quantum analogue of NEXP, and subsequent works by Ji [16, 17] improved this result
to show that MIP∗ with exponentially small gap contains NEEXP (nondeterministic doubly-
exponential time). However, it remained an open question whether a similar phenomenon
occurs when the completeness-soundness gap is a constant.

In a subsequent work [21], building on the soundness analysis of the two-player low-degree
test presented in this paper, we were able to answer (a version of) this question in the
affirmative, showing the first constant-gap QMA-hardness results for entangled-player games.
Specifically, we show that it is QMA-hard, under randomized reductions, to give a constant
additive approximation to the maximum success probability of a players sharing entanglement
in a multiplayer game specified in explicit form. The reduction in [21] yields a game with
7 players and one round of interaction. Interestingly, the analysis of this 7 player game,
which uses the quantum error-correcting code framework of [10, 16], relies essentially on the
soundness of the low-degree test with two entangled players. This is a further application of
the techniques of this work, beyond the hardness for two-player games achieved in Theorem 1.

The main ingredient needed to obtain Theorem 1, and our main technical contribution,
is a soundness analysis of the plane-vs-point low-degree test in the presence of two entangled
provers. The analysis that we provide is both conceptually and technically simpler than the
analysis in [26]. Although our proof relies on elementary reductions from [26], we present it
in a modular way which, we hope, will make it more easily accessible, and more conveniently
re-usable, than the proof in [26]. In the following subsection we describe the low-degree test
and give a high-level overview of our analysis.

1.1 The low-degree test
We recall the “plane-vs-point” low-degree test from [26] in Figure 1. The test is essentially
the same as the classical test from [22]. It asks one prover for the restriction of a low-degree

4 The reduction proceeds in a standard way by using a succinctly represented instance of the 3-SAT
problem as starting point; we omit the details.

CCC 2018
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Out of the two provers, choose one at random to be Alice and the other to be Bob.
1. Let d,m be integer and q a prime power given as input.
2. Select a random point x ∈ Fmq and two random directions y1, y2 ∈ Fmq . If y1 and y2 are

not linearly independent, accept; otherwise, let s be the plane spanned by the two lines
parallel to y1, y2 passing through x.

3. Send s to Alice and x to Bob. Receive g, a specification of a degree-d polynomial restricted
to s, from Alice, and a ∈ Fq from Bob.

4. Accept if and only if g(x) = a.

Figure 1 The (d, m, q)-low-degree test.

m-variate polynomial g to a random two-dimensional subspace s of Fmq , where Fq is the
finite field with q elements, q a prime power, and the other prover for the evaluation of g at
a random x ∈ s; the prover’s answers are checked for consistency.

Since the test treats both provers symmetrically, for the purposes of the soundness analysis
we may reduce to the case where the provers share a permutation-invariant state and use the
same collection of measurement operators. The following states the result of our analysis of
the test. It extends Theorem 3.1 in [26] to the case of two provers.5 In the theorem, we use
the notation 〈A,B〉Ψ for 〈Ψ|A⊗B|Ψ〉.

I Theorem 2. There exists a δ = poly(ε) and a constant c > 0 such that the following holds.
Let ε > 0, m, d integers, and q a prime power such that q ≥ (dm/ε)c. For any strategy for
the players using entangled state |Ψ〉 and projective measurements {Ars}r that succeeds in the
(d,m, q)-low-degree test with probability at least 1− ε, there exists a POVM {Sg}g, where g
ranges over m-variate polynomials over Fq of total degree at most d, such that the following
hold:
1. Approximate consistency with A:

E
s

∑
g

∑
r 6=g|s

〈Ars, Sg〉Ψ ≤ δ ,

where the expectation is over a random two-dimensional subspace s of Fmq , as chosen by
the verifier in the test;

2. Self-consistency:∑
g

〈Sg, (Id−Sg)〉Ψ ≤ δ .

The proof of Theorem 2 follows the same structure as the proof of Theorem 3.1 in [26].
The proof is by induction on the number of variables m. The base case m = 2 is trivial, since
there is a single subspace s, and the provers’ associated POVM {Ar} can directly play the
role of {Sg} in the theorem. Suppose then that the theorem is true for a value (m− 1) such
that m− 1 ≥ 2. To show that the theorem holds for m there are three main steps, which
mirror the classical analysis of the low-degree test:
1. (Section 6.3 of [26]) By the induction hypothesis, for every (m− 1)-dimension hyperplane

s in Fmq there is a POVM {Qgs}g with outcomes g in the set of degree-d polynomials on s,

5 The self-consistency condition is not explicitly stated in [26] but (as we will show) it follows easily from
the proof.
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such that on average over the choice of a uniformly random s and x ∈ s the POVM {Qgs}
is consistent with {Aax}.

2. (Section 6.4 of [26]) For any k ≥ 1, measurements {Qgs}g associated with k parallel
subspaces s1, . . . , sk are “pasted” together to yield a combined measurement {Q(gi)

(si)} that
returns a k-tuple of degree-d polynomials gi defined on si. This is proved by induction
on k.

3. (Section 6.5 of [26]) Finally, taking k to be sufficiently large compared to d, the mea-
surement {Q(gi)

(si)} is consolidated into a single global measurement {Sg} that satisfies the
conclusion of the theorem for the m-variate case.

These three steps remain unchanged in the current proof. At only very few places in [26] is
the presence of three provers used; in most cases this is only a matter of convenience and is
easily avoided. For completeness, in Appendix A we explicitly list those places and how the
use of three provers can be avoided.

As already mentioned the critical point in the proof where three provers, or rather the
existence of three tensor factors in the provers’ Hilbert space, is used, is to control the error
increase throughout the induction. As shown by the analysis, if the measurements {Qgs}
produced by the induction hypothesis are δ-consistent with {Aax}, then the resulting Sg will
be O(δc)-consistent with the same {Aax}, for some constant c < 1. For poly-logarithmic m
such an increase is unmanageable.

The key step in the analysis consists in establishing a “self-improvement lemma”, which
resets the consistency error to some constant baseline at each step of the induction. This
is called the “consolidation procedure” in [26]. A similar self-improvement was already at
the heart of Babai et al.’s proof of MIP ⊆ NEXP; variants thereof have found uses outside of
complexity theory, such as in property testing.

Our main technical contribution is a simpler, self-contained proof of a variant of the
consolidation procedure from [26] (stated as Proposition 5.8 in that paper), which applies to
strategies with two provers only. The procedure shows that the consistency error sustained
by any POVM, when measured against a structure called a “robust triple” in [26], can
be automatically improved. Our variant is based on a simpler notion than the robust
triples from [26], that we call “global consistency”. We believe that our formulation of
self-improvement, and its analysis (which crucially relies on semidefinite duality), should be
of broad interest. At a high level, the result relies on a procedure that, given a collection
of positive semidefinite operators {Ai}, identifies a measurement {Ti}, i.e. Ti ≥ 0 and∑
i Ti = Id, that “optimally coincides” with the {Ai} (see Lemma 13 for a precise formulation).
Throughout we assume familiarity with the notation and proof structure from [26], though

we recall the most important notions in Section 2. In particular we formally define robust
triples and global consistency, and show that the former notion implies the latter, so that
our result can be directly used in lieu of Proposition 5.8 in the analysis of [26]. In Section 3
we prove our replacement for Proposition 5.8, Proposition 12. The proof of (the scaled-down
version of) Theorem 1 follows from the analysis of the test using similar reductions as in [26];
we briefly explain how in Section 4.

2 Preliminaries

2.1 Notation
We use H to denote a finite-dimensional Hilbert space, and L(H) for the linear operators
on H. Subscripts HA, HB indicate distinct spaces. For |Ψ〉 ∈ HA ⊗ HB and A ∈ L(HA),
B ∈ L(HB) we write 〈A,B〉Ψ = 〈Ψ|A⊗B|Ψ〉. Note that we do not conjugate A or B. Given

CCC 2018
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two families of operators {Aax} and {Bax} on HA, where x ∈ X and a ∈ A range over finite
sets, and 0 ≤ δ ≤ 1, we write Aax ≈δ Bax for

E
x

∑
a

〈(Aax −Bax)2, Id〉Ψ = O(δ) .

The expectation over x will usually be taken with respect to the uniform distribution. The
distinction between taking an expectation (over x) or a summation (over a) will always be
clear from context.

2.2 Measurements
Throughout, we consider a bipartite state |Ψ〉 ∈ H ⊗ H assumed to be invariant under
permutation of the two registers. All operators we consider act on the finite-dimensional
space H.

I Definition 3. A sub-measurement {Ma}a is a collection of positive semidefinite operators
satisfying M =

∑
aM

a ≤ Id. We say that a sub-measurement is η-complete if

〈M, Id〉Ψ ≥ 1− η ;

η is called the completeness error. If M = Id then we say that {Ma}a is a measurement, in
which case the completeness error is zero.6

The following definition appears in [26].

I Definition 4. Let X and A be finite sets. Let {Ma
x}a be a family of sub-measurements

indexed by x ∈ X and with outcomes a ∈ A. For each x, let Mx =
∑
aM

a
x . We say that

{Ma
x} is
ε-self-consistent if

E
x

∑
a 6=a′
〈Ma

x , M
a′

x 〉Ψ ≤ ε ,

γ-projective if

E
x
〈Mx, (Id−Mx)〉Ψ ≤ γ .

Let {T g} be a sub-measurement with outcomes in the set of all functions g : X → A. We
say that {Ma

x} and {T g} are δ-consistent if

E
x

∑
g,a: a6=g(x)

〈T g, Ma
x 〉Ψ ≤ δ .

We consider families of functions such that distinct functions have few points of intersection.
The following definition is the reformulation of the definition of an error-correcting code,
that is adapted to our notation using functions (where the codeword associated to a function
is the evaluation table of the function, and vice-versa).

I Definition 5. Let X and A be finite sets, G a set of functions from X to A, and 0 ≤ κ ≤ 1.
We say that (X ,A,G) is κ-structured if for any two distinct g, g′ ∈ G,

Pr
x∈X

(
g(x) = g′(x)

)
≤ κ ,

where the probability is taken under the uniform distribution on X .

6 The converse does not necessarily hold, as |Ψ〉 may not have full support.
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The following lemma states useful properties of consistency.

I Lemma 6. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements indexed
by x ∈ X that is ε-self-consistent. Let {T g}g∈G be a sub-measurement that is δ-consistent
with {Aax}. Then
{T g} is δ′-self-consistent, for δ′ = O(

√
ε+
√
δ + κ);

Let T =
∑
g T

g, and suppose {T g} is γ-projective. Then

TAax ≈√ε+√δ+γ+κ AaxT .

Proof. We sketch the proof. For the first item,∑
g 6=g′
〈T g, T g

′
〉Ψ = E

x

∑
a

∑
g 6=g′
〈T g, T g

′
Aax〉Ψ

≈√δ E
x

∑
g 6=g′
〈T g, T g

′
Ag(x)
x 〉Ψ

≈√ε E
x

∑
g 6=g′
〈T gAg(x)

x , T g
′
〉Ψ

≈√δ E
x

∑
g 6=g′

1g(x)=g′(x) 〈T gAg(x)
x , T g

′
〉Ψ

≈√δ E
x

∑
g 6=g′

1g(x)=g′(x) 〈T g, T g
′
〉Ψ

≤ κ .

For the second item, it suffices to lower bound

E
x

∑
a

〈TAaxTAax, Id〉Ψ ≈√ε E
x

∑
a

∑
g

〈TAaxT g, Aax〉Ψ

≈√δ E
x

∑
a

∑
g

〈TAaxT g, Ag(x)
x 〉Ψ

≈√δ E
x

∑
a,a′

∑
g

〈TAaxT g, Aa
′

x 〉Ψ

= 〈T 2, Id〉Ψ .

The claimed bound then follows by expanding Ex

∑
a(TAax−AaxT )2 and regrouping terms. J

2.3 Global consistency
The analysis of the low-degree test amounts to arguing that a set of measurement operators
which produce outcomes that are locally consistent can be combined into a single measurement
which returns a global object consistent with each of the local measurements: it is possible to
recombine local views. In [26] the notion of local consistency used is called a “robust triple”.
For convenience we recall the definition.

I Definition 7 (Definition 5.2 in [26]). Let G = (V,E) be a graph, S a finite set, G ⊆ {g :
V → S} a set of functions and for every v ∈ V , {Aav}a∈S a measurement with outcomes in
S. Given δ > 0 and 0 < µ ≤ 1, we say that (G, {Aav},G) is a (δ, µ)-robust triple if:
1. (self-consistency) The family of measurements {Aav} is δ-self-consistent;
2. (small intersection) (V, S,G) is δ-structured;

CCC 2018
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3. (stability) For any sub-measurement {Rg}g∈G it holds that

E
v∈V

E
v′∈N(v)

∑
g

〈Rg, (Ag(v)
v −Ag(v

′)
v′ )2〉Ψ ≤ δ ,

where N(v) is the set of neighbors of v in G;
4. (expansion) G has mixing time O(µ−1). Precisely, if for any v ∈ V we let pk(v) denote

the distribution on V that results from starting a k-step random walk at v, then for any
δ > 0 and some k = O(log(1/δ) log(1/µ)) it holds that Ev∈V ‖pk(v)− |V |−1‖1 ≤ δ.

We observe that the only way in which items 3. and 4. from the definition are used for
the self-improvement results is through [26, Claim 5.3], which states the following.

I Claim 8 (Claim 5.3 in [26]). Suppose (G,A,G)Ψ is a (δ, µ)-robust triple. Then there exists
a δ′ = O

(
δ1/2 log2(1/δ) log2(1/µ)

)
such that for any sub-measurement {Rg}g∈G,∑

g

〈Rg, Ag − (Ag)2〉Ψ ≤ δ′ , (1)

where Ag = Ev∈V A
g(v)
v .

It is more direct, and more general, to use condition (1) directly as part of the definition,
as this allows us to set aside any notion of an expanding graph.

I Definition 9. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements
indexed by x ∈ X and with outcomes a ∈ A. For g ∈ G, let Ag = ExA

g(x)
x . Let |Ψ〉 be a

permutation-invariant bipartite state. For 0 ≤ ε, δ ≤ 1 we say that ({Aax},G) is (ε, δ)-globally
consistent on |Ψ〉 if:
1. κ = O(ε);
2. The family {Aax} is ε-self-consistent;
3. There exists a positive semidefinite operator Z such that

∀g ∈ G, 0 ≤ Ag − (Ag)2 ≤ Z, and 〈Z, Id〉Ψ ≤ δ.

It is not hard to verify that condition 3. in the definition is equivalent to (1). This can be
seen by writing the bound δ in the condition as the optimum of a semidefinite program, and
taking the dual. This is done in a similar way to the analysis of the semidefinite program (2).
The only difference is that the latter considers consistency when the state |Ψ〉 is maximally
entangled. Formally, we have the following lemma.

I Lemma 10. Let |Ψ〉 ∈ H ⊗H be a state invariant under permutation of its two registers,
such that the reduced density of |Ψ〉 on either register has full support. Let {Ai} be a family
of positive semidefinite operators on H with Ai ≤ Id for all i. Then the following primal and
dual semidefinite program satisfy strong duality, and hence have the same optimum value:

Primal SDP

sup
∑
i

〈Ti, Ai〉Ψ

s.t. Ti ≥ 0 ∀i ,∑
i

Ti ≤ Id .
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Dual SDP

inf 〈Z, Id〉Ψ

s.t. Z ≥ Ai ∀i ,
Z ≥ 0 .

Proof. Both the primal and dual are strictly feasible, as can be seen by taking e.g. Ti ∝ Id
such that

∑
i Ti = Id /2, and Z = 2 Id. J

Taking Ai in Lemma 10 to equal Ag−(Ag)2, the primal value being less than δ′ is equivalent
to (1), while the dual value being less than δ′ is equivalent to item 3. in Definition 9.

For later use we note that self-consistency of {Aax} implies self-consistency of the operators
Ag introduced in Definition 9, in the following sense.

I Lemma 11. Let {Aax} be a family of measurements that is ε-self-consistent. Then for any
sub-measurement {Rg},∑

g

〈Ag, Rg〉Ψ ≈√ε
∑
g

〈Id, RgAg〉Ψ.

Proof. Write∑
g

〈Ag, Rg〉Ψ =
∑
g

E
x
〈Ag(x)

x , Rg〉Ψ

=
∑
g,a

E
x
〈Ag(x)

x , RgAax〉Ψ

≈√ε
∑
g

E
x
〈Ag(x)

x , RgAg(x)
x 〉Ψ

≈√ε
∑
g

E
x
〈Id, RgAg(x)

x 〉Ψ . J

3 Self-improvement with two provers

The main result on self-improvement from [26] is stated as Proposition 5.8 in that paper. Our
main technical result, Proposition 12 below, improves upon Proposition 5.8 in the following
respects:

Proposition 12 allows performing self-improvement with two provers only;
Proposition 12 only requires the notion of consistency introduced in Definition 9, which
as argued in Section 2.3 is less restrictive than the notion of robust triple used in [26];
The proof of Proposition 12 is simpler and yields better parameters.

We state the proposition and give its proof here. In Section 4 we show how the proposition
is used to obtain the hardness results.

I Proposition 12. There exists universal constants ε0, δ0, t0 > 0 such that the following
holds. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements indexed by
x ∈ X , and |Ψ〉 a bipartite permutation-invariant state. Suppose that the following conditions
hold:
1. ({Aax},G) is (ε, δ)-globally consistent on |Ψ〉, for some 0 ≤ ε ≤ ε0, 0 ≤ δ ≤ δ0;

CCC 2018
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2. There exists a function t = t(ε′, δ′) and ε′0, δ′0 > 0 such that for any 0 ≤ ε′ ≤ ε′0 and
0 ≤ δ′ ≤ δ′0 it holds that t(ε′, δ′) ≤ t0, and such that the following holds. For any (ε′, δ′)
and state |Φ〉 such that ({Aax},G) is (ε′, δ′)-globally consistent on |Φ〉, there exists a
measurement {Qg}g∈G that is t(ε′, δ′)-consistent with {Aax}.

Then there exists a measurement {Rg}g∈G that is δ′-consistent with {Aax}, for some δ′ =
O(
√
r(ε, δ)), where r(ε, δ) is the function defined in Lemma 13.

The key “improvement” provided by the proposition is that, while the function t is only
assumed to be bounded by a fixed constant for sufficiently small values of the arguments,
the proposition returns a measurement {Rg} that has an explicit consistency δ′ with {Aax},
where δ′ is polynomial in ε and δ, irrespective of t (indeed t need not approach 0 as ε, δ
approach 0).

We note that, in our language, [26, Proposition 5.8] considers a family of globally consistent
pairs ({Aat,x},Gt), parametrized by some finite set t ∈ T , and makes both the assumptions
and the conclusions of Proposition 12 in an averaged sense, for uniformly random t ∈ T .
For simplicity we state and prove the proposition for |T | = 1. The case of general T is
needed for the inductive application of the Proposition towards the proof of Theorem 2. We
sketched the inductive step in the introduction. We refer to [26] for details of the derivation
of Theorem 2 from Proposition 12, which is identical to the derivation of [26, Theorem 3.1]
from [26, Proposition 5.8], up to minor modifications that we review in Appendix A.

The main step in the proof of the proposition is provided by the following lemma, which
is analogous to [26, Claim 5.4]. The semidefinite program considered in the proof of the
lemma, and its analysis, are our main points of departure from the proof in [26]. Indeed, the
proof of an upper bound on the completeness error of the sub-measurement {Sg} constructed
in the proof of the lemma is the main point where the existence of a three-fold tensor product
decomposition of the Hilbert space is most crucially used in [26].

I Lemma 13. There exists a function r(ε, δ) = O(
√
ε+
√
δ) such that the following holds for

all 0 ≤ ε, δ, η ≤ 1. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements
indexed by x ∈ X . Let |Ψ〉 be a permutation-invariant bipartite state and assume ({Aax},G)
are (ε, δ)-globally consistent on |Ψ〉. Let {Qg}g∈G be a sub-measurement that is η-consistent
with {Aax} on |Ψ〉. Then there exists a sub-measurement {Sg} that is r(ε, δ)-consistent with
{Aax} and projective and has completeness error

〈Id−S, Id〉Ψ ≤ 〈Id−Q, Id〉Ψ + η + r(ε, δ) .

Proof. For g ∈ G, let Ag = ExA
g(x)
x . We consider the following primal and dual semidefinite

program, obtained from the semidefinite program in Lemma 10 by setting Ai to Ag and
formally replacing the state |Ψ〉 appearing in the SDP by the maximally entangled state7.
The primal becomes

ω = sup
∑
g

Tr(T gAg) (2)

s.t. T g ≥ 0 ∀g ∈ G ,∑
g

T g ≤ Id ,

7 Note that we are not assuming that the state |Ψ〉 appearing in the hypothesis of Lemma 13 is maximally
entangled. The purpose of defining the SDP (2) without reference to the state |Ψ〉 is to make the
resulting complementary slackness conditions (4) easier to work with.
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and the dual

min Tr(Z)
s.t. Z ≥ Ag ∀g ∈ G , (3)

Z ≥ 0 .

As shown in Lemma 10 both the primal and dual are strictly feasible, so that strong duality
holds. Let {T g} be an optimal primal solution. Without loss of generality,

∑
g T

g = Id, as any
solution such that (Id−

∑
g T

g)Ag′ 6= 0 for any g′ is clearly not optimal. The complementary
slackness conditions, which follow from the KKT conditions for optimality, immediately
imply

T gZ = T gAg ∀g ∈ G . (4)

For each g ∈ G let

Sg = E
x
Ag(x)
x T gAg(x)

x .

Then {Sg} is a sub-measurement. We show that Sg satisfies the desired consistency, projec-
tivity and completeness properties.
(i) Consistency: We have that

E
x

∑
g

∑
a 6=g(x)

〈Sg, Aax〉Ψ =
∑
g

〈Sg, (Id−Ag)〉Ψ .

Using self-consistency of {Aax},∑
g

〈Sg, Id〉Ψ = E
x

∑
g

〈Ag(x)
x T gAg(x)

x , Id〉Ψ

≈√ε E
x

∑
g

〈T g, Ag(x)
x 〉Ψ

=
∑
g

〈T g, Ag〉Ψ . (5)

Similarly,∑
g

〈Sg, Ag〉Ψ = E
x

∑
g

〈Ag(x)
x T gAg(x)

x , Ag〉Ψ

≈√ε E
x

∑
g

〈T g, Ag(x)
x AgAg(x)

x 〉Ψ . (6)

Using the Cauchy-Schwarz inequality,

E
x

∑
g

〈T g,
(
Ag −Ag(x)

x

)
AgAg(x)

x 〉Ψ ≤
(

E
x

∑
g

〈T g, Ag(x)
x (Ag)2Ag(x)

x 〉Ψ
) 1

2

·
(

E
x

∑
g

〈T g,
(
Ag −Ag(x)

x

)2〉Ψ) 1
2

≤
(∑

g

〈T g,
(
Ag − (Ag)2)〉Ψ) 1

2

≤
√
δ , (7)
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where the second inequality uses Ag(x)
x (Ag)2A

g(x)
x ≤ Id for the first term, and expands

the square and uses (Ag(x)
x )2 ≤ Ag(x)

x for the second term, and the last inequality follows
from item 3. in the definition of globally consistent. Combined with (5) and (6), we
have shown

E
x

∑
g

∑
a 6=g(x)

〈Sg, Aax〉Ψ ≈√ε+√δ
∑
g

〈T g, (Ag − (Ag)3)〉Ψ . (8)

Writing

Ag − (Ag)3 = Ag − (Ag)2 +
√
Ag
(
Ag − (Ag)2)√Ag

≤ 2
(
Ag − (Ag)2) ,

since all terms commute and (Ag)2 ≤ Ag ≤ Id, using item 3. in the definition of globally
consistent the right-hand side of (8) is at most 2δ.

(ii) Completeness:∑
g

〈Sg, Id〉Ψ = E
x

∑
g

〈Ag(x)
x T gAg(x)

x , Id〉Ψ

≈√ε E
x

∑
g

〈T g, Ag(x)
x 〉Ψ

≈√ε
∑
g

〈T gAg, Id〉Ψ

=
∑
g

〈T gZ, Id〉Ψ

= 〈Z, Id〉Ψ ,

where the third line uses Lemma 11 and the penultimate equality follows from (4), and
for the last we used

∑
g T

g = Id. We establish a lower bound on this last expression by
introducing {Qg}:

〈Q, Id〉Ψ − η ≤
∑
g

〈Qg, Ag〉Ψ

≤
∑
g

〈Qg, Z〉Ψ

≤ 〈Id, Z〉Ψ ,

where the second inequality uses the dual constraint (3), and the third uses
∑
g Q

g ≤ Id.
It follows that∑

g

〈Sg, Id〉Ψ ≥ 〈Q, Id〉Ψ − η −O
(√
ε
)
.

(iii) Projectivity: By proceeding exactly as in (7), we can show

〈S, S〉Ψ =
∑
g

E
x
〈Ag(x)

x T gAg(x)
x , S〉Ψ

≈√ε+√δ
∑
g

〈AgT gAg, S〉Ψ

=
∑
g,g′

E
x
〈AgT gAg, Ag

′(x)
x T g

′
Ag
′(x)
x 〉Ψ

≈√ε+√δ
∑
g,g′

E
x
〈Ag(x)

x T gAg(x)
x , Ag

′(x)
x T g

′
Ag
′(x)
x 〉Ψ .
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Using self-consistency of {Aax}, from the above we get

〈S, S〉Ψ ≈√ε+√δ
∑
g,g′

E
x
〈T gAg(x)

x , Ag
′(x)
x T g

′
Ag
′(x)
x 〉Ψ

≈√ε+√δ
∑
g,g′

〈T gAg, Sg
′
〉Ψ

= 〈Z, S〉Ψ , (9)

where the second line again uses similar arguments as (7) and the last line uses (4) and∑
g T

g = Id. Using the dual constraint (3), we deduce

〈S, S〉Ψ ≥
∑
g

〈Ag, Sg〉Ψ −O(
√
ε+
√
δ)

≈√ε+√δ 〈S, Id〉Ψ ,

where the second line follows from consistency of {Sg} and {Aax} shown in item (i). J

Based on Lemma 13, we give the proof of Proposition 12.

Proof of Proposition 12. Let ε, δ be as in condition 1., and {Qg} be the measurement whose
existence follows from condition 2. in the proposition, when |Φ〉 = |Ψ〉 and ε′, δ′ = ε, δ.
By applying Lemma 13 to the state |Ψ〉 and measurements {Aax} and {Qg} we obtain a
sub-measurement {Sg} that is ξ = r(ε, δ)-projective and consistent with {Aax}. Among all
sub-measurements that are ξ-projective and consistent with {Aax}, let {T g} be one that
minimizes the completeness error θ = 〈Id−T, Id〉. Provided ε0, δ0 are small enough we may
assume θ ≤ t(ε, δ) + r(ε, δ) ≤ 1/4. If θ = 0 the measurement T is perfectly complete, and
we are done as we can take the measurements Rg in the conclusion of the proposition to be
equal to T g. So, for the rest of the proof, we can assume that θ > 0. To complete the proof
we need to prove a better upper bound on θ. Towards this, introduce a state

|Φ〉 = |Φ̃〉
‖|Φ̃〉‖

, where |Φ̃〉 = (Id−T )⊗ (Id−T )|Ψ〉 .

Given the assumption that θ > 0, it follows that ‖|Φ̃〉‖ > 0, and hence this state is well
defined. Moreover we can estimate the norm of |Φ̃〉 as follows:∥∥|Φ̃〉∥∥2 = 〈(Id−T )2, (Id−T )2〉Ψ

= 〈Id−2T + T 2, Id−2T + T 2〉Ψ
= 1− 4〈T, Id〉Ψ + 4〈T, T 〉Ψ + 2〈T 2, Id〉Ψ − 4〈T 2, T 〉Ψ + 〈T 2, T 2〉Ψ
= 1− 4〈T, (Id−T )〉Ψ + 2〈T 2, (Id−T )〉Ψ − 〈T 2, T (Id−T )〉Ψ − 〈T 2, T 〉Ψ
≈√

ξ
1− 〈T, T 2〉Ψ

≈√
ξ

1− 〈T, Id〉Ψ , (10)

where the last two approximations use the projectivity assumption on T .

I Claim 14. There are ε′ = O(ε+
√
ξ) and δ′ = O(δ +

√
ξ) such that ({Aax},G) is (ε′, δ′)-

globally consistent on |Φ〉.
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Proof. We verify the properties in Definition 9. Item 1. is automatic. For item 2., self-
consistency of {Aax} on |Φ〉, write

E
x

∑
a

〈Aax, Aax〉Φ̃ = E
x

∑
a

〈Aax(Id−T )− TAax(Id−T ), (Id−T )Aax − (Id−T )AaxT 〉Ψ

≈√
ξ

E
x

∑
a

〈Aax, Aax〉Ψ − 〈T, Aax〉Ψ + 〈Aax(Id−T ), T 〉Ψ

≈√
ξ

1− ε− 〈T, Id〉Ψ .

Together with (10), it follows that {Aax} is ε′-self-consistent on |Φ〉, for some ε′ = O(ε+
√
ξ).

For item 3. in the definition, let Z be such that Ag−(Ag)2 ≤ Z for all g ∈ G, and 〈Z, Id〉Ψ ≤ δ.
Then

〈Z, Id〉Φ̃ ≈√ξ 〈Z, (Id−T )〉Ψ

≤ δ ,

and the property follows using (10). J

Applying condition 2. in the proposition to |Φ〉 and ({Aax},G) we obtain a measure-
ment {Qg} that is ξ′ = t(ε′, δ′)-projective and consistent with {Aax} on |Φ〉. Define a
sub-measurement {Rg} by

Rg := TT gT + (1− T )Qg(1− T ) .

The completeness of this measurement on |Ψ〉 is

〈R, Id〉Ψ = 〈T 3, Id〉Ψ + 〈(1− T )2, Id〉Ψ
≈√

ξ
1 , (11)

since

〈T 3, Id〉Ψ ≈√ξ 〈T
2, Id〉Ψ ≈√ξ 〈T, Id〉Ψ .

To evaluate consistency with {Aax},

E
x

∑
g

∑
a6=g(x)

〈Rg, Aax〉Ψ

= E
x

∑
g

∑
a 6=g(x)

(
〈TT gT, Aax〉Ψ + 〈(1− T )Qg(1− T ), Aax〉Ψ

)
≈√

ε+
√
ξ+κ E

x

∑
g

∑
a6=g(x)

(
〈TT g, TAax〉Ψ + 〈(1− T )Qg, (1− T )Aax〉Ψ

)
= O(

√
ξ) +O(

√
ξ′)
∥∥|Φ̃〉∥∥2

,

where the second line uses the second item in Lemma 6 and the last ε = O(ξ), given the
definition of the function r. Using (11), if we complete {Rg} into a measurement {R̃g} by
adding an arbitrary term, the latter will have consistency δ′′ = O(

√
ξ) +O(

√
ξ′)‖|Φ̃〉‖2 with

{Aax}. Applying Lemma 13 yields a sub-measurement {V g} that is ξ = r(ε, δ)-projective and
consistent with {Aax}, and for which

〈(Id−V ), Id〉Ψ = O(
√
ξ) +O(

√
ξ′)‖|Φ̃〉‖2.
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Recall that by assumption, {T g} is the most complete measurement that is ξ-projective and
consistent with Ax. Hence, 〈(Id−V ), Id〉Ψ ≥ 〈(Id−T ), Id〉Ψ, so that

θ ≤ O(
√
ξ) +O(

√
ξ′)(θ +O(

√
ξ)).

Provided ε, δ are small enough that O(
√
ξ′) = O(

√
t(ε′, δ′)), with ε′, δ′ as in Claim 14, is at

most 1/4, as can be assumed from the assumed upper bound t(ε′, δ′) ≤ t0 for ε′ ≤ ε0 and
δ′ ≤ δ0 provided t0 is a small enough universal constant, we have obtained θ = O(

√
ξ) =

O(
√
r(ε, δ)), as claimed. J

4 NP-hardness for two-player entangled games

Based on the result of the analysis of the low-degree test stated in Theorem 2 and following the
same sequence of reductions — composition of the low-degree test with itself, to reduce answer
size, and combination with the 3-SAT test — as in [26] we obtain the following analogue of [26,
Theorem 4.1], which establishes NP-hardness for games with poly(log logn)-bit answers.

I Theorem 15. There is an ε > 0 such that the following holds. Given a 2-player game G in
explicit form, it is NP-hard to distinguish between ω(G) = 1 and ω∗(G) ≤ 1− ε. Furthermore,
the problem is still NP-hard when restricting to games G of size n that are projection games
for which questions and answers can be specified using O(logn) bits and poly(log logn) bits
respectively.

In [26] this result is improved to obtain hardness for games with constant-bit answers
by reducing the 3-SAT test, on which the proof of Theorem 15 is based, to the three-player
QUADEQ test for testing satisfiability of a system of quadratic equations in binary variables.
This amounts to composing a PCP based on low-degree polynomials with the “exponential
PCP” based on the three-query linearity test of [5], and yields hardness for three-player
games with binary answers. The same steps can be completed with two players only by
using the technique of oracularization to transform the QUADEQ and linearity tests into
two-player games. The idea of oracularization is that for every triple of questions (q1, q2, q3)
to be sent to the three players in the original test, the verifier sends the entire triple to a
single player, Alice, and receives a triple of answers. The verifier also sends a randomly
selected question from the triple to a second player, Bob. The verifier accepts if and only if
Bob’s answer is consistent with Alice’s, and the triple of answers provided by Alice would
have been accepted in the original test. For concreteness, we summarize the oracularized
QUADEQ test in Figure 2. (Note that the third element in each of Alice’s question and
answer triples is redundant and can be eliminated.)

It is easy to see that honest strategies pass the oracularized QUADEQ test with probability
1. To establish soundness of the test, i.e to show an analogue of Lemma 3.5 of [26], we can
follow essentially the same steps as in the proof of that lemma. The key step of the proof is
to argue that, due to the soundness of the linearity test against entangled provers, there exist
measurements on each prover’s space whose outcomes are linear functions that are consistent
with the measurements applied in the test. For the oracularized test, we can perform this
step using the soundness of the oracularized linearity test against entangled provers, which
was analyzed in [20]. The rest of the proof proceeds unchanged. As a result we obtain the
following corollary, which establishes Theorem 1; it is completely analogous to [26, Corollary
4.3], except that due to the oracularization, the two provers now have to provide answers of
two bits each instead of one.
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Out of the two provers, choose one at random to be Alice and the other to be Bob.
1. With probability 1/4 each, do the following:

a. Send label `1 to the two players and perform the (n/2)-bit (oracularized) linearity test.
b. Same with label `2.
c. Send labels (`1, `2) to the two players and perform the n-bit linearity test.
d. Same but perform the n2-bit linearity test.

2. Select random u, v ∈ Fn/22 and i ∈ [3], and generate the three queries q1 = (`1, u),
q2 = (`2, v), q3 = (`1, `2, (u, v)). Send q1, q2 to Alice, receiving answers a1, a2, and let
a3 = a1 + a2. Send qi to Bob, receiving answer b. Accept if b = ai.

3. Select random u, v ∈ Fn2 and i ∈ [3], and generate the three queries q1 = (`1, `2, u),
q2 = (`1, `2, v), q3 = (`1, `2, u⊗ v). Send q1, q2 to Alice, receiving answers a1, a2 and let
a3 = a1 · a2. Send qi to Bob, receiving answer b. Accept if b = ai.

4. Select a random vector v ∈ FK2 and let w =
∑
k wka

(k) ∈ Fn2

2 . Send (`1, `2, w) to a
randomly chosen player and check that the answer a =

∑
k wkc

(k).

Figure 2 The two-prover QUADEQ test. See Section [26, Section 3.4] for additional explanations
regarding the notation.

I Corollary 16. There is an ε > 0 such that the following holds. Given a two-player projection
game G in explicit form in which answers from one player is restricted to 2 bits, and answers
from the other player to a single bit, it is NP-hard to distinguish between ω(G) = 1 and
ω∗(G) ≤ 1− ε.

Using that the games G for which NP-hardness is shown in Corollary 16 are projection
games, we may apply results on the parallel repetition of two-player entangled projection
games [7] to amplify the completeness and soundness parameters from 1 and 1− ε to 1 and
δ respectively, for any δ > 0, by repeating the game poly(ε−1 log δ−1) times and incurring a
corresponding multiplicative factor blow-up in the length of questions and answers in the
game.
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A Modified proofs from [26]

As noted in the introduction, the principal modifications to the soundness analysis of the
low-degree test in [26] necessary to make it hold for two provers concern the self-improvement
results of section 5. There are a few other steps of the proof of the main theorem in [26]
that seem to require a tripartite tensor product factorization of the Hilbert space to be
carried out. In all cases this is easily avoided by simple modification of the proof. Although
they remain very elementary, in this appendix we describe the only two other non-trivial
modifications needed. The first is in the proof of [26, Claim 6.10]. (We refer to the paper [26]
for context, including an explanation of the notation; the following discussion is meant for a
reader already familiar with the proofs in [26].)

I Claim 17 (Claim 6.10 in [26]). The measurements {Qgs}g∈Pd(s) satisfy

E
s∈Sm−1(Fm

q )

∑
g∈Pd(s)

〈Qgs , (Id−Qgs)〉Ψ = O(εc`) .

Proof. The proof is the same as in [26], except the third tensor factor is not needed — the
second can be used for the same purpose:

E
s∈Sm−1(Fm

q )

∑
g,g′∈Pd(s),g 6=g′

〈Qgs , Qg
′

s 〉Ψ ≈ E
s∈Sm−1(Fm

q )
E
x∈S

∑
g,g′∈Pd(s),g 6=g′

〈Qgs , Qg
′

s A
g(x)
x 〉Ψ

+O(εc`)

≈εc` E
s∈Sm−1(Fm

q )
E
x∈S

∑
g,g′∈Pd(s),g 6=g′

〈QgsAg(x)
x , Qg

′

s 〉Ψ

+O(εc`) +O(ε)
≈ O(εc`) +O(ε) .

In the first line, we used the consistency between Qgs on the first prover and Ag(x)
x on the

second; in the second line, we used the self-consistency of A; and in the third, we used the
consistency between Qg′s on the second prover and Ag(x)

x on the first prover. J

The second is in the proof of [26, Claim 6.14]. Here again, the use of a third tensor factor
can be avoided by a simple modification. Specifically, the last set of centered equations on
p.1056 (right below (6.22)) should be replaced with

E
(si)

∑
g,deg(g)>d

〈Rg(si), Id〉Ψ ≈εc` E
(si),z,`,`′3z

∑
g,deg(g)>d

∑
h(`∩si)=g(`∩si)
h′(`′∩si)=g(`′∩si)

〈Rg(si), B
h
` B

h′

`′ 〉Ψ

≈εc` E
(si),z,`,`′3z

∑
g,deg(g)>d

∑
h(`∩si)=g(`∩si)
h′(`′∩si)=g(`′∩si)

〈Rg(si)B
h′

`′ , B
h
` 〉Ψ

= O(εdc/2)
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