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Abstract

We use radial velocity (RV) observations to search for long-period gas giant companions in systems hosting inner
super-Earth (1–4 R⊕, 1–10M⊕) planets to constrain formation and migration scenarios for this population. We
consistently refit published RV data sets for 65 stars and find nine systems with statistically significant trends
indicating the presence of an outer companion. We combine these RV data with AO images to constrain the masses
and semi-major axes of these companions. We quantify our sensitivity to the presence of long-period companions
by fitting the sample with a power-law distribution and find an occurrence rate of 39%±7% for companions
0.5–20MJup and 1–20 au. Half of our systems were discovered by the transit method, and half were discovered by
the RV method. While differences in the RV baselines and number of data points between the two samples lead to
different sensitivities to distant companions, we find that occurrence rates of gas giant companions in each sample
are consistent at the 0.5σ level. We compare the frequency of Jupiter analogs in these systems to the equivalent
rate from field star surveys and find that Jupiter analogs are more common around stars hosting super-Earths. We
conclude that the presence of outer gas giants does not suppress the formation of inner super-Earths, and that these
two populations of planets instead appear to be correlated. We also find that the stellar metallicities of systems with
gas giant companions are higher than those without companions, in agreement with the well-established metallicity
correlation from RV surveys of field stars.
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1. Introduction

The presence or absence of outer gas giant planets can
significantly influence the formation and evolution of planets
on interior orbits. In our own solar system, Jupiter is thought to
have played a key role in dynamically reshaping the outer solar
system architecture after the dissipation of the gas disk
(Tsiganis et al. 2005), driving volatile-rich planetesimals from
beyond the ice line onto shorter-period orbits (O’Brien et al.
2006; Raymond 2006; Morbidelli et al. 2012; Raymond &
Izidoro 2017). At earlier times, the gap in the gas disk created
by Jupiter’s presence would also have suppressed the flow of
solid materials into the inner disk where the terrestrial planets
subsequently formed, affecting both the surface density of
solids in the inner disk and the compositions of those solids
(Morbidelli & Crida 2007; Morbidelli et al. 2012, 2016;
Lambrechts et al. 2014; Desch et al. 2018). It has even been
theorized that an in-and-then-out-again migration by Jupiter
and Saturn (Walsh et al. 2011) might have disrupted planet
formation in the inner several au, therefore explaining why the
solar system only hosts relatively small planets between 0.3
and 2 au and none interior to that (Batygin & Laughlin 2015).

Given the dominant role that gas giant planets played in the
early history of the solar system, it is natural to consider their
possible influence in exoplanetary systems. Broadly speaking,
there are several mechanisms by which outer gas giant planets
can influence the formation and evolution of interior planets.
Giant planets comparable to or larger than Saturn will open a
gap in the gas disk (Lin & Papaloizou 1986; Crida et al. 2006;
Kley & Nelson 2012), potentially suppressing the flow of small

solids (“pebbles”) to the inner disk. Moriarty & Fischer (2015)
found that the rate of planetesimal growth in the inner disk is
sensitive to the rate at which pebbles drift radially inward,
implying that systems with giant planets should have fewer and
less massive planets in the inner region of the disk. However,
the presence of a giant planet will also create local pressure
maxima that collect solids, potentially sparking a secondary
wave of planet formation (Whipple 1972; Masset et al. 2006;
Rice et al. 2006; Hasegawa & Pudritz 2011; Morbidelli &
Nesvorny 2012; Sato et al. 2016).
Through resonant transport associated with migration, gas

giants can also dynamically excite the population of planete-
simals from which rocky planets are forming, increasing the
likelihood that collisions will result in disruption rather than
accretion (Walsh et al. 2011; Batygin & Laughlin 2015).
However, unless this disrupted material is subsequently
accreted onto the host star, this dynamical excitation and
disruption of material is not a barrier to rocky planet formation
(Wallace et al. 2017). Dynamically hot outer gas giants can
perturb inner planets onto eccentric and/or inclined orbits,
reducing the multiplicity of planets in those systems
(Hansen 2017a; Pu & Lai 2018) or leading to orbital instability
within a few Myr in some extreme cases (Huang et al. 2017).
These same gas giants can also act as a barrier that prevents
smaller planets formed in the outer disk (i.e., beyond the orbit
of the gas giants) from migrating inward (Izidoro et al. 2015).
Even if they do not directly influence the formation or

dynamical evolution of inner planetary systems, the presence of
an outer gas giant planet is in and of itself a statement about the
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properties of the primordial disk. In the core accretion model
(Pollack et al. 1996), cores must form before the disk gas
dissipates in order to acquire massive envelopes. The well-
established correlation between gas giant planet frequency and
stellar metallicity for Sun-like stars (Fischer & Valenti 2005;
Johnson et al. 2010) indicates that the core formation process
occurs more readily in metal-rich disks (e.g., Dawson et al.
2015). The longer lifetime of disks around metal-rich stars also
facilitates the formation of both gas giant planets (e.g.,
Ercolano & Clarke 2010; Yasui et al. 2010) and those at lower
masses (e.g., Buchhave et al. 2014; Petigura et al. 2018).

Despite the relative richness of theoretical work in this area,
we currently have very few observational constraints on the
role that outer gas giant planets play in determining the
properties of inner planetary systems. This is largely due to
the limited baselines of current surveys: both transit and radial
velocity (RV) surveys typically require the observation of one
or more complete orbits in order to count a given signal as a
secure detection, but even the longest-running surveys have
baselines that are shorter than the orbital periods of the solar
system gas giants (Cumming et al. 2008; Howard et al. 2010;
Mayor et al. 2011; Dressing & Charbonneau 2015; Bryan et al.
2016; Rowan et al. 2016; Wittenmyer et al. 2016). Recently,
several RV surveys (Rowan et al. 2016; Wittenmyer et al.
2016) estimated the frequency of Jupiter analogs, which they
defined as 0.3–13MJup and 3–7 au (Wittenmyer et al. 2016)
and 0.3–3MJup and 3–6 au (Rowan et al. 2016), taking into
account survey incompleteness at larger separations and
smaller masses. Both surveys found the frequency of Jupiter
analogs to be small; Wittenmyer et al. (2016) found an
occurrence rate of -

+6.2% 1.6%
2.8%, while Rowan et al. (2016) found

an occurrence rate of ∼3%. However, neither of these surveys
extended as far as Saturn’s orbit, and relatively few of the stars
in these two samples have known inner planets. Of the super-
Earth systems examined in this study, we find that only three
were included in the Wittenmyer et al. (2016) sample, while
Rowan et al. (2016) did not provide an explicit list of the stars
included in their survey.

If we are willing to consider planet candidates with partially
observed orbits, we can extend the statistical reach of these
surveys to larger orbital separations. This also allows us to
consider systems with inner transiting planets, which typically
have shorter photometric and RV baselines (on the order of
1–5 yr; e.g., Marcy et al. 2014; Weiss & Marcy 2014; Dressing
et al. 2015; Astudillo-Defru et al. 2017). While the Kepler
mission is, in principle, sensitive to transiting gas giant planets
in Jupiter-like orbits (Foreman-Mackey et al. 2016; Uehara
et al. 2016), the transit probability for these planets is extremely
low, and a majority of the long-period planet candidates
reported to date do not have inner transiting companions.
Alternatively, long-term RV monitoring of systems with
known inner planets can provide information on the frequency
of outer companions regardless of whether or not they transit
their host stars (e.g., Knutson et al. 2014; Montet et al. 2014;
Bryan et al. 2016). Although our knowledge of the masses and
orbital periods of these objects is incomplete, we can
nonetheless search for correlations between inner planet
properties and the presence or absence of an outer companion.

In previous studies, we considered the frequency of outer
companions in systems with transiting hot Jupiters (Knutson
et al. 2014) and with inner gas giant planets spanning a range of
orbital periods (Bryan et al. 2016). In this study, we focus on

stars known to host one or more super-Earth planets (defined as
1–4 R⊕ or 1–10M⊕, depending on the detection method)
located inside 0.5 au. These planets dominate the observed
population of planets orbiting nearby stars, with 30%–50% of
Sun-like stars hosting one or more super-Earths with orbital
periods less than 100 days (Howard et al. 2010; Fressin et al.
2013; Petigura et al. 2013; Zhu et al. 2018a). We identify
published RV data for a sample of 65 systems hosting inner
super-Earths and use these data to search for long-period gas
giant companions. In Section 2, we describe our sample of
systems. In Section 3, we describe our fits to the RV data,
identification of nonplanetary sources of RV trends, calculation
of companion probability distributions, and completeness
estimations. Finally, in Section 4, we discuss the occurrence
rate of gas giant companions in our sample and implications of
our results.

2. Observations

We collected published RV data for systems with at least one
confirmed super-Earth, where we define a super-Earth as a
planet with either a mass between 1 and 10M⊕ or a radius
between 1 and 4 R⊕, depending on the detection technique
(Table 1). We exclude systems with fewer than 10 data points
and baselines shorter than 100 days, leaving us with 65 systems
that meet these criteria (Figure 1). Of that sample, 34 systems
host at least one super-Earth discovered using the transit
method, and 31 systems host at least one super-Earth
discovered using the RV method. Eighteen of these systems
are single-planet systems, while the remaining 47 are multi-
planet systems. Forty-five planets have both measured masses
and radii and thus measured densities. We provide a summary
of the RV data used in this work in Table 1. We also include
best-fit values for the RV acceleration from our orbital solution
fitting as described in the following section in Table 1. We list
the complete set of individual RV measurements used in our
analysis in Table 2.
Our choice of 1–4 R⊕ and 1–10M⊕ for inner “super-Earths”

is physically motivated and results in a population that is
unlikely to be contaminated with Neptune-mass planets. The
shape of the planet occurrence rate as a function of orbital
period changes drastically for planets smaller versus larger than
4 R⊕. Whereas the number of smaller planets rises steeply out
to ∼10 days and plateaus beyond, larger planets grow more
numerous with orbital periods out to at least ∼300 days (Dong
& Zhu 2013; Petigura et al. 2018). This suggests that these two
populations have distinct formation histories and motivates us
to choose 4 R⊕ as the upper bound on our sample of super-
Earths.6 For the subset of transiting planets with measured
masses, those with radii larger than 4 R⊕ are also typically
much more massive than 10M⊕ (Petigura et al. 2017b). In
order for planets to attain radii greater than 4 R⊕, they must
have gas-to-core mass ratios greater than ∼10% (Lopez &
Fortney 2014). In a gas-poor but not gas-empty environment
that allows core assembly by giant impact (e.g., Lee &
Chiang 2016), only cores with masses >∼10M⊕ are expected
to end up with gas-to-core mass ratios >∼10% (e.g., Lee &
Chiang 2015).

6 Although Fulton et al. (2017) recently reported evidence for a bimodal
distribution in planet radius with peaks located at 1–1.7 and 1.7–4 R⊕, current
evidence suggests that this bimodality is not an outcome of divergent formation
histories but is instead likely driven by photoevaporative mass loss on a subset
of the most highly irradiated planets (Owen & Wu 2013, 2017).
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Table 1
Sample of Systems

Targeta Må (Me) [Fe/H]b Npl Disc. Method Nobs Baseline (days) Trend (m s−1 yr−1) References

Corot-7 0.93±0.03 0.09±0.01 2 Transit 109 357 10.95±7.30 (9), (58)
Corot-24 0.91±0.09 0.30±0.15 2 Transit 50 1154 −10.95±2.92 (10)
HD 3167 0.86±0.03 0.04±0.05 3 Transit 251 152 -

+9 96. 2.04
1.97 (37)

K2-3 0.61±0.09 −0.32±0.13 3 Transit 72 103 -
+10.95 7.67

6.94 (12)
K2-32 0.86±0.03 −0.02±0.01 3 Transit 74 441 -

+2.41 2.01
2.04 (14), (59)

Kepler-10 0.91±0.02 −0.11±0.04 2 Transit 148 510 -
+3.72 1.97

2.04 (8), (48)
Kepler-20 0.91±0.03 0.11±0.04 6 Transit 134 2262 -  -2.01 1.06 (13), (48), (57)
Kepler-21 -

+1.41 0.03
0.02 −0.04±0.04 1 Transit 122 1756 0.73±1.05 (3), (4), (48)

Kepler-22 0.97±0.06 −0.20±0.04 1 Transit 16 373 -
+0.84 3.32

3.13 (5), (48)
Kepler-25 1.19±0.06 −0.05±0.04 3 Transit 62 828 -

+2.23 2.30
2.41 (2), (48)

Kepler-37 0.80±0.07 −0.25±0.04 3 Transit 33 862 0.26±1.06 (2), (48)
Kepler-48 0.88±0.06 0.26±0.04 4 Transit 28 1135 -

+2.01 3.32
3.10 (2), (48)

Kepler-62 0.69±0.02 −0.34±0.04 5 Transit 13 128 -
+60.2 32.0

42.0 (15), (48)
Kepler-68 1.08±0.05 0.14±.04 3 Transit 64 1207 +1.680.803

0.77 (2), (48)
Kepler-93 0.91±0.03 −0.16±0.02 1 Transit 118 1892 12.01±0.44 (1), (2), (58)
Kepler-94 0.81±0.06 0.32±0.04 2 Transit 29 799 -

+28.11 20.44
18.62 (2), (48)

Kepler-95 1.08±0.08 0.24±0.02 1 Transit 31 1078 -
+0.62 1.13

1.17 (2), (58)
Kepler-96 1.00±0.06 0.07±0.02 1 Transit 26 772 - -

+1.50 1.10
1.17 (2), (58)

Kepler-97 0.94±0.06 −0.21±0.02 1 Transit 20 789 - -
+4 49. 1.35

1.31 (2), (58)
Kepler-98 0.99±0.06 0.13±0.02 1 Transit 22 805 -

+2.34 2.04
2.15 (2), (58)

Kepler-99 0.79±0.06 0.27±0.01 1 Transit 21 792 - -
+2.96 1.39

1.35 (2), (48)
Kepler-100 1.08±0.06 0.10±0.02 3 Transit 49 1221 1.06±0.80 (2), (58)
Kepler-102 0.81±0.06 0.13±0.01 5 Transit 35 897 -

+1.06 1.10
1.13 (2), (58)

Kepler-103 1.09±0.07 0.13±0.02 2 Transit 19 736 2.70±1.79 (2), (58)
Kepler-106 1.00±0.06 −0.07±0.02 4 Transit 25 1074 −0.96±1.3 (2), (58)
Kepler-109 1.04±0.06 −0.01±0.02 2 Transit 15 1092 - -

+2.59 2.81
2.48 (2), (58)

Kepler-113 0.75±0.06 0.16±0.01 2 Transit 24 833 0.15±3.65 (2), (58)
Kepler-131 1.02±0.06 0.15±0.02 2 Transit 20 742 -

+0.073 2.19
2.11 (2), (58)

Kepler-406 1.07±0.06 0.23±0.02 2 Transit 42 801 0.73±1.10 (2), (58)
Kepler-407 1.00±0.06 0.35±0.02 1 Transit 17 750 −156.59±4.02 (2), (58)
Kepler-409 0.92±0.06 0.05±0.01 1 Transit 25 175 8.76±6.21 (2), (58)
Kepler-454 -

+1.03 0.03
0.04 0.22±0.02 2 Transit 102 1901 -

+14 56. 0.62
0.58 (11), (58)

LHS 1140 0.15±0.02 −0.24±0.10 1 Transit 144 386 0.44±1.68 (6)
WASP-47 0.99±0.05 0.36±0.05 4 Transit 146 2340 - -

+1.31 2.26
1.28 (45), (46), (47)

55 Cnc 0.94±0.05 0.36±0.01 5 RV 1126 8476 - -
+0.33 0.15

0.16 (16), (17), (56), (59)
61 Vir -

+0.95 0.03
0.04 −0.04±0.01 3 RV 786 7060 −0.31±0.14 (18), (19), (56), (59)

GJ 15A 0.38±0.06 −0.32±0.17 1 RV 349 6215 - -
+0.44 0.073

0.077 (19), (20)
GJ 163c 0.40±0.04 −0.01±0.10 3 RV 153 3068 −0.12±0.16 (41)
GJ 176 0.50 0.15±0.17 1 RV 167 5836 - -

+0.27 0.35
0.34 (19), (21), (53)

GJ 273 0.29 −0.17±0.17 2 RV 354 6855 -
+1 2. 0.062

0.066 (19), (22), (53)
GJ 433 0.48 −0.22±0.10 1 RV 100 5476 - -

+0.22 0.20
0.22 (19), (23)

GJ 536 0.52±0.05 −0.08±0.09 1 RV 228 6128 −0.13±0.10 (19), (24)
GJ 581c 0.31±0.02 −0.10±0.17 3 RV 531 5139 -

+0.43 0.15
0.16 (19), (25), (53)

GJ 667 Cc 0.33±0.02 −0.59±0.10 5 RV 238 4847 1.79±0.18 (19), (26), (27), (54)
GJ 676 0.71±0.04 0.23±0.10 3 RV 127 3231 0±0d (44)
GJ 832 0.45±0.05 −0.30±0.20 2 RV 109 5569 -

+0.14 0.22
0.21 (32)

GJ 876c 0.33±0.03 0.19±0.17 4 RV 401 6762 1.04 ±0.38 (19), (39), (53), (56)
GJ 3138 0.68 −0.30±0.12 3 RV 199 2932 -

+0.20 0.13
0.12 (22)

GJ 3293 0.42 0.02±0.09 4 RV 205 2311 −0.11±0.11 (22)
GJ 3323 0.16 −0.06±0.17 2 RV 142 4333 0.12±0.11 (22), (53)
GJ 3341 0.47 −0.09±0.09 1 RV 135 1456 0.27±0.20 (28)
GJ 3634 0.45±0.05 −0.10±0.10 1 RV 54 460 -

+9.6 1.0
0.95 (43)

GJ 3998 0.50±0.05 −0.16±0.09 2 RV 136 869 - -
+0.66 0.51

0.55 (38)
HD 1461 1.02 0.19±0.01 2 RV 921 6310 - -

+0.055 0.15
0.16 (19), (35)

HD 7924 -
+0.83 0.04

0.02 −0.15±0.01 3 RV 906 4783 0.080±0.051 (34), (59)
HD 20794 0.70 −0.40±0.01 4 RV 187 2610 - -

+0.044 0.044
0.047 (31)

HD 40307c 0.77 −0.31±0.03 5 RV 226 3811 0.55±0.040 (35)
HD 85512 0.69 −0.33±0.03 1 RV 185 2745 0.32±0.051 (31)
HD 156668c 0.77±0.02 0.05±0.06 1 RV 527 4226 −0.15±0.12 (30), (52)
HD 175607c 0.74±0.05 −0.62±0.01 1 RV 110 3390 -

+0.13 0.12
0.11 (40)
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We next check whether our sample is likely to be
contaminated by planets whose true masses are comparable
to or larger than that of Neptune (17M⊕). Looking at the
transiting sample first, we find that 26 systems have at least one
super-Earth with a mass measurement (note that these are true
mass measurements as opposed to m sin i). We find that all 26
of these systems have a super-Earth below Neptune mass
(17M⊕). With regard to the RV mass cutoff of m sin i<
10M⊕, we quantify what percentage of these planets might
have true masses comparable to or larger than that of Neptune.
We drew 106 sets of inclinations from a uniform distribution in
cos(i), calculating true masses for each super-Earth in the RV
sample. When there was more than one super-Earth in a
system, we selected the lower-mass one. We found that 5% of
these mass values were above 17M⊕, whereas 95% were below
Neptune mass. We therefore conclude that it is unlikely that our
sample contains any Neptune-mass planets.

3. Analysis

3.1. RV Fitting

The presence of a distant companion manifests as a long-
term trend in the RV data when the orbital period of the
companion is significantly longer than the RV baseline. In
order to quantify the significance of these long-term trends,
we simultaneously fit for the orbits of the known inner
planets, as well as a linear trend in each data set using RadVel
(Fulton et al. 2018). After identifying the best-fit solution for
each data set, we next carry out a Markov chain Monte Carlo
(MCMC) exploration of the parameter space to determine the
uncertainties on each model parameter. For a system with a
single known planet, our model has eight free parameters,
including six orbital parameters (the planet’s velocity semi-
amplitude, orbital period, eccentricity, argument of periastron,

true anomaly, and an RV zero-point), a linear velocity trend,
and stellar jitter.
We fit using the basis w w[ ]P T e e K, , sin , cos ,c and

impose flat priors on all of these orbital elements. For the
planets that transit, we apply Gaussian priors centered on the
orbital period and time of conjunction values derived from
the transit data with a width equal to the measured uncertainties
on these values. In cases where we include data from multiple
telescopes or the HIRES data include observations taken prior
to the 2004 detector upgrade (Vogt et al. 2005; Bryan et al.
2016), we fit a separate RV zero-point and jitter value for each
data set. We do not include data sets that have fewer than 10
data points. We also bin each set of RV data in 2 hr increments,
binning data sets from different telescopes separately. We
define our likelihood function in Equation (1), where σi is the
instrumental error, σjit is the stellar jitter, v is the data, and m is
the model:

L 
p s s s s

=
+

-
-
+

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

( ) ( )v m1

2
exp 0.5 . 1

i i

i i

i
2

jit
2

2

2
jit
2

We initialize each MCMC chain using the best-fit parameters
from our fit. We note that for several systems, we fit a different
number of Keplerian orbits than the published number of
planets (Table 1). Of the transiting planet systems, this includes
Kepler-20 and Kepler-407. For Kepler-20, there are six
published planets, but we fit four Keplerian orbits, as two of
the transiting planets did not yield statistically significant RV
semi-amplitudes in previous studies (Buchhave et al. 2016).
For Kepler-407, there is one transiting planet and a long-term
trend with curvature that was published as a planet detection,
but we only fit a full Keplerian orbit for the inner planet, as the
outer planet’s orbital period is poorly constrained by the current
RV data (Marcy et al. 2014).

Table 1
(Continued)

Targeta Må (Me) [Fe/H]b Npl Disc. Method Nobs Baseline (days) Trend (m s−1 yr−1) References

HD 181433 0.78 0.33±0.13 3 RV 107 1757 -
+1.5 2.9

0.98 (33)
HD 215497 0.87±0.02 0.23±0.07 2 RV 99 1842 −0.24±0.23 (29)
HD 219134 0.81±0.02 0.11±0.04 6 RV 1033 7421 −0.45±−0.08 (19), (42), (56)
Proxima Cen 0.12±0.02 0.22±0.03 1 RV 144 4325 - -

+0.13 0.095
0.10 (36), (51), (55)

Wolf 1061 0.29 −0.02±0.17 3 RV 187 4136 -
+0.037 0.055

0.058 (22), (53)

Notes.
a Systems in bold have statistically significant long-term trends.
b We note that uncertainties on the metallicity were not published for systems 61 Vir, GJ 433, GJ 667, Proxima Cen, and GJ 3634. For these systems, we adopt
metallicity uncertainties of 0.1 dex.
c For systems GJ 667, GJ 876, GJ 581, and HD 40307, we fit fewer signals than the published number, and for systems HD 156668, HD 175607, and GJ 163, we fit
additional signals. See Section 3.1 for details.
d Because the RV acceleration in GJ 676 has curvature, we fit this long-period signal with an orbital solution. Since this partially resolved orbit and a linear trend are
degenerate, we fix the linear trend term in this fit to zero, as well as the eccentricity of this outer companion.
References. (1) Dressing et al. (2015), (2) Marcy et al. (2014), (3) López-Morales et al. (2016), (4) Howell et al. (2012), (5) Borucki et al. (2012), (6) Dittmann et al.
(2017), (7) Berta-Thompson et al. (2015), (8) Dumusque et al. (2014), (9) Queloz et al. (2009), (10) Alonso et al. (2014), (11) Gettel et al. (2016), (12) Almenara et al.
(2015), (13) Gautier et al. (2012), (14) Petigura et al. (2017b), (15) Borucki et al. (2013), (16) Endl et al. (2012), (17) Nelson et al. (2014), (18) Vogt et al. (2010),
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For the RV-detected planetary systems, we search for
periodic signals in the RV data sets using the automated planet
search pipeline described in Fulton et al. (2015). We fit
Keplerian orbits to all signals with empirical false-alarm
probabilities (eFAP) less than or equal to 1% and K greater
than or equal to 1.0 m s−1 in our final RV analysis. For systems
GJ 667, GJ 876, GJ 581, and HD 40307, we find that we are
only able to recover a subset of the previously published
planets and fit for two, three, two, and four planetary orbits,
respectively, in these systems.

For GJ 3341, HD 156668, HD 175607, and GJ 163, we find
additional periodic signals with eFAP�1% that do not
correspond to the periods of the confirmed planets in these
systems and may be due to either stellar activity or additional
unconfirmed planetary companions. We determine whether to
include these additional periodic signals by comparing model
fits with and without these additional signals using the
Bayesian information criterion (BIC). The BIC is defined as

= - +L k nBIC 2 ln , where L is the log likelihood of a model
fit, k is the number of free parameters in the model, and n is the
number of data points. In this case, the preferred model is the
one with the lowest BIC value. If the BIC value for the model
with additional periodic signals is smaller than the BIC value
for the model without the additional periodic signals by at least
10 (a reasonable rule of thumb for statistically significant
improvements in fit; Kass & Raftery 1995), we consider the

model with additional periodic signals to be a better fit and
include these signals in subsequent analyses.
For GJ 3341, using the automated planet search pipeline, we

recover the known 14.2 day period planet and also detect a
second signal with a period of 202 days and an amplitude of
2.0 m s−1 (eFAP=1%). When we compare BIC values
between model fits to the RV data with and without this
202 day signal, we find that the BIC value for the model with
the additional periodic signal is only slightly smaller than the
BIC value for the model without the additional periodic signal
(ΔBIC=3.9). We therefore do not include this additional
periodic signal in the RV model fits to the data.
For HD 156668, the known planet with a period of 4.6 days

is easily detected by our automated pipeline. We also detect a
second signal at a period of 808 days with an amplitude of
2.9 m s−1 and a very low false-alarm probability. This appears
to be a promising planet candidate but will require additional
vetting in order to assess its planetary nature. When comparing
model fits, we find that ΔBIC=99.9 between the model
without the additional signal and the model with the additional
signal; thus, we include this 808 day signal in our RV model
fits. If real, this signal would correspond to a planet with
M sin i=31M⊕.
For HD 175607, which has a known planet with an orbital

period of 29 days, we detect a second signal with an eFAP of
0.5% and a period of 707 days. However, this period is very
close to 2 yr and has poor phase coverage as a result. We also
see a third peak in the periodogram at double this period
(∼1400 days), indicating that there is some ambiguity in the
true period of this signal. When comparing model fits, we find
that ΔBIC=27.4 between the model without the additional
signal and the model with the additional signal; thus, we
include this 707 day signal in our RV model fits. We note,
however, that this additional signal will likely require
additional RV observations to confirm or disprove its planetary
nature. If real, this signal would correspond to a planet with
M isin =24M⊕.
For GJ 163, we detect signals corresponding to the three

previously confirmed planets, as well as two additional signals
at periods of 19 and 108 days. Bonfils et al. (2013) previously
identified these two signals as potential planet candidates. We
find that a model including these additional signals is a
significantly better fit to the RV data than a model that does not

Figure 1. Confirmed planets on fully resolved orbits from our sample of 65 super-Earth hosting systems. Each system contains at least one super-Earth (1–4 R⊕,
1–10 M⊕), but some also host well-characterized outer planets with larger masses and radii. We show the planets with measured masses as a function of period on the
left and planets with measured radii on the right. Systems discovered using the transit method are shown as filled triangles, while systems discovered by the RV
method are shown as filled stars. Multiplanet systems are plotted in red, while single planets are plotted in black.

Table 2
Published RVs Used in This Study

System JD RV (m s−1) σRV (m s−1)

Corot-7 2,454,527.5 31,181.8 1.5
Corot-7 2,454,530.6 31,173.2 1.5
Corot-7 2,454,550.5 31,197.2 2.1
Corot-7 2,454,775.8 31,188.1 2.2
Corot-7 2,454,776.7 31,184.8 2.8
Corot-7 2,454,778.7 31,181.7 2.0
Corot-7 2,454,779.7 31,173.4 1.6
Corot-7 2,454,780.7 31,175.0 2.2
Corot-7 2,454,789.8 31,180.5 2.6
Corot-7 2,454,790.8 31,187.8 1.6

Note. The full set of RVs for each of these systems are available as electronic
tables online.

(This table is available in its entirety in machine-readable form.)
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include these signals (ΔBIC=12.1), so we include all five
signals in our RV analysis.

When comparing orbital solutions for the RV sample, we
found that four of these systems had orbital solutions that were
inconsistent at the >2σ level with published values: 61 Vir, GJ
273, GJ 667, and GJ 876. For 61 Vir, the published orbital
solution came from fits to 206 RVs with no linear trend
included (Vogt et al. 2010), whereas in our fits, we use 786
RVs and include a linear trend (significance 2.2σ). For GJ 273,
the published orbital solution utilizes a data set of 279 RVs and
does not fit a linear trend. We include an additional 75 data
points from Butler et al. (2017) in our fits and detect a linear
trend with a significance of 19σ. For GJ 667, the published
solution uses seven Keplerian orbits (five confirmed planets,
two additional signals) and a linear trend to fit a total of 214 RV
measurements. In our blind planet search, we only recover
three of the seven signals using a marginally bigger RV data set
(238 measurements in total) and including a linear trend.
Finally, GJ 876 is a dynamically rich system with three planets
in a Laplace resonance. Previous studies fit the RV data for this
star using an N-body code with four planets, while we fit these
data using Keplerian orbits for the three inner planets (our blind
planet search did not identify the fourth planet).

After fitting our model to each data set, we search for
systems with statistically significant linear trends (defined here
as fits where the linear slope differs from zero by more than
3σ). We list the best-fit trend values from the maximum-
likelihood fit for each system in Table 1, with corresponding
uncertainties determined from the MCMC chains. We find that
14 of the 65 systems in our sample have statistically significant
trends. We used the BIC to determine whether these
statistically significant long-term trends were best modeled
with a linear trend, a quadratic trend, or an additional Keplerian
orbit. In all cases but one (GJ 676), we found that a linear trend
was the preferred model. For GJ 676, the curvature of the trend
was significant enough to justify a fit with a full Keplerian
orbital model.

We also find nine systems in our sample with fully resolved
outer gas giant companions that were previously identified in
the published literature. For the purposes of this study, we
define an outer “gas giant” as a companion with a mass greater
than 0.5MJup outside of 1 au. Although some super-Earths in
our sample also have outer companions with masses smaller
than this cutoff, these planets were likely too small to open a
gap in the protoplanetary gas disk (e.g., Lin & Papaloizou 1986;
Crida et al. 2006; Kley & Nelson 2012). The 1 au cutoff
includes all gas giants >0.5MJup orbiting exterior to lower-
mass planets and excludes four gas giant planets orbiting at
smaller separations (55 Cnc b at 0.11 au; GJ 876 b and c at 0.21
and 0.13 au, respectively; and WASP-47 b at 0.05 au).

We list the properties of these previously confirmed outer
gas giant planets in Table 3.

3.2. AO Imaging

For the systems with statistically significant trends, we
obtained AO imaging data to determine whether these systems
had stellar companions that might have caused the observed
trend. We identified published AO images (Tanner et al. 2010;
Alonso et al. 2014; Howard et al. 2014; Rodriguez et al. 2015;
Kraus et al. 2016; Sahlmann et al. 2016; Christiansen et al.
2017; Furlan et al. 2017; Ngo et al. 2017) for all but three of
these systems. Of the remaining three systems, two (HD 40307

and HD 85512) had unpublished archival data obtained with
the NACO instrument (Lenzen et al. 2003; Rousset et al. 2003)
on the Very Large Telescope (VLT). The HD 40307 data were
taken in the Ks band with a total integration time of 1.1 hr (ID:
088.C-0832(A); PI: Loehne). The HD 85512 data were
obtained in the Ks band with a total integration time of
9 minutes (ID: 090.C-0125(A); PI: Mugrauer). Both data sets
were obtained without a coronagraph, using a four-point dither
pattern.
We downloaded the data for both stars from the ESO archive

and processed them using the pipeline outlined in Meshkat
et al. (2014). We did not detect any stellar companions in either
of these data sets. We show the 5σ Ks contrast values for both
systems in Table 4.
For the remaining system (GJ 3634), we obtained Kc-band

AO images using NIRC2 at Keck on UT 2018 February 5 with
an effective integration time of 9 s and a three-point dither
pattern. We identified a close pair of candidate companions at a
separation of 1 8 and used a multipeak point-spread function
(PSF) to simultaneously fit GJ 3634 and the two candidate
companions in each frame where the companion is resolved.
We constructed the PSF as a sum of Moffat and Gaussian
functions and fit over a circular aperture of 10 pixels in radius,
corresponding to twice the full width at half maximum of the
PSF as described in Ngo et al. (2015).
We next integrated the best-fit PSFs for GJ 3634 and its

candidate companions over the same aperture to determine
their flux ratios. We similarly measured the companion
separation and position angle by calculating the difference
between the centroids of each star. We then applied the NIRC2
astrometric corrections from Service et al. (2016) to compen-
sate for the NIRC2 array’s distortion and rotation. We find that
the easternmost candidate companion (labeled as cc1 in
Figure 2) has a flux ratio of 116, corresponding to
ΔKc=5.16. This companion is separated from GJ 3634 by
1 778±0 002 at a position angle of 177°.37±0°.04 east of
north. For the western candidate companion (cc2), we measure
a flux ratio of 75±8, corresponding to ΔKc=4.7±0.1.
This companion is separated from GJ 3634 by 1 860±0 002
at a position angle of 203°.40±0°.05 east of north. We
calculate our uncertainties as the quadrature sum of the
measurement uncertainties and the uncertainty in the distortion
solution. However, in one of the three frames, cc1 did not have
a regular PSF shape; as a result, we were unable to fit for its
peak and location. With just two independent measurements for
this companion, we are unable to calculate an empirical
measurement uncertainty and therefore only report the astro-
metric distortion solution uncertainties.

Table 3
Properties of Outer Gas Giant Companions on Resolved Orbits

Companion Mass (MJup) a (au) References

Kepler-94 c 9.84±0.63 1.60±0.04 Marcy et al. (2014)
Kepler-454 c 4.46±0.12 1.29±0.02 Gettel et al. (2016)
Kepler-68 d 0.84±0.05 1.47±0.03 Marcy et al. (2014)
Kepler-48 e 2.07±0.08 1.85±0.04 Marcy et al. (2014)
55 Cnc d 3.88±0.07 5.50±0.03 Nelson et al. (2014)
GJ 832 b 0.68±0.09 3.56±0.28 Wittenmyer et al. (2014)
HD 181433 c 0.65 1.76 Bouchy et al. (2009)
HD 181433 d 0.54 3.00 Bouchy et al. (2009)
GJ 676 b 4.96±0.96 1.82±0.06 Stassun et al. (2017)
WASP-47 c 1.29±0.06 1.38±0.02 Sinukoff et al. (2017)
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For each companion in GJ 3634, we determine stellar masses
using PHOENIX spectral models and the Baraffe et al. (1998)
zero-age main-sequence models. We first select a PHOENIX
model for the primary star based on the published stellar
properties and then determine the companion’s effective
temperature by identifying the PHOENIX model that most
closely matches the observed flux ratio. For each PHOENIX
model, we determine the corresponding stellar mass and radius
using the Baraffe et al. models. For both companions, we find
best-fit masses of 0.08Me. However, with only one epoch of
data for this system, it is not possible to determine whether or
not these companions are bound to the primary. We note,
however, that this is a high proper motion target (−566.861,
−91.371 mas yr−1; Gaia Collaboration 2018), and astrometric
measurements with just a 1 yr baseline would easily determine
whether these companions are bound. We thus examined
archival VLT/SPHERE images taken in 2017 May and found
the companions at similar positions as in the Keck images from
2018. The difference in relative separation of the companions

between these two epochs is 30 mas for cc1 and 20 mas for cc2,
which is significantly less than the reported proper motion of
GJ 3634, allowing us to rule out the case that the pair of
companions are distant background stars.
We next consider whether or not the RV trends in these

systems might plausibly be explained by the presence of a
nearby stellar companion. Kepler-93, Kepler-97, Kepler-407,
and GJ 3634 each have candidate stellar companions, meaning
that these systems have one epoch of data showing nearby stars
that could be either bound companions or distant background
stars. The systems GJ 15A and GJ 676 have confirmed stellar
companions that have been shown to have the same proper
motion as the primary. We calculate the minimum companion
mass in each system needed to explain the observed RV trend
using the equation from Torres (1999):
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In this equation, d is the distance to the star, ρ is the
projected separation of the companion and the star on the sky, v̇
is the RV trend, and F(i, e, ω, f) is a variable that depends on
the orbital parameters of the companion that are currently
unconstrained. We use the minimum value of F, 27 2, which
corresponds to the minimum companion mass given the other
variables of RV slope, distance, and angular separation (Liu
et al. 2002). We then compare this minimum mass to the
estimated mass of the candidate companion, which we calculate
using the measured brightness ratio under the assumption that
the candidate companion is located at the same distance as the
primary star. We discuss our results for each individual system
below.

Table 4
5σ Contrast Curves

System Separation (arcsec) 5σ Contrast (mag)

HD 40307 0.79 9.47
1.90 10.87
2.99 11.72
4.07 11.45
5.16 11.91
6.24 11.90
7.33 12.06
8.42 12.63
9.50 12.66

HD 85512 0.79 4.41
1.28 6.95
1.76 7.40
2.25 8.06
2.74 8.68
3.23 9.34
3.69 9.95
4.18 9.44
4.67 10.07

GJ 3634 0.09 0.014
0.22 3.92
0.35 4.81
0.49 5.24
0.63 6.18
0.77 6.71
0.91 6.92
1.05 7.15
1.18 7.11
1.32 7.18
1.46 7.20
1.60 7.11
1.74 7.14
1.88 7.05
2.02 7.05
2.16 7.05
2.30 7.10
2.43 7.05
2.57 7.04
2.71 7.11
2.85 7.05
2.99 7.13
3.13 7.06
3.26 7.01

Figure 2. Reduced Keck/NIRC2 Kc-band image of GJ 3634 showing two
candidate companions, labeled cc1 and cc2. Note that the image is shown on a
log scale and is aligned with north toward the top and east toward the left.
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Kepler-93 is 96.7 pc away and has a candidate companion
with a projected separation of 2 29 (Kraus et al. 2016). With
an RV trend of 12.0 m s−1 yr−1, this trend corresponds to a
minimum companion mass of 8.2Me. We estimate the mass of
the candidate companion using its measured magnitude
MK=5.35 and assuming an age of 1 Gyr. We then use the
Baraffe et al. (1998) models to calculate a corresponding mass
of 0.57Me for this companion. This mass is significantly
smaller than the minimum mass needed to explain the RV
trend, and we therefore conclude that this candidate companion
cannot explain the observed RV trend and keep this system in
our sample.

Kepler-97 is 414 pc away and has a candidate companion
with a projected separation of 0 385 (Furlan et al. 2017).
With an RV trend of 4.5 m s−1 yr−1, this trend corresponds
to a minimum companion mass of 1.58Me. The candidate
companion in this system has a magnitude MK=6.28,
corresponding to an estimated companion mass of 0.4Me
using its estimated age of 8.4 Gyr. As this is smaller than the
minimum mass needed to explain the RV trend, we leave this
system in our sample.

Kepler-407 is 326 pc away and has a candidate companion
with a projected separation of 2 13 (Kraus et al. 2016). With
an RV trend of −155.8 m s−1 yr−1, this trend corresponds to a
minimum companion mass of 1045Me. Given the compa-
nion’s measured magnitude of MK=7.0 and using its
estimated age of 7.5 Gyr, the estimated companion mass is
0.3Me. This is several orders of magnitude smaller than would
be required in order to explain the observed RV trend, and we
therefore leave this system in the sample.

The system GJ 3634 is 19.8 pc away and has two candidate
companions in what appears to be a hierarchical triple system,
as discussed above. These two companions are 1 83 away
from GJ 3634 and have a mutual separation of 0 087. The
measured RV trend in this system is 9.6 m s−1 yr−1, corresp-
onding to a minimum companion mass of 0.018Me. As
discussed earlier, both companions have estimated masses of
0.08Me, indicating that their combined mass could be
responsible for the observed RV trend. We thus remove this
system from our sample in subsequent analyses. We note that
the RV trend in this system was previously published in Bonfils
et al. (2011). Given their trend, they estimate a minimum mass
of 32M⊕ and a minimum period of 200 days. Our AO image is
the first to indicate that this trend might be due to the presence
of stellar/brown dwarf companions rather than a distant
orbiting planet.

The system GJ 15A is 3.6 pc away and has a confirmed
stellar companion with a projected separation of 20 28
(Howard et al. 2014). With an RV trend of −0.44 m s−1 yr−1,
this corresponds to a minimum companion mass of 0.074Me.
The stellar companion in this system has an absolute magnitude
of MK=8.17, corresponding to an estimated companion mass
of 0.175Me for an age of 1 Gyr. As this estimated companion
mass is larger than the minimum companion mass needed to
account for the trend, we exclude this system from our
subsequent analysis.

Finally, GJ 676 is 15.9 pc away (Gaia Collaboration et al.
2016a, 2016b) and has a confirmed stellar companion at a
separation of 47″. With an RV trend of 21.6 m s−1 yr−1, this
trend corresponds to a minimum companion mass of 167Me.
Given an absolute magnitude of MK=6.9, the estimated
companion mass is 0.3Me, assuming an age of 1 Gyr. Since

this estimated companion mass is well below the minimum
mass to account for the observed RV trend, we conclude that
this companion could not be producing the observed trend and
leave this system in our sample.

3.3. Trends Due to Stellar Activity

We next consider whether any of the observed trends might
be due to stellar activity. We examined each system in order to
determine if the measured RV trend exhibits a correlation with
the star’s emission in Ca II H & K lines as quantified by either
the SHK index or log R′ (Wright et al. 2004; Isaacson &
Fischer 2010). We calculated the Spearman rank correlation
coefficients between the RV data and this activity indicator
after subtracting the orbital solutions for the confirmed inner
planets. We considered a correlation coefficient with an
absolute value greater than 0.3 to indicate a significant
correlation. We find that systems HD 219134, HD 40307,
and HD 85512 have significant correlations between stellar
activity and the observed RV trend, and we remove these
system from our subsequent analysis. We also remove HD
1461 from our analysis, as we determined in Bryan et al. (2016)
that this system has a fully resolved long-period signal that is
significantly correlated with stellar activity.
There were two systems with RV trends for which we were

not able to obtain stellar activity data, including Corot-24 and
GJ 3634. We conclude that stellar activity is unlikely to be the
cause of the trend in Corot-24, as the amplitude of the observed
trend is higher than would be expected for stellar activity
signals. Although we cannot determine whether or not the
observed RV trend in GJ 3634 might be due to stellar activity,
we have already removed this system from further analysis due
to the presence of candidate stellar companions that could have
caused the observed trend.
After removing systems with either stellar or potentially

activity-related sources of RV trends, including HD 219134,
HD 85512, HD 40307, HD 1461, GJ 15A, and GJ 3634, we are
left with nine systems with statistically significant trends that
can plausibly be attributed to the presence of a substellar
companion. We plot the RV data for each of these systems after
subtracting the orbital solutions for the confirmed inner planets
in Figure 3. Trends for GJ 667 C (Anglada-Escudé et al. 2012),
GJ 676 (Anglada-Escudé & Tuomi 2012; Sahlmann et al.
2016), Kepler-93 (Marcy et al. 2014; Dressing et al. 2015),
Kepler-97 (Marcy et al. 2014), Kepler-407 (Marcy et al. 2014),
and Kepler-454 (Dressing et al. 2015) were previously reported
in the published literature.

3.4. Constraints on Companion Masses and Orbital Semi-
major Axes

We use the RV data to place constraints on the masses and
semi-major axes of the long-period companions in each system.
The duration and shape of the RV trend places a lower limit on
the companion’s mass and separation, while the lack of a
detection in our AO imaging data places a corresponding upper
limit on these quantities. As described in Bryan et al. (2016),
we calculate two-dimensional probability distributions for each
companion using an equally spaced 50×50 grid in logarith-
mic mass (true mass, not m sin i) and a logarithmic semi-major
axis spanning a range of 0.3–500MJup and 0.5–500 au. In each
grid cell, we inject 500 simulated companions and determine
whether or not they are consistent with the RV observations as
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follows. We first draw a set of orbital parameters for the
confirmed inner planets from the previous MCMC fits, and
then we subtract away this orbital solution to preserve any
long-term trend signal. We then draw a mass and semi-major
axis value from within the grid box from a uniform distribution
in log(M) and log(a) and an inclination from a uniform
distribution in icos . We draw our eccentricity values from a
beta distribution with a=1.12 and b=3.09, which are
derived from a fit to the population of long-period gas giant
planets from RV surveys (Kipping 2013). Given a fixed semi-
major axis, mass, and eccentricity for each simulated
companion, we then fit for the remaining orbital parameters,
including time of periastron, argument of periastron, and
velocity zero-point, and calculate the corresponding log-
likelihood value of the best-fit solution.

After repeating this process 500 times in each grid cell, we
convert the resulting 50×50×500 cube of log-likelihood
values to probabilities and marginalize over our 500 samples in
each grid cell to yield a two-dimensional probability distribu-
tion in mass and semi-major axis for each system. We calculate
two-dimensional probability distributions for all systems in our
sample, regardless of whether or not they have statistically
significant trends. The only difference between those systems
with and without trends is that we use our AO imaging data to

place an upper limit on the companion mass and semi-major
axis in the trend systems as discussed in Bryan et al. (2016).
We note that for GJ 273, as a result of its close distance (3.8 pc)
and the limited angular extent of the available contrast curve,
the contrast curve for this system does not provide significant
constraints on the mass and separation of the companion where
the probability density for the companion is large. Similarly,
for Corot-24, due to the significant distance of the system
(600 pc), constraints provided by the available contrast curve at
smaller separations where the probability density for the
companion is high are not significant.
Figure 4 shows the posterior distributions for the systems

with 3σ trends, while Table 5 indicates the corresponding 1σ
limits in mass and semi-major axis for each companion.

3.5. Completeness Maps

We evaluate our sensitivity to distant companions in each
system by calculating the completeness as a function of mass
and orbital semi-major axis after taking into account the time
baseline, number of data points, and measurement errors for
each data set. As before, we start with a 50×50 grid in mass
and semi-major axis evenly spaced in log space from 0.3 to
500MJup and 0.5 to 500 au. For each grid box, we inject 500

Figure 3. Best-fit accelerations to the RV data with a 3σ trend. The best-fit trend is shown as a solid blue line, and the 1σ errors on the slope are presented as light blue
shaded regions. The different colored data points represent RVs taken using different telescopes: black=HIRES, green=HARPS-N, pink=HARPS, light
purple=PFS, and maroon=APF. Note that GJ 676 has a curved trend, which allows us to place much tighter constraints on the mass and separation of the
companion producing that trend.
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simulated companions, where we draw a mass and semi-major
axis from a uniformly spaced distribution across each grid box,
an eccentricity value from the β distribution, an inclination
from a uniform distribution in icos , and the remaining orbital
elements from uniform distributions. We then calculate the RV
signal from this simulated companion at each observation
epoch. We add noise into these simulated RVs by drawing
from a Gaussian distribution with a width defined by
s s+i

2
jit
2 , where σi is the instrumental uncertainty (randomly

shuffled from the original data set) and σjit is the stellar jitter

estimated from the earlier MCMC fits. To assess whether a
simulated planet would be detected, we fit each simulated set of
RVs with a one-planet orbital solution, a linear trend, and a flat
line. We compared these model fits using the BIC (Kass &
Raftery 1995) in order to determine the simplest model that
can provide an adequate fit to the data. If the BIC values for
either the one-planet model fit or the linear trend were smaller
than the BIC value for the flat line by at least 10, we concluded
that the simulated planet would have been detected. However,
if the flat line was preferred or the difference in BIC was less
than 10, we counted this as a nondetection. We repeated this
process for each simulated companion injected into each grid
box, using our “detected/not detected” determinations to
calculate the completeness over the entire grid.
Perhaps unsurprisingly, we find that the average sensitivity

to companions in systems with super-Earths discovered via the
transit method is significantly less than in systems with RV-
detected super-Earths. This likely reflects the substantially
greater investment of RV time required to detect a planet with
an unknown orbital period and phase versus the transit case,
where these two quantities are known precisely in advance. The
RV-only detections must also achieve a higher significance in
their measurement of the RV semi-amplitude in order to be
considered a secure detection (see representative trend system

Figure 4. Probability distributions for the systems with statistically significant trends that are plausibly due to an orbiting substellar companion (i.e., they cannot be
explained by either stellar activity or the presence of any known stellar companion). The three contours define the 1σ, 2σ, and 3σ levels moving outward. We do not
show the probability distribution for GJ 676 here, as the probability density is concentrated in just a few grid points and the contours are therefore unresolved.

Table 5
Constraints on Companion Properties

Companion Mass (MJup) Semi-major Axis (au)

Kepler-93 c 11.3–51.6 9.6–25.9
Kepler-97 c 0.18–166 1.2–60.3
Kepler-407 c 11.4–51.6 3.1–7.3
Corot-24 d 0.27–401 0.5–186
Kepler-454 d 7.2–81.3 9.6–29.8
GJ 273 d 0.55–430 7.3–214
GJ 667 h 1.2–430 8.4–214
HD 3167 e 0.05–85 0.8–22
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GJ 273; Forveille et al. 2009; Butler et al. 2017), whereas for
RV follow-up of transiting planets, even marginally significant
measurements of this quantity still provide useful constraints
on the planet density (see representative trend system Kepler-
97; Marcy et al. 2014). We show the resulting completeness
maps in Figure 5, with systems discovered using the transit
method plotted separately from systems discovered using RVs
in order to illustrate the different average sensitivities of these
two samples.

4. Discussion

4.1. The Occurrence Rate of Gas Giant Companions

In this section, we utilize our probability distributions (see
Section 3.4) for each system to determine the underlying
distribution and corresponding occurrence rate for the observed
population of long-period gas giant companions in these
systems. We follow the methodology laid out in Bryan et al.
(2016) and present a summary of the steps here. We first
assume that this population of companions is distributed in
mass and semi-major axis space according to a double power
law of the form f (m, a)=Cmαaβ (e.g., Tabachnik &
Tremaine 2002; Cumming et al. 2008). The likelihood for a
set of N exoplanet systems is given by

L a b= P = ( ∣ ) ( )p d C, , , 3i
N

i1

where a b( ∣ )p d C, ,i is the probability of the RV data set given
the power-law coefficients C, α, and β. Assuming that each
system has at most one outer companion, this likelihood is
then the sum of the probability that a given system contains
one planet and the probability that the system contains zero
planets. The probability of a system containing zero planets is
given by

a b = -( ∣ ) ( ∣ )[ ] ( )p d C p d Z, 0 , , 0 1 , 4i i

where Z is the probability that the system contains a planet
within a range of masses and semi-major axes (determined by
integrating the power-law distribution over the specified range),
and ( ∣ )p d 0i is the probability of obtaining the RV data set given
that there is no planet in the system.

The probability of a system having one companion given
their distribution in mass and semi-major axis space is

ò òa b =

´ a b

( ∣ )

( ∣ ) ( )

p d C d a d m

p d a m Cm a

, 1 , , ln ln

, , 5

i
a

a

m

m

i

1

2

1

2

where ( ∣ )p d a m,i is the probability of a companion being
located at a given mass and semi-major axis, which we know
from our previously determined probability distributions (see
Section 3.4). To determine the likelihood of a given set of C, α,
and β given our RV data sets, we combine the probabilities of a
system having one planet and a system having zero planets as
follows:

L a b a b= P += [ ( ∣ ) ( ∣ )] ( )p d C p d C, 0 , , , 1 , , . 6i
N

i i i i1

As in Bryan et al. (2016), we incorporate the probability
distributions for all systems in this framework, not just the
distributions for systems that have statistically significant
trends. This allows us to treat all systems consistently,
regardless of whether or not they have a statistically significant
trend. Phrased another way, this allows for the possibility of
marginal trend detections, rather than assuming a binary
classification system in which any star with a less than 3σ
trend is counted as a nondetection. For the nine systems hosting
exterior gas giant (>0.5MJup) companions on resolved orbits
outside 1 au, we replace the probability distributions calculated
from the RV trends with ones where the probability density is
concentrated in a single grid point closest to the best-fit mass
and orbital separation of the resolved companion (see Table 3
for these values).
Two of these systems (GJ 676 and Kepler-454) have both

statistically significant trends and resolved gas giant compa-
nions, while HD 181433 has two resolved gas giant planet
companions. In these cases, we select the innermost gas giant
planet for inclusion in our power-law fit. We also note that our
choice to use the inner versus outer companion in the system
with more than one gas giant companion does not impact our
derived power-law coefficients or occurrence rates.
We determine the values of C, α, and β that maximize the

value of L by first performing a grid search where we vary
each of these power-law coefficients and then carrying out an
MCMC fit initialized near the location of the optimal grid
point. Because these parameters are both poorly constrained
and highly correlated, we find that the use of a preliminary grid
search allows us to reliably identify the global maximum and
reduces the convergence time in our MCMC chains.
We next use the results of these power-law fits to calculate

an integrated occurrence rate for the observed population of gas
giant companions over a range of masses and semi-major axes.
We first calculate the integrated companion frequency
separately for systems discovered using the transit method
versus the RV method. Given the significant differences in
completeness for these two samples of systems, this allows us

Figure 5. Sensitivity maps for the systems with super-Earths discovered using the transit method (left) and RV method (right). The RV detections typically require
much more extensive data sets and have longer baselines than observations of transiting planet systems, resulting in different levels of completeness for these two
samples.
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to evaluate the degree to which these sensitivities impact the
integrated occurrence rates. We ran the grid search and MCMC
analysis of each sample separately. When we calculated the
occurrence rates for these two samples of systems over a mass
range of 0.5–20MJup and a semi-major axis range of 1–20 au,
we found that the occurrence rate of companions in the
transiting planet sample is -

+41 %10
10 , while the occurrence rate of

the RV planet sample is -
+34 %10

11 . These two values are
consistent at the 0.5σ level. We note that the uncertainties on
these occurrence rates are dominated by the number of systems
in each sample, which are similar (34 for the transiting planet
sample, 25 for the RV sample).

We next calculate the frequency of companions for the
combined sample over different ranges in mass and semi-major
axis in order to assess how occurrence rates depend on our
chosen integration ranges. Table 6 shows the resulting
occurrence rates for the combined sample. We note that, as
in Bryan et al. (2016), the values for the power-law coefficients
α and β vary significantly depending on our chosen integration
range as a result of the poorly constrained companion masses
and separations in these systems. However, we find that we
obtain consistent results for the integrated occurrence rate for
these companions across a wide range of integration ranges.
This is because the strongest constraint we obtain from these
data is the total number of companions in these systems, while
their locations are poorly constrained. As a result, we find that
the preferred values for C, α, and β in our fits are correlated in
a way that preserves the total number of companions regardless
of the fitting range used. This stands in contrast to studies
examining populations of planets with tightly constrained
masses and orbital semi-major axes (e.g., Cumming et al. 2008;
Bowler et al. 2010), where the values of α and β are much
better constrained by the data. For these systems, we would
expect the integrated occurrence rate to rise as we increase the
range in mass and semi-major axis, reflecting our much better
knowledge of the planet occurrence rate density. This is an
important point to consider when comparing our occurrence
rate to those from surveys focusing on planets with fully
resolved orbits, as we will discuss below.

Our estimated occurrence rate has a relatively weak
dependence on the assumed eccentricity distribution. As
discussed in Section 3.4, we draw eccentricities from a beta
distribution to calculate the probability distributions for each
companion. When we recalculated our probability distributions
using either circular orbits or a uniform distribution in
eccentricity, we found occurrence rates of 36%±7% and
40%±7%, respectively. Both of these values are consistent
with our nominal occurrence rate of 39%±7% calculated
using the beta distribution. We also test our assumptions
regarding the inclination distribution of the companions.
Previous dynamical studies have shown that for some multi-
transiting systems, an exterior companion must have a similar
inclination (i.e., Becker & Adams 2017). We test an extreme

version of this scenario by recalculating all probability
distributions for multitransiting systems using a restricted
inclination range of 5° (87°.5–92°.5). We rerun the occurrence
rate calculation for all systems using these restricted inclination
distributions for the multitransiting systems and obtain an
occurrence rate of 38%±7%. We conclude that restricting the
inclination for these systems does not significantly impact the
occurrence rate. Finally, we explore how our calculated
occurrence rate might be impacted if some of the less
significant trends are caused by stellar activity. We test an
extreme scenario in which we assume that all systems with
<1σ trends (15 systems) are caused by stellar activity by
replacing these trends with flat lines. We find that when we
recalculate the occurrence rate over the range 0.5–20MJup and
1–20 au, it is 37%±7%, consistent with the original
occurrence rate of 39%±7%. We take this a step further
and replace all systems with <2σ trends (40 systems) with flat
lines. When we rerun the occurrence rate calculation, we find
an occurrence rate of 30% (+7% −6%) over the range
0.5–20MJup and 1–20 au. Thus, the bulk of the occurrence rate
is being driven by stronger trends and resolved companions, as
expected, and we conclude that it is unlikely that stellar activity
is the cause of a majority of these weaker trends.

4.2. Comparison to Field Jupiter Analog Occurrence Rates

We now aim to determine whether the rate of gas giant
companions in super-Earth systems is higher or lower than the
average occurrence rate for Sun-like field stars. If there is no
correlation (positive or negative) between the presence of an
inner super-Earth and an outer gas giant companion, we would
expect these two rates to be consistent with each other.
In this study, we examine 65 super-Earth–hosting stars,

where we define a super-Earth as a planet having either a mass
between 1 and 10M⊕ or a radius between 1 and 4 R⊕,
depending on the detection method. Similarly, we define a
long-period gas giant as a planet with a mass between 0.5 and
20MJup and semi-major axis between 1 and 20 au. When
comparing to previous work, we vary this definition of long-
period gas giant planet to better match individual surveys, as
discussed below.
There have been several studies that have sought to quantify

the frequency of long-period gas giant planets, including
Foreman-Mackey et al. (2016), Rowan et al. (2016), and
Wittenmyer et al. (2016). Wittenmyer et al. (2016) calculated
the occurrence rate of Jupiter analogs over the range
0.3–13MJup and between 3 and 7 au for a sample of 202 stars
observed as a part of the 17 yr Anglo-Australian Planet Search.
For their sample of targets, they only considered planets with
fully resolved orbits and found an integrated occurrence rate of

-
+6.2 %1.6

2.8 over this range, assuming binomial statistics (i.e., they
did not fit a power-law distribution). Integrating our sample
over this same mass and semi-major axis range, we find an
occurrence rate of 34%±7%, which differs from the
Wittenmyer et al. (2016) value by 3.7σ (Figure 6). We note
that for this occurrence rate calculation, in a system with two
gas giant companions (either both resolved or one resolved and
one statistically significant trend), if the innermost resolved
companion does not fall within this integration range, we use
the outer companion (this was the case for systems HD 181433,
GJ 676, and Kepler-454). As stated previously, the inclusion of
either the closer resolved gas giant companions or the farther

Table 6
Total Occurrence Rates for Companions

1–10 au 1–20 au 1–50 au

0.5–20 MJup 38%±7% 39%±7% -
+41 %7

8

0.5–13 MJup -
+36 %6

7
-
+41 %7

8
-
+40 %7

8

1–20 MJup 35%±7% 35%±7% -
+38 %7

8

1–13 MJup 34%±7% 38%±7% -
+39 %7

8
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out signals does not affect our occurrence rate calculations over
the range 0.5–20MJup and 1–20 au.

In order to determine whether or not the difference between
our occurrence rate of 34%±7% and the -

+6.2 %1.6
2.8 rate is

meaningful, we must consider the possible biases introduced by
our decision to consider trends rather than limit our study to
companions with fully resolved orbits. Specifically, our
occurrence rate is partially derived from a population of
planets with probability distributions extending over a wide
range of masses and semi-major axes. This means that when
we integrate over the relatively narrow range used in the
Wittenmyer study, our occurrence rate may be inflated by the
inclusion of planets whose probability distributions overlap
with this integration range, even though the planets themselves
are in fact located on more distant orbits.

To quantify this effect, we assume that planets in our sample
are distributed according to a negative power law in mass and a
flat power law in semi-major axis. Specifically, we adopt the α
value of −0.31 from Cumming et al. (2008) and a β value of 0.
We choose not to adopt the Cumming et al. power-law
coefficient for semi-major axis (β=0.26), as this coefficient
was derived from a fit to the population of gas giant planets
inside 3 au. This fit indicates that the frequency of these planets
rises with increasing semi-major axis, but this is inconsistent
with current constraints from both RV and direct-imaging
surveys (Bowler 2016; Bryan et al. 2016; Clanton & Gaudi
2016; Bowler & Nielsen 2018), which prefer much flatter
distributions at large semi-major axes. In Bryan et al. (2016),
we found that for the population of gas giant planets with long-
period companions, the occurrence rate of these companions
decreases with increasing semi-major axis. While the current
small sample size of directly imaged planets makes it difficult
to determine their mass and semi-major axis distribution, their
overall low occurrence rate indicates that a rising power law in
semi-major axis is likely not applicable at wide separations.

For each of the nine systems with a statistically significant
trend that do not have a resolved companion in this mass and
semi-major axis range, we draw from the α=−0.31, β=0
power-law distribution until we have generated a sample of 100
simulated planets with a cutoff mass of 20MJup that lie within

the favored region of mass/semi-major axis parameter space
where the probability of there existing a planet given the RV
trend is greater than the probability of there being no planet
given the RV trend. For each system, we then count the fraction
of planets that fall within the range 3–7 au and 0.3–13MJup. For
the resolved companions, we count three companions that fall
within this range and were thus included in the occurrence rate
calculation. Averaging across all of the trend and resolved
companion systems, we find that 61% of our simulated planet
population lies inside this range. If we rescale our occurrence
rate to account for the fact that ∼2/5 of our occurrence rate
might be attributed to companions outside the 3–7 au semi-
major axis range, we would then derive a corrected occurrence
rate of 21%±4% for our sample over this semi-major axis
range. This reduced occurrence rate is still inconsistent with the
Wittenmyer et al. value at the 3σ level.
We note that Wittenmyer et al. (2016) mentioned that they

found 45 trends in their sample of systems. However, these
trends could not be Jupiter analogs located between 3 and 7 au
because the 8 yr minimum baseline (the specified cutoff for
system inclusion in the 202 star sample) would have been
sufficient to determine whether or not the orbit was within
3–7 au (R. A. Wittenmyer 2018, private communication).
Furthermore, while 8 yrs was the nominal cutoff, over 90% of
systems had baselines above 4000 days (∼11 yr), while a
majority of the sample had baselines over 6000 days
(∼16.5 yr). We therefore conclude that Wittenmyer et al.ʼs
decision to ignore trends in their occurrence rate calculation is
unlikely to result in systematic differences in sensitivity as
compared to our study.
We next consider results from other studies that provide

independent estimates of the frequency of long-period gas giant
planets around nearby stars. Rowan et al. (2016) estimated the
occurrence rate of Jupiter analogs using a sample of 1122 stars,
where they defined a Jupiter analog as a planet with a mass
between 0.3 and 3MJup and semi-major axis between 3 and
6 au. As with Wittenmyer et al., they only considered planet
detections with fully resolved orbits in their analysis. Over this
range, they found an occurrence rate of 1%–4%. While this
integration range has a relatively strict mass limit, we note that
previous power-law fits to the population of RV-detected
planets consistently indicate that lower-mass gas giants are
more common than higher-mass gas giants (Cumming et al.
2008; Bryan et al. 2016), suggesting that their upper bound of
3MJup versus our upper bound of 13MJup is unlikely to change
this integrated occurrence rate very much. We therefore
conclude that our occurrence rate is likely higher than the rate
from this study as well, with the same caveats as for the
Wittenmyer et al. comparison.
For our last comparison, we turn to Foreman-Mackey et al.

(2016), who calculated the frequency of long-period planets
between 1.5 and 9 au and 0.01 and 20MJup using transit
detections from the Kepler photometry. Unlike the previous
two RV studies, a majority of the long-period planets in their
sample have just one observed transit. Although this study is
able to place some loose constraints on the orbital periods of
these planets based on their measured transit durations, these
constraints are nearly as broad as those for our RV trend
systems. For this parameter space, Foreman-Mackey et al.
(2016) found an occurrence rate density of 0.068±0.019,
corresponding to an integrated occurrence rate of 92.5%±
25.7%. Over a similar semi-major axis range and a more

Figure 6. Compared to the Jupiter analog occurrence rate estimates published
in Rowan et al. (2016) and Wittenmyer et al. (2016), this study finds a higher
occurrence rate of distant gas giant planets in super-Earth systems than would
be expected just based on chance. Occurrence rate integration ranges are
0.3–13 MJup and 3–7 au for this paper and Wittenmyer et al. (2016) and
0.3–3 MJup and 3–6 au for Rowan et al. (2016).

13

The Astronomical Journal, 157:52 (18pp), 2019 February Bryan et al.



limited mass range (1–10 au and 0.5–20MJup), we find an
occurrence rate density of 0.045±0.009 and an integrated
occurrence rate of 38%±7%. While these two occurrence rate
densities are formally consistent, three-quarters of Foreman-
Mackey et al.’s (2016) sample consists of planets whose
estimated masses are less than 0.2MJup, whereas all of our
candidate companions have minimum masses higher than this
threshold. We therefore conclude that there is relatively little
overlap between the two planet samples, making this
comparison less relevant than the studies by Rowan et al.
(2016) and Wittenmyer et al. (2016).

4.3. Frequency of Super-Earths in Jupiter Analog Systems

Now that we have determined the frequency of long-period
gas giants in super-Earth systems, we can ask what fraction of
the long-period gas giants orbiting field stars are drawn from
this population (i.e., what fraction of long-period gas giants
have inner super-Earths?). We can express this as a conditional
probability,

=
´( ∣ ) ( ∣ ) ( )

( )
( )p

p p

p
SE LPG

LPG SE SE

LPG
, 7

where p(SE) is the probability that a given star hosts a super-
Earth and p(LPG) is the probability of hosting a long-period
gas giant planet. We note that Zhu & Wu (2018) presented a
similar equation and provided an independent estimate of this
probability, which we discuss in more detail below. If we take
our estimate of the frequency of Jupiter analogs in super-Earth
systems, we can use this equation to calculate what fraction of
Jupiter analogs host inner super-Earths. For consistency, we
integrate the conditional occurrence rate P(LPG|SE) from
our study over the same mass and semi-major axis range
as Wittenmyer et al. (2016), resulting in P(LPG|SE)=
34%±7% and P(LPG)= -

+6.2 %1.6
2.8 . We take the super-Earth

occurrence rate of P(SE)=30%±3% from Zhu et al.
(2018b). Using Equation (7), we find that the conditional
probability that there is at least one super-Earth in a system
hosting a Jupiter analog is P(SE|LPG)= -

+164 %83
57 . Although

our definition for this quantity disallows values greater than
100%, it is likely that some of the trends that we include in our
Jupiter analog occurrence rate calculation may be caused by
planets beyond 7 au. As discussed in Section 4.2, accounting
for this correction can reduce our Jupiter analog occurrence to
21%±4% if we assume a flat power-law distribution in semi-
major axis. Using this lower value in the conditional
probability calculation, we find P(SE|LPG)= -

+102 %51
34 . Given

the relatively large uncertainties on both the occurrence rates
used in Equation (7) and the estimated semi-major axis
distribution of planets at these large separations, it is difficult
to obtain a precise constraint on the occurrence of super-Earths
in Jupiter analog systems, P(SE|LPG). Nevertheless, this result
does appear to suggest that most, if not all, systems hosting a
Jupiter analog also host one or more inner super-Earths.

Zhu & Wu (2018) recently published an independent
estimate of the occurrence rate of gas giant companions in
super-Earth systems, P(LPG|SE), as well as the conditional
occurrence rate of super-Earths in Jupiter analog systems, P
(SE|LPG). They also found that super-Earth systems host more
cold Jupiters than would be expected based on chance alone

and concluded that most, if not all, systems hosting cold
Jupiters also host inner super-Earths. Zhu & Wu (2018)
estimated P(LPG|SE) using a sample of 22 transiting super-
Earth systems from Kepler with radii in the range 1–4 R⊕ and
32 RV systems with masses <20M⊕. Assessing the overlap
between our two samples, we include 21 of their 22 transiting
planet systems in our study and 10 of their RV systems. While
we missed Kepler-89 in our study, for our RV sample, only 10
of the RV systems in Zhu & Wu (2018) meet our requirement
that m sin i be less than 10M⊕. For the purpose of this
calculation, Zhu & Wu (2018) defined cold Jupiters as planets
with m sin i>0.3MJup and orbital periods >1 yr and counted
the number of cold Jupiters in these systems as reported in the
NASA Exoplanet Archive. This results in an occurrence rate of
P(LPG|SE)=32%±8%, assuming 100% completeness. Using
an equivalent conditional probability to our Equation (7), Zhu &
Wu (2018) set P(LPG)=10% and P(SE)=30% and concluded
that P(SE|LPG)=90%±20%.
It is reassuring that Zhu & Wu’s estimated values for P(LPG|

SE) and P(SE|LPG) are consistent with our values, despite
differences in both sample selection and methodology.
However, we note that more quantitative comparisons are
difficult given that the authors of this study did not define an
explicit upper boundary in mass and semi-major axis for their
cold Jupiter sample. Our results demonstrate that the sensitivity
of these RV data sets to cold Jupiters can vary greatly from
system to system as a result of differences in baseline, cadence,
and sample size. Without an upper boundary in semi-major
axis, it is difficult to evaluate whether or not Zhu & Wu’s
implicit assumption of 100% completeness is valid for their
chosen sample. Similarly, if we wish to compare our value for
P(LPG|SE), which requires integration over a finite range in
mass and semi-major axis space, to that of Zhu & Wu, it is
unclear what limits of integration we should use.
As noted above, our study also uses a different mass cutoff

for our RV super-Earth sample selection than that utilized by
Zhu & Wu. While both studies use the same radius range for
the transiting planet sample, we require our RV super-Earths to
have m sin i between 1 and 10M⊕, while Zhu & Wu (2018)
used a more generous range of 1–20M⊕. As a result, 40% of
their 54 super-Earth systems contain planets with m
sin i>10M⊕. This alternate definition increases the likelihood
that their sample contains a substantial fraction of Neptune-
mass planets (see Section 2 for a discussion of this probability
for our RV sample). However, while this is an important
difference, the fact that we obtain consistent estimated values
for P(LPG|SE) in both studies suggests that this choice may not
substantially alter their conclusions.

4.4. Implications of Our Results for Super-Earth Formation
and Migration Models

Although it is difficult to make quantitative comparisons
without a better understanding of the power-law distribution for
the long-period gas giant planets in our sample, our results
indicate that there is a higher occurrence rate for gas giants in
systems hosting inner super-Earths than for field stars.
Furthermore, if we take our integrated occurrence rate of
34%±7% between 3 and 7 au and 0.3 and 13MJup at face
value, as well as the overall occurrence rates of super-Earths
and long-period gas giant planets (Howard et al. 2010; Fressin
et al. 2013; Petigura et al. 2013; Rowan et al. 2016;
Wittenmyer et al. 2016; Zhu et al. 2018a), Equation (7) would
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suggest that a significant majority of long-period gas giant
planets have inner super-Earths.

4.4.1. Long-period Gas Giants Do Not Hinder Super-Earth
Formation, Did Not Migrate Large Distances

The apparent correlation between the occurrence of inner
super-Earths and outer gas giants suggests that gas giant
companions do not hinder super-Earth formation by cutting off
the flow of solids to the inner disk, stirring up the velocity
distribution of these solids, or preventing super-Earths formed
at larger separations from migrating inward (Walsh et al. 2011;
Batygin & Laughlin 2015; Izidoro et al. 2015; Moriarty &
Fischer 2015). We also note that four of the super-Earth
systems in our sample contain additional gas giant companions
inside 1 au that were not included in our estimate of the
frequency of exterior long-period companions. These four inner
gas giants are located immediately adjacent to and, in some
cases, between the super-Earths in these systems, providing
additional support for the idea that the presence of gas giants
does not disrupt super-Earth formation. It is likely that these
inner gas giants with super-Earth companions did not undergo
large-scale migration: high-eccentricity migration of any kind
would destroy the orbits of the inner planets (e.g., Mustill et al.
2015; Antonini et al. 2016), and disk-driven migration would
lead to resonant locking among the giant planets and the super-
Earths, resulting in an orbital architecture reminiscent of the
Galilean satellites.

If the scenario for the solar system presented in Batygin &
Laughlin (2015) is correct, this would also suggest that the
long-period gas giant companions in these systems did not
undergo large-scale inward migration. A gas giant undergoing
long-range migration (in Batygin & Laughlin 2015, Jupiter
migrated from 6 to 1.5 au) can capture solid materials in
resonance, driving both the inward transport and the excitation
of eccentricities. The ensuing collisional cascade among the
resonant planetesimals shuttles newly formed super-Earths
inward onto their host stars. In this scenario, the total mass
participating in this cascade must be large enough to
appreciably alter the orbital semi-major axes of the inner
super-Earths (i.e., it must have a total mass comparable to that
of the planets). The amount of solids participating in the
cascade depends on the distance over which the outer gas
giants migrate, Mswarm∼fsolid×(nebula mass)×(migration
distance/size of the disk), where we assume a gas disk surface
density profile of ∝1/r, with r being the stellocentric distance,
and fsolid is the solid-to-gas mass ratio. If, for example, the outer
gas giant migrates only ∼1 au for fsolid=1/100, a nebula mass
of 0.01Me, and a disk size of 30 au, Mswarm∼1M⊕. This is
not enough mass to shepherd inner super-Earths onto a host
star, rendering this mechanism ineffective in systems where
giant planets remain relatively close (∼<1 au) to their
formation locations.

4.4.2. A Single Long-period Gas Giant is Unlikely to Destroy Inner
Super-Earths

Most systems we identify with significant evidence for an
outer companion (see Tables 3 and 5) have strongly coupled
inner planets that are resilient against the perturbation of an
outer companion (i.e., their mutual secular precession frequency
is higher than the outer perturber’s precession frequency).
Following the procedure outlined in Pu & Lai (2018), we find

that the rms eccentricities (and mutual inclinations) from the
secular perturbation by an outer gas giant are limited to, at
maximum, just a few percent over a wide range of perturber
eccentricities (0–0.4) and inclinations (0°–40°).7 The ability of
these inner super-Earth systems to remain stable—and roughly
coplanar—against the perturbation of the outer perturber
and the robustness of our inferred occurrence rate Jovian
companion over a range of eccentricity and inclination
distributions (see Section 4.1) suggest that the orbital
architecture of inner super-Earths is largely unaffected by the
presence of an outer gas giant companion.
One notable exception is Kepler-454, which has an inner

super-Earth at ∼10 days and a Jovian companion at ∼500 days,
as well as an RV acceleration consistent with an outer giant
companion at ∼10 au. While the innermost super-Earth couples
more strongly with its closest Jovian neighbor, this Jovian
planet couples more strongly with its outer giant companion.
Calculating the expected rms eccentricities from the secular
perturbations, we find that an outermost companion with an
eccentricity greater than ∼0.1 would drive the inner planets to
orbital instability. We expect there to be similar limits on the
eccentricities of outer gas giants in systems such as GJ 676 A
and HD 181433, which harbor multiple gas giants. In fact,
Campanella et al. (2013) argued that the HD 181433 planets
must be in a mean-motion resonance in order to ensure orbital
stability. The ability of multiple outer gas giants to dynamically
excite inner systems has been studied extensively by Hansen &
Zink (2015) for the specific case of 55 Cnc and more generally
by Hansen (2017b). Similar system-by-system stability ana-
lyses using full N-body calculations would help to place
stronger constraints on the eccentricities and inclinations of the
possible outer companions we report here.

4.4.3. Outer Gas Giants Provide Constraints on Protoplanetary Disk
Properties

We next consider whether or not the presence of an outer gas
giant can be used to constrain the properties of the protoplanetary
disks from which these systems formed. Large solid-mass content
is considered one such property, facilitating the growth of grains
to planetesimals (e.g., Youdin & Chiang 2004; Birnstiel et al.
2012), accelerating the growth of cores by pebble accretion (e.g.,
Ormel & Kobayashi 2012; Lambrechts & Johansen 2014; Lin
et al. 2018), and speeding up the final assembly by giant impact
(e.g., Dawson et al. 2015).8 Observationally, both gas giants and
super-Earths (here defined as planets with mass of 1–10M⊕
and/or radii of 1–4 R⊕) are found to occur more frequently
around metal-rich stars (Fischer & Valenti 2005; Petigura et al.
2018). Here we consider whether the metallicity of the host star
—used as a proxy of the total solid content in the natal disk—is
correlated with the occurrence of gas giant companions to inner
super-Earths.

7 The strength of the secular perturbation is strongly sensitive to the ratio of
the orbital distances of the perturber and the inner planet. In our calculation, we
adopt the minimum orbital distance of the perturber and its corresponding mass
to quantify the maximum possible forced eccentricities and mutual inclinations.
We note that the relatively small separation of the outer companion in the
Corot-24 system can drive the system to orbital instability for perturber
eccentricities larger than ∼0.4. If we instead sample a range of distances and
masses of Corot-24 d contained within the 1σ probability (see Figure 4), the
rms eccentricities and inclinations drop to just a few percent.
8 To be more precise, the growth of planetesimals and cores is governed by
the “local” concentration of solids; in other words, what matters is the solid-to-
gas mass ratio at the site of such growth, not necessarily the bulk mass ratio.
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As a test of this question, we divide our sample into systems
that have greater than 3σ trends (systems listed in bold in
Table 1) and resolved companions (systems listed in Table 3),
which we refer to hereafter as “companion systems,” and those
that do not, referred to as “no-companion systems,” and
compare the error-weighted averages of the stellar metallicities
between these two samples. For the transiting planet sample,
we find average metallicities of 0.207±0.005 and
0.076±0.003 for the companion and no-companion systems,
a 22σ difference. For the RV sample, the error-weighted
average metallicities are 0.346±0.010 and −0.292±0.005
for the companion and no-companion systems, a 57σ
difference. We note that in this comparison, we do not include
M stars GJ 3293 and GJ 163. This is because we wanted to use
metallicities for M stars derived using only IR techniques, since
they are consistent and calibrated on FGK stars, and neither of
these M stars had metallicities derived using these techniques.
However, at present, the “companion” and “no-companion”
RV sample averages are significantly influenced by a small
fraction of systems that have small metallicity uncertainties. In
addition, a caveat for this comparison for both the RV and the
transit samples is the fact that error-weighted averages assume
that the scatter in metallicity is simply due to measurement
uncertainties as opposed to intrinsic astrophysical scatter,
which is not the case here given the typically small metallicity
uncertainties. Furthermore, these comparisons involve small
sample sizes, which is not explicitly accounted for in these
error-weighted averages. We thus compare these distributions
using the Anderson–Darling test, which takes both the intrinsic
astrophysical dispersion of the metallicities and sample size
into account. Before applying this test, we remove from the
sample all M stars, which typically had large uncertainties on
stellar metallicities in comparison to other stars in the sample,
since this test becomes more appropriate the more uniform the
sample and the smaller the measurement uncertainties. After
applying the Anderson–Darling test, we find that the
probability of the companion/no-companion samples coming
from the same parent distribution is p-val=0.0027 and
0.0286 for the RV and transiting samples, corresponding to
a significance of 3.0σ and 2.2σ, respectively. While the
significance of this comparison is substantially lower than that
estimated from comparing the error-weighted averages, given
the potential biases of the error-weighted averages presented
above, this is a more appropriate assessment of the significance
of the differences between the companion and no-companion
metallicities. We conclude that these comparisons for the RV
and transit samples suggest that super-Earth systems around
metal-rich stars are more likely to have outer companions than
their metal-poor counterparts. We plot the distribution of
metallicities for companion/no-companion systems for each
sample in Figure 7 and the metallicities of both RV and
transiting samples versus trend significance in Figure 8. We
note that the stars in the RV sample typically have lower
masses and correspondingly lower metallicities than stars in the
transiting planet sample, with an error-weighted average
metallicity of −0.165±0.004 and 0.109±0.003 for the RV
and transiting samples, respectively.

We next consider whether or not there is any correlation
between the presence of an outer gas giant companion and the
mass of the host star. Observations of young stars indicate
that disk mass appears to be correlated with stellar mass,
albeit with large intrinsic variance (Andrews et al. 2013;

Pascucci et al. 2016). As with stellar metallicity, we expect
that disks with higher overall masses will have a correspond-
ingly higher surface density of solids. However, the benefits
of this higher surface density for giant planet formation may
be partially negated by the shorter average lifetimes of disks
around more massive stars (Ribas et al. 2015). This might

Figure 7. Distributions of stellar metallicities for systems with and without
>3σ trends and resolved companions. Top: RV-only sample with 6 systems in
the “companion” sample and 19 systems in the “no-companion” sample.
Bottom: Transit-only sample with 10 systems in the “companion” sample and
24 systems in the “no-companion” sample.

Figure 8. Stellar metallicities plus uncertainties vs. trend significance for the
RV sample (stars) and the transiting sample (triangles). The black dashed line
indicates a 3σ trend. We assign all resolved companions a significance of 50σ
in order to include them on this plot.
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affect our estimates of the companion frequency in RV versus
transiting planet systems, as these two samples have different
stellar mass distributions. We find that while only one star in
the transiting planet sample is an M dwarf (LHS 1140) out of
34 systems, 10 targets in the RV sample are M dwarfs (out of
25). We calculate the occurrence rates for the combined RV
and transiting planet sample with and without the M stars
only over an integration range of 0.5–20MJup and 1–20 au
and find occurrence rates of 37%±8% and 44%±17%,
respectively. These occurrence rates are consistent with the
occurrence rate of the total sample of 39%±7% to <0.1σ
and 0.3σ, respectively.

5. Conclusions

We collected published RV data for a sample of 65 systems
hosting at least one inner super-Earth planet in order to search
for massive, long-period companions. We detect these distant
companions as long-term trends in the RV data when the
orbital period of the companion is shorter than the system RV
baseline. Out of our sample of 65 systems, we found 14
systems that had statistically significant trends. Two of these
systems had resolved stellar companions that could potentially
have caused the observed trends, while three more systems had
trends that were likely due to stellar activity. We removed these
five systems from subsequent analysis, leaving nine systems
with statistically significant trends indicating the presence of an
outer companion. Three of these trends are identified here for
the first time, while six were previously reported in the
literature. We also identify 10 previously published resolved
gas giant companions (>0.5MJup and 1–20 au) in our sample
of systems. We report two new candidate planets in systems
HD 156668 and HD 175607 but do not include these in our
statistical study, as they lie below our mass cutoff with
minimum masses of 31 and 24M⊕, respectively. We also
recover a fully resolved periodic signal in HD 1461 that
appears to be caused by stellar activity, as reported in Bryan
et al. (2016).

We compute two-dimensional probability distributions in
mass and semi-major axis space for each system in our sample
with an RV trend, where we use the duration and shape of the
trends to place lower limits on allowed ranges of mass and
separation. We use a combination of new and archival AO
imaging at infrared wavelengths to place a corresponding upper
limit on the allowed masses and separations of these
companions. We find that stellar metallicities of systems with
gas giant companions are significantly higher than those
without companions for both the transiting and RV planet
samples, in good agreement with the well-established metalli-
city correlation from RV surveys of field stars.

We fit the observed companion distributions with a double
power law in mass and semi-major axis and integrate this
power law over 0.5–20MJup and 1–20 au to find an occurrence
rate of 39%±7%. We then compare our occurrence rate for
these companions to similar occurrence rates for long-period
gas giant planets from RV surveys of Sun-like field stars. We
find that super-Earth systems appear to have more gas giant
companions than we would expect to see by chance alone, even
after accounting for the additional uncertainty introduced by
our inability to pinpoint the precise locations of these
companions for systems with RV trends. The high occurrence
rate of long-period (>1 au) gas giants in super-Earth systems in
turn implies that a significant majority of the long-period gas

giants identified in RV surveys of field stars likely host inner
super-Earths. We therefore conclude that the presence of an
outer gas giant does not hinder super-Earth formation, as
proposed in some previous theoretical studies. To the contrary,
our data suggest that these companions may either actively
facilitate super-Earth formation or simply serve as a fossil
record of early disk conditions that were particularly favorable
for planet formation over a wide range of semi-major axes.
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