
AAS 18-476

A SIX DEGREE-OF-FREEDOM SPACECRAFT DYNAMICS
SIMULATOR FOR FORMATION CONTROL RESEARCH
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This paper presents a new six-degree-of-freedom robotic spacecraft simulator, the
Multi-Spacecraft Testbed for Autonomy Research (M-STAR), for testing forma-
tion guidance, relative navigation, and control algorithms. The simulator dynamics
are governed by five degrees of frictionless translational and rotational air-bearing
motion and one degree of kinematic motion in the gravity direction with flight-like
actuators, in a 1-g environment. M-STAR is designed to be modular and accom-
modates 3-DOF, 4-DOF, 5-DOF, and 6-DOF operation with minimal mechanical
modifications. The simulator is modelled as a 3-D pendulum on a floating plat-
form with sixteen thrusters and four reaction wheels as on-board actuators. Based
on this plant model, a nonlinear hierarchical control law is proposed for position
and attitude trajectory tracking. A weighted generalized pseudo-inverse strategy
for control allocation to map control inputs to actuator inputs is discussed. The
thruster actuation model for mapping smooth allocated input to non-smooth ac-
tuator input that achieves equivalent performance is derived. The control law,
allocation scheme, and thruster model are tested on the simulator for real-time
position tracking control using a Robot Operating System (ROS) based software
framework.

INTRODUCTION

Spacecraft formation flying technologies using smallsats, such as microsatellites and CubeSats,
as individual agents offer a robust, adaptable, and cost-effective way to establish space telescopes,1

communication systems2 for observation, and various other applications.3–5 The ability of these
systems to perform equivalent to a monolithic system depends on achieving high-precision relative
navigation, guidance, control (GNC), and synchronization of the individual agents in the formation.
A ground-based robotic dynamics simulator that can mimic the frictionless motion in a disturbance
torque free environment with flight-like subsystems provides a platform to test and validate the GNC
algorithms required to design and build such a multi-agent spacecraft system.
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Organization Name DOF
Naval Postgraduate School POSEIDYN 3
Georgia Institute of Technology ASTROS 5
Florida Institute of Technology ORION 6
University of Florida ADAMUS 6
Yonsei University ASTERIX 5
NASA Jet Propulsion Laboratory (JPL) FCT 5

SSDT 3
German Aerospace Center (DLR) TEAMS 3 and 5
Massachusetts Institute of Technology SPHERES 3

ARGOS 3 (attitude)

Table 1: A sample of spacecraft simulators from other institutions. 7–23

Historically, air bearing6 platforms have been a popular choice to build spacecraft dynamics sim-
ulators. Air bearing spacecraft simulation platforms were developed by several research laborato-
ries;7–23 a selection of these simulation platforms is shown in Table 1. Existing air bearing platforms
can be classified into four types based on the mode of operation: 3 degrees-of-freedom (DOF) pla-
nar,9, 16, 20 3-DOF attitude,8, 10, 20 5-DOF planar and attitude,7, 14, 17, 22 and 6-DOF planar and attitude
with gravity-axis motion.13, 19, 21 The air bearing system acts as a ground-based simulator platform
for flight-like actuators and sensors, which provides an opportunity to test flight algorithms and
emulate space dynamics.24

In this paper, we describe the development of a new 6-DOF spacecraft simulator, the Multi-
Spacecraft Testbed for Autonomy Research (M-STAR), that is designed to be modular and accom-
modates 3-DOF, 4-DOF, 5-DOF, and 6-DOF operation with minimal mechanical modifications. The
spacecraft simulator hardware was designed to have decentralized control and information sharing
capabilities with neighboring agents in view of the future goal of testing multi-agent GNC algo-
rithms using up to five of these simulators. Each spacecraft has 16 thrusters and 4 reaction wheels
to study fault-tolerant control.

In view of the model-based GNC algorithms a detailed nonlinear dynamic model for the 5-DOF
system was derived by modelling it as a 3D pendulum on a gliding planar platform with a center
of gravity offset in the 3D pendulum. The nonlinear dynamic model is decoupled by assuming
a small center of gravity offset. A nonlinear hierarchical control law is proposed for fast attitude
dynamics and slower position dynamics due to the time-scale separation. The control law computes
forces and torques collocated to the dynamics. Control allocation25 is done to map the collocated
control signal to the actuator signal. Optimization formulations26 can be used to solve the control
allocation problem, typically formulated as a linear program. For the M-STAR control allocation,
we implement a generalized pseudo-inverse method for control allocation with a weighted influence
matrix to account for actuator saturation limits, as the optimization formulations are computationally
expensive for real-time implementation.

The position control of the M-STAR is performed using on-off solenoids, which are inherently
nonlinear due to mechanical delays and varying pressure in the manifold that supplies compressed
air to the solenoids. The solenoids are characterized27 by measuring the force produced for varying
on-off time, using a calibrated load cell. A linear model to compute the on time of a thruster is
developed using the measured data for a given force requirement at each time step. The control
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Figure 1: Multiple 6-DOF M-STAR spacecraft at Caltech’s Aerospace Robotics and Control Lab.

law, control allocation scheme, and thruster model are tested for position tracking using a Robot
Operating System (ROS) based software framework.

The paper is divided into four sections: 1) hardware description of the spacecraft simulator; 2)
nonlinear dynamics and control law design of the M-STAR testbed; 3) discussion on actuator models
and control allocation; and 4) preliminary position control experimental results.

THE SPACECRAFT DYNAMICS SIMULATOR FACILITY AT CALTECH

Overview of the Facility

The spacecraft simulator facility requires the following three components to be operational: the
epoxy flat floor, the compressed air filling station, and the M-STAR. The epoxy flat floor is a high
precision floor with flatness within 0.001 inches for frictionless translation of the spacecraft dynam-
ics simulator using three flat air-bearing pads. Figure 1 shows the facility with multiple M-STAR
spacecraft simulators and protection for collisions on the outer edge of the floor. The full 6-DOF
spacecraft simulator can be seen in the middle with two 3-DOF simulators on the sides.The second
component, the filling station, is comprised of an industrial air compressor and two 6,000 psi stor-
age tanks. The filling station is used to fill the on-board air cylinders that supply air to the flat air
bearings, spherical air bearing, and 16 on-off non-latching solenoid valves that act as thrusters on
the simulator. The M-STAR shown in Fig. 2 acts as the dynamic simulation platform for a smallsat
and includes all the necessary on-board sensors, actuator systems, and computing to achieve full
6-DOF control. The pose of the spacecraft simulator is estimated using 14 motion capture cam-
eras mounted on the ceiling of the facility. In the following section, we elaborate on the subsystem
hardware of the simulator.

M-STAR Spacecraft Simulator Hardware

The Caltech Aerospace Robotics and Controls Lab’s 6-DOF spacecraft dynamics simulator for
spacecraft formation control research was designed to accommodate up to a 12U CubeSat as a
payload. The floating test bed simulates 5-DOF dynamic motion and 1-DOF kinematic motion
along the gravity direction, with translation and attitude stages decoupled via a spherical air bearing.
The translation stage floats frictionlessly on the precision floor using three flat round air bearings.
The attitude stage has a hemispherical air bearing ball that floats frictionlessly on the cup mounted
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at the top of the linear actuator on the translation stage. Tables 2 and 3 list the hardware components
on both the translation stage and attitude stages respectively. The hardware on each stage is divided
into three subsystems: 1) mechanical, including structural and pneumatic components; 2) electrical,
including power, computing, and low level controller boards; and 3) actuation, to impart torque or
impulse in the required degree of freedom. Each of these components plays an essential role in
achieving torque-free controlled motion.

Flat Air 
Bearing

Compressed 
Air Tanks

TX2

Thruster Control Board

Odrive Board

Reaction 
Wheels

Linear 
Actuator Battery

Attitude 
Stage

Thrusters

Thrusters

Figure 2: M-STAR spacecraft dynamics simulator.
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Figure 3: Flowchart of pneumatic system on translation and attitude stage.

Translation Stage. The translation stage provides frictionless in-plane motion for the whole sim-
ulator using three linear flat round air bearings. It consists of three compressed air cylinders running
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at 4500 psi, a spherical air bearing cup, pneumatic components for pressure regulation, and tubing
required to supply air for the bearings. The pneumatic system on the translation stage is shown in
Fig. 3. In addition, it is equipped with a linear actuator, a brushless DC linear motor for achieving
motion in the gravity direction with supporting control electronics.

The different operation modes of operation (3-DOF, 4-DOF, 5-DOF, and 6-DOF) can be achieved
as follows:

• 3-DOF: spherical air bearing turned off and linear actuator replaced with a passive tube

• 4-DOF: spherical air bearing turned off

• 5-DOF: linear actuator replaced with a passive tube

• 6-DOF: all actuators active

This provides flexibility in operation and allows the construction of algorithms with increased com-
plexity. The compressed air storage tanks’ capacity was designed to achieve at least 25-30 minutes
of flotation time at the operating pressure in 6-DOF mode. Several custom-designed add-ons can be
incorporated on the translation stage such as docking ports and reaction wheels for yaw control.

Subsystem Component
NewWay Air Bearing

Compressed Air Cylinders
Mechanical Structure Design

Spherical Air bearing
Regulator

Actuator Progressive Automation Linear Actuator
Battery

Electronics and Power Linear Actuator Controller
Raspberry Pi

Table 2: List of components on the translation stage.

Attitude Stage. The attitude stage structure was designed using carbon fiber composites and hon-
eycomb materials, optimized to provide a flotation time of up to 30 minutes with a payload of 12
kilograms. It has a box structure and acts as a platform for a potential payload, such as a 12U
CubeSat. The attitude stage structure has the hemispherical ball of the air bearing pair and floats on
the translation stage to provide 3-DOF frictionless attitude motion. This stage has 16 on-off non-
latching solenoids with custom made nozzles and four in-house reaction wheels as actuators. The
power distribution board for the attitude stage and the low-level controller for the thrusters are de-
signed at Caltech. The schematic of the pneumatic subsystem for supplying regulated compressed
air to the thrusters is shown in Fig. 3. It includes three compressed air cylinders, a regulator, and
a manifold for air distribution. The regulated pressure is supplied to all the thrusters through the
manifold to maintain the pressure across them. The operating pressure of the thrusters is decided
based on experimental characterization of the solenoids. The electrical subsystem of the attitude
stage is shown in Fig. 4. We chose an NVIDIA Jetson TX2 as the main computer to run the GNC
and perception algorithms. The computer communicates the control signal to the low level boards
as shown in Fig. 4. The subsystem components of the stages are listed in the Table 3.
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Figure 4: Attitude stage architecture.

Subsystem Component
Structure

Mechanical Nozzles
Pneumatics

Actuator Thrusters
Reaction Wheel Assembly

Battery
Power Distribution Board

Electronics and Power Thruster Control Board
ODRIVE Reaction Wheel Driver

Maxon Motor Reaction Wheel Motor
NVIDIA Jetson TX2 Computer

Table 3: List of components on the attitude stage.

Reaction Wheel Sizing and Manufacturing. Custom reaction wheels were designed for the space-
craft simulator to achieve certain nominal performance specifications. The principle axis of inertia
of the whole simulator including a 12U CubeSat payload, shown in Eq. (1), was estimated using
CAD software. The nominal torque and angular momentum requirements for attitude control cor-
responding to the estimated principle inertia of the spacecraft is shown in Table 4.

J =

1.19 0 0
0 1.24 0
0 0 1.43

 [kgm2] (1)

The flywheel was made out of brass, fabricated using a CNC lathe for better tolerances. The
motor selected was an EC frameless motor from Maxon Motor, which has a decoupled stator and
the rotor, leading to an increased lifetime. The entire structure (flywheel, shaft, and motor) was
constrained between two ball bearings to reduce vibration as shown in Fig. 5.
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Nominal torque X-axis [Nm] 0.069
Nominal torque Y-axis [Nm] 0.072
Nominal torque Z-axis [Nm] 0.044
Angular momentum X-axis [Nms] 0.2077
Angular momentum Y-axis [Nms] 0.2164
Angular momentum Z-axis [Nms] 0.4492

Table 4: Nominal torque and angular momentum of the spacecraft.

Brass flywheel Chassis Ball bearingShaft StatorRotor

Figure 5: Section view of Caltech’s custom-made reaction wheels.
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Figure 6: Software architecture design.

M-STAR Software Architecture

The software for the simulator was designed to allow for interchangeable guidance, navigation,
and control modules. The architecture is implemented in C++ using abstract base classes for the
three modules, with virtual loop functions for subclasses to implement. As illustrated in Fig. 6,
navigation subclasses are responsible for generating updated state data for the guidance system and
controller. The guidance system maintains a trajectory of desired states, from which the controller
selects a target state for the current time step and implements the required dynamics. The current
experimental setup features waypoint guidance, motion capture camera based navigation, and the
5-DOF controller outlined in the next section. However, these could respectively be swapped for
an arbitrary motion-planning algorithm, pose feedback from integrated on board sensor data, and
controllers for the four configurations of the simulator.
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The architecture is built on Robotic Operating System (ROS) framework, which allows for each
loop to be scheduled at a unique rate that can be changed at run time. Data from other modules is
automatically fetched before each loop runs. ROS also provides a messaging architecture for com-
municating with peripheral boards, the ability to create unique launch configurations for different
module setups, and test logging.

DYNAMICS AND CONTROL

Each M-STAR has two links coupled using a spherical air bearing as a joint. This system can
be modelled as a three dimensional pendulum on a floating platform with a ball joint to provide 3-
DOF rotation of the pendulum (modelling the attitude of the spacecraft) and 2-DOF planar motion
of the floating platform. Constraints on the 3D pendulum motion due to mechanical interference
between the attitude stage and the translation stage are shown in Table 5. The coordinate systems
used for deriving the kinematics and dynamics of the system are shown in Fig. 7. The inertial
reference frame on the test floor is defined by the coordinate system (Xi, Yi, Zi) with origin Oi . A
non-rotating reference frame (Xib, Yib, Zib) that is parallel to the inertial frame, is attached to the
attitude stage with origin Ob at the center of the hemispherical bearing to define the orientation of
the attitude stage. The attitude stage dynamics are derived in terms of the angular rates in the body
frame (Xb, Yb, Zb) at origin Ob. Before proceeding to the discussion on the dynamics and control
implementation, the attitude representation used for describing the motion of the 3D pendulum in
SO(3) space is discussed.

Pitch (rotation about Xib) ±45◦

Roll (rotation about Yib) ±45◦

Yaw (rotation about Zib) ±180◦

Table 5: Constraints on the angular motion of the attitude stage.

Attitude Kinematics

The attitude of the 3D pendulum can be represented by any attitude representations including
quaternions,28 Modified Rodrigues Parameters (MRPs),28 and SO(3) rotation matrix. For example,
the MRPs p ∈ R3 are stereographic projections of the unit quaternions,28 q ∈ H, where H is the
Hamiltonian space and have a bijective mapping to the quaternion sphere are used here. The attitude
representation in MRPs takes into account the unit norm of the quaternions. The attitude kinematics
equation is given using the body angular rates ω ∈ R3. The kinematics of MRPs are given as
follows.

ṗ = Z(p)ω; where Z(p) =
1

2

(
I3

(
1− pT p

2

)
+ ppT + S(p)

)
, S(p) =

[
0 −p3 p2
p3 0 −p1
−p2 p1 0

]
(2)

The rotation matrixR(p)> to transform from the frame (Xib, Yib, Zib) to the body frame(Xb, Yb, Zb)
in terms of the MRPs is given as:

R(p)> = I3×3 −
4(1− pT p)
(1 + pT p)2

S(p) +
8

(1 + pT p)2
S(p)2 (3)

The transformation R(p) is used in mapping the external force due to thrusters in the body frame
to the inertial frame for controlling the translation dynamics.

8



ob

Xb

Xib

Zb

Y b

Yib

Zib

Yi

Xi

oi

Zi

r cg

Figure 7: Coordinate Systems used for the derivation of the dynamic model.
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Figure 8: Attitude Stage with actuator configuration and nomenclature in the body frame.

Nonlinear Dynamic Model

The dynamics of the 5-DOF system with the velocity vb at the centre of rotation of the attitude
stage and angular rates of the attitude stage ω in body frame (Xb, Yb, Zb) is given in the Eq. (5),
where, rcg is the center of gravity offset from the center of rotation of the attitude stage in the
body frame coordinates, J is the mass moment of inertia of the attitude stage about the center of
rotation in the body frame, R(p) is defined in Eq. (3), (x, y) is the planar location of the center of
rotation from the inertial frame origin, ma is the mass of the attitude stage, and mt is the mass of
the translation stage. In the following equations, a1 = [1; 0; 0] , a2 = [0; 1; 0] and a3 = [0; 0; 1] are
unit vectors in the reference frame (Xib, Yib, Zib).

˙̄P = R(p)vb where P̄ = (x, y, 0)>, D = (a>1 ; a>2 ; 0) (4)

Mb(p)

[
ω̇
v̇b

]
+ Cb

[
ω
vb

]
+Hb = τb (5)
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Mb(p) =

[
J maS(rcg)R(p)>DR(p)

ma

(
S(rcg)R(p)>DR(p)

)>
(ma +mt)

]
(6)

Cb =

[
−S(Jω) maS(rcg)R(p)>DR(p)S(ω)

−maR(p)>DR(p)S(ω)S(rcg) (mt +ma)S(ω)

]
(7)

Hb =

[
−magS(rcg)R(p)>a3

0

]
(8)

The control inputs to the system are represented by τb = [ τfτt ], which include forces due to
thrusters τf and torques τt due to thrusters and reaction wheels in body frame. The control design
is done in body frame. The forces computed in body frame τf are transformed to forces in inertial
frame τp = R(p)τf for implementation of the position control law. The implementation of the
transformation and the influence of thrusters in the body frame on the position dynamics in inertial
frame is discussed in the following sections. In the body frame, for the 5-DOF dynamics in Eq. (5) it
can be proved that Ṁb−(Cb+CTb ) = 0 and that Ṁb−2Cb is a skew-symmetric matrix. The matrix
form in Eq. (5) will be used in the following section to derive a controller that globally exponentially
tracks a given position and almost globally exponentially tracks an attitude trajectory.

Control Design for Full Nonlinear Dynamics

The objective of the control design is to ensure that the 5-DOF of M-STAR, [P̄ (t), p(t)] given in
Eq. (4), exponentially tracks a given trajectory [P̄d(t), pd(t)] ∈ C2([0,∞]). The following theorem
states the nonlinear control law and proves the global exponential stability of the closed-loop system
in Eq. (11). Here the variables sω = ω−ωr and sv = vb−vbr define the states for virtual dynamics.
The variables wr and vbr define the reference signal computed from filtered desired states dynamics
given in the following Eq. (9).

ωr = Z−1(p)ṗd(t) + Z−1(p)Λω(pd(t)− p)

vbr = R> ˙̄Pd(t) +R>Λv(P̄d(t)− P̄ )
(9)

Theorem 1. The closed-loop system in terms of virtual states sω, sv, given in Eq. (11), with the con-
trol law Eqs. (9–10), is globally exponentially stable in the sense of the Euclidean norm, assuming
the feedback gains Kω,Kv,Λω,Λv > 0 and the inertia matrix Mb is positive definite and uniformly
bounded with lower bound λmin and upper bound λmax.

τb = Mb

[
ω̇r
v̇br

]
+ Cb

[
ωr
vbr

]
+Hb −

[
Kω 0
0 Kv

] [
sω
sv

]
(10)

Mb

[
ṡω
ṡv

]
+ Cb

[
sω
sv

]
+

[
Kω 0
0 Kv

] [
sω
sv

]
= 0 (11)

Proof. The inertia matrix Mb, due to the properties of positive definiteness and uniform bounded-

ness, is used to compute the norm V = 1
2

[
δsω
δsv

]>
Mb

[
δsω
δsv

]
, for Lyapunov-like stability analy-

sis.29, 30 The closed-loop system in Eq. (11) has two particular solutions [sω, sv] = 0 and [sω, sv] =
se = [ω − ωr, vb − vbr ]. We perform a squared length analysis using the norm, after obtaining the
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infinitesimal distance δse at fixed time. The derivative of the squared length is given in the following
equation.

V̇ =
1

2

[
δsω
δsv

]>
Ṁb

[
δsω
δsv

]
+

[
δsω
δsv

]>
Mb

[
δ̇sω
δ̇sv

]
(12)

Using the closed-loop dynamics and s>
(
Ṁb − 2Cb

)
s = 0, on the right hand side of the above

equation we get the following.

V̇ =
1

2

[
δsω
δsv

]>(
Ṁb − 2Cb − 2

[
Kω 0
0 Kv

])[
δsω
δsv

]
= −

[
δsω
δsv

]> [
Kω 0
0 Kv

] [
δsω
δsv

] (13)

With the inertia matrix bounds and K = min{Kω,Kv}, we get the following inequality.

V̇ ≤ − 2K

λmax{Mb}
V (14)

Using Comparison Lemma29 and the bounds on the inertia matrix Mb, we obtain:

V (t) ≤ exp

(
− 2K

λmax{Mb}
t

)
V (0)

∥∥∥[ δsωδsv ]∥∥∥2 ≤
√
λmax{Mb}
λmin{Mb}

exp

(
− K

λmax{Mb}
t

)∥∥∥[ δsω(0)δsv(0)

]∥∥∥
2

(15)

It follows from contraction-based incremental stability analysis30, 31 that all the system trajectories
of the closed-loop system in Eq. (11) converge exponentially fast with rate 2K

λmax{Mb} , i.e. δse → 0,
which implies [ω − ωr, vb − vbr ] → 0. With converged virtual dynamics, from the definition of
reference trajectories in Eq. (9), we get the following equations.

ω − ωr = Z−1(p)(ṗ− ṗd(t)) + Z−1(p)Λω(p(t)− pd(t))

vb − vbr = R>( ˙̄P − ˙̄Pd(t)) +R>Λv(P̄ (t)− P̄d)
(16)

From Eq. (16), it is clear that the attitude trajectory and the position trajectory converge globally
exponentially fast to the desired trajectory as [ω − ωr, vb − vbr ] → 0. The closed-loop virtual
dynamics with a bounded disturbance at input d(t) =

[
dω(t)
dv(t)

]
is as following.

Mb

[
ṡω
ṡv

]
+ Cb

[
sω
sv

]
+

[
Kω 0
0 Kv

] [
sω
sv

]
=

[
dω(t)
dv(t)

]
(17)

The Lyapunov derivative with the closed-loop system as in Eq. (17) can be simplified to following
equation using Cauchy-Schwarz inequality and the bounds on the inertia matrix Mb.

V̇ = − 2K

λmax{Mb}
V +

√
2V

λmin{Mb}
‖d(t)‖2 (18)
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Using the transformation W =
√
V , followed by application of Comparison Lemma29 and the

uniform bounds on the inertia matrix Mb, we get the bounds on the norm of the virtual coordinates,
where supt≥0 |d(t)| ≤ γ∞.

∥∥∥[ δsωδsv ]∥∥∥2 ≤
√
λmax{Mb}
λmin{Mb}

exp

(
− K

λmax{Mb}
t

)∥∥∥[ δsω(0)δsv(0)

]∥∥∥
2

+
λmax{Mb}γ∞
λmin{Mb}K

(
1− exp

(
− Kt

λmax{Mb}

)) (19)

By taking a limit t → ∞, we get the bounds on the virtual states
∥∥∥[ δsωδsv ]∥∥∥2 → λmax{Mb}γ∞

λmin{Mb}K . Thus
the exponentially stable closed-loop virtual dynamics, Eq. (11), is finite-gain Lp stable and Input-
to-State Stable (ISS) for a bounded disturbance d ∈ Lp at the input.30

Control Implementation

For the control implementation, it is assumed that the attitude stage is coarsely balanced with
small rcg. Equation (20) shows the decoupled translation dynamics in inertial frame and rotational
dynamics in body frame with small center of gravity offset. The terms in the dynamics correspond-
ing to the rcg act as a bounded disturbance at the input d(t) =

[
dw(t)
dp(t)

]
for small accelerations.J 0 0

0 ma +mt 0
0 0 ma +mt

ω̇ẍ
ÿ

+

ω × Jω0
0

+

−magS(rcg)R(p)>a3
0
0

 =

[
τr
τp

]
+

[
dw(t)
dp(t)

]
(20)

dw(t) = −maS(rcg)R(p)>a1ẍ−maS(rcg)R(p)>a2ÿ

dp(t) =

[
−ma(S(rcg)R(p)>a1)

>ω̇ −maa
>
1 R(p)S(ω)2rcg

−ma(S(rcg)R(p)>a2)
>ω̇ −maa

>
2 R(p)S(ω)2rcg

] (21)

A hierarchical control law was implemented with an inner attitude control loop and an outer po-
sition control loop because of the timescale separation between the two dynamics, Eq. (20). Given
a desired position trajectory, [xd(t), yd(t)] ∈ R2, and attitude trajectory represented in MRPs,
pd(t) ∈ R3, the control law presented below exponentially tracks both position and attitude tra-
jectories using smooth control inputs for the decoupled dynamics for no disturbance. In the case
with a bounded disturbance at the input, the closed-loop system is finite-gain Lp stable. The control
input to the position dynamics is simplified from Eq. (10) and is given by Eq. (22).

τp = (mt +ma)

[
ẍd
ÿd

]
−Kd

[
ẋ− ẋd
ẏ − ẏd

]
−Kp

[
x− xd
y − yd

]
(22)

(mt +ma)

[
ẍ− ẍd
ÿ − ÿd

]
−Kd

[
ẋ− ẋd
ẏ − ẏd

]
−Kp

[
x− xd
y − yd

]
= dp(t) (23)

The closed-loop position dynamics with the control law in Eq. (22) are given in Eq. (23). The
gain values Kd and Kp are chosen to achieve the required position tracking performance. The
attitude controller in Eq. (24) is exponentially stable32 with no disturbance and tracks a given desired
attitude trajectory that is C2 continuous. It can be shown that this control law is simplified form of

12



the controller proposed in Eq. (10). The nonlinear controller is finite-gain Lp stable with bounded
disturbance at the input.

τr = Jω̇r − S(Jω)ωr −Kr(ω − ωr)−magS(rcg)R(p)>a3

ωr = Z−1(p)ṗd(t) + Z−1(p)Λr(pd(t)− p)
(24)

J(ω̇ − ω̇r)− S(Jω)(ω − ωr)−Kr(ω − ωr) = dw(t) (25)

The closed-loop attitude dynamics are given in the Eq. (25). The matrices Λr and Kr are positive
definite and are chosen to achieve required tracking performance. The control laws presented above
compute control signals which are at least C2 continuous and the number of control inputs are
collocated with the states. Considering the overactuated design of the simulator and the impulse
actuation of the thrusters, a transformation from the continuous control signal to the thruster on-
off times is required to achieve equivalent performance with non-smooth control inputs. In the
following two sections, we discuss the actuator models for thrusters and reaction wheels to make
this transformation, along with the influence matrices due to the location of the actuators.

Thruster Model and Influence Matrix

Influence Matrix. Equations (22) and (24) give force and torque inputs that need to be applied
collocated with the five degrees of freedom of the system. The spacecraft has 16 thrusters mounted
in the configuration shown in Fig. 8, with thrusters 1-8 used for position and yaw angle control, and
9-16 used for roll and pitch angle control. The collocated force and torque inputs from the control
law are transformed to the force input requirements on each of the 16 actuators through control
allocation using an influence matrix. For the position controller, the following is the actuator input
to control input mapping called the influence matrix.

τp = R(p)BpF1 (26)

In the equation 26, R(p) transforms the actuator input in the body frame to the inertial frame.
Bp corresponds to the influence matrix given by Eq. (27) for position control. The force vector,
F1 = [f1 f2 f3 f4 f5 f6 f7 f8]

>, acts as the input to the spacecraft dynamics simulator thrusters
mounted for position and yaw control. The actuator numbering is shown in Fig. 8.

Bp =

[
−1 −1 0 0 1 1 0 0
0 0 −1 −1 0 0 1 1

]
(27)

For attitude control, the thruster force to control input mapping is given as follows.

τr = BrF where Br = [B1 B2] and F =
[
F>1 F>2

]> (28)

where F2 = [f9 f10 f11 f12 f13 f14 f15 f16]
>. Also, see Fig. 8 for the thruster numbering and

nomenclature of `, b, and h.

B1 =

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−` ` −b b −` ` −b b

 ,
B2 =

0 0 h −h 0 0 −h h
h −h 0 0 −h h 0 0
0 0 0 0 0 0 0 0

 (29)
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Control Allocation. The control allocation scheme for the position controller computes the 8
dimensional thruster forces F1 given the transformation matrix R(p) and the influence matrix Bp.
A generalized right psuedo-inverse solution to the control allocation problem that minimizes the L2-
norm of the control effort is given by F1 = B>p (BpB

>
p )−1R(p)−1τp and weighted pseudo-inverse

is given in Eq. (30), with a diagonal weighing matrix W . We use this algorithm for real-time
implementation.

F1 = W (BpW )>(BpW (BpW )>)−1R(p)−1τp (30)

The elements of the diagonal matrix W can be chosen to take into account actuator saturation
limits. For example, given the maximum umax and minimum umin thrust that can be produced by the
thruster f1, we choose the corresponding diagonal element inW as 1

|umax−umin| . For attitude control
using thrusters and reaction wheels, the same approach can be used for computing the actuator force.

Thruster Firing Time. The continuous actuator force computed using the control allocation scheme
needs to be transformed to the thruster firing times because the thrusters on the spacecraft simulator
are on-off non-latching solenoids. The on time of the thrusters is controlled using a PWM signal
with the duty cycle mapped to the on time requirements. Consider a PWM signal with frequency
fpwm with duty cycle corresponding to firing time ∆t, and continuous force Fr that needs to be
applied by a thruster at time step t. Let Fa be the force applied by the thruster when open/on and
the control loop frequency be fcl. It is assumed that control frequency is same as the PWM signal
frequency. The firing time is given in the following equation.

∆t =
Fr
fclFa

(31)

The equation above assumes that the thruster produces the same force for all firing times. To verify
this claim and validate the model, an experimental setup was built as shown in Fig. 9. In the
following section, we discuss the details of the experimental setup and the thruster model obtained
from experiments.

Experimental Characterization of the Solenoidal Thruster. The experimental setup built to char-
acterize the performance of the solenoidal thrusters includes a thruster mounted on a load cell with
a regulated power supply. An instrumental amplifier is used to amplify the load cell output voltage,
and the amplified voltage is sampled by a dSPACE MicroLabBox at 1 kHz. The thruster is supplied
with pressure-regulated compressed air at 40 psi, 50 psi, or 60 psi, the three operating pressures
tested. The thrusters are fired for a multiple of 10 ms between 10 ms and 80 ms, and the load cell
force is recorded as a function of time for the duration of firing, as shown in Fig. 9b.

Figure 10a shows the experimental data and the linear fit of the average force produced by the
thruster for varying firing time. The force produced is not constant due to the nonlinear behaviour
of the thruster. The impulse produced with varying firing time is linear as seen in Fig. 10b. For the
control implementation, we use the linear fit equations in Table 6 to compute the firing time of a
thruster for a given force Fr that needs to be applied at time t with control loop frequency fcl.

14



Power Supply
Pressure
Regulator

Thruster Load Cell Pressure
Gauge

(a) Thruster characterization experimental setup.

0 20 40 60 80 100

Time (ms)

-0.1

0

0.1

0.2

0.3

0.4

0.5

F
o

rc
e 

(N
)

Fall timeRise time

Fire duration

(b) Example force output for 50 ms fire duration.

Figure 9: Thruster characterization setup and sample results recorded by the load cell, showing rise
time and fall time.
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(a) Thruster firing time vs. average force.
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(b) Thruster firing time vs. average impulse.

Figure 10: Experimental data and linear fit of average force and impulse vs. thruster firing time at
40 psi, 50 psi, and 60 psi operating pressure.

Operating Pressure (psi) Fit equation

40 ∆t = 7.863 Fr
fcl

-0.009727

50 ∆t =4.829Fr
fcl

-0.007686

60 ∆t =3.51Fr
fcl

-0.006035

Table 6: Linear fit equations for firing time computation for a given control signal Fr at time t and
control frequency fcl.
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Reaction Wheel Configuration and Model

The simulator is equipped with four reaction wheels for attitude control arranged in a pyramid
configuration ( see Fig. 8). The angle α made by the axis of the wheel and the (Xb, Yb) plane
is chosen to have maximum momentum storage,33 α = 35.26◦. The overactuated configuration
will be used to study the fault detection, isolation, and recovery of reaction wheels, which is a
major source of failure34 in flight missions. The attitude dynamics with four reaction wheels in the
pyramid configuration and no gravity torques is given in Eq. (32). The influence matrix is given by
G in Eq. (33).

Jω̇ + ω × Jω = −GJwΩ̇− ω ×GJwΩ (32)

G =

c(α)c(45◦) −c(α)c(45◦) −c(α)c(45◦) c(α)c(45◦)
c(α)s(45◦) c(α)s(45◦) −c(α)s(45◦) −c(α)s(45◦)

s(α) s(α) s(α) s(α)

 (33)

Jw =


Jw1 0 0 0
0 Jw2 0 0
0 0 Jw3 0
0 0 0 Jw4

 (34)

In the above equation, J is the mass moment of inertia including the four wheels, Jw is a diagonal
matrix with the mass moment of inertia of the wheels about the rotation axis, Ω = [Ω1 Ω2 Ω3 Ω4]

>

is the rotation speed of the each of the four wheels, and s(·), c(·) denote the sine and cosine of a
given angle, respectively. For the numbering and location of the wheels with respect to body frame
see Fig. 8. The term −GJwΩ̇ is the control input to the attitude dynamics. The attitude controller
in Eq. (24), is modified to cancel the cross-coupling term −ω ×GJwΩ by feeding the wheel speed
to the control law. The final control law is given in the Eq. 12d.

τb = Mb

[
ω̇r
v̇br

]
+ Cb

[
ωr
vbr

]
+Hb −

[
S(GJwΩ) 0

0 0

] [
ωr
vbr

]
−
[
Kω 0
0 Kv

] [
sω
sv

]
(35)

The wheel torques can be computed using the generalized pseudo-inverse from the control inputs.
The reaction wheels are designed to run at the nominal speeds [−2500, 2500,−2500, 2500] rpm,
which is the null space of the influence matrix G, to avoid excitation of the attitude dynamics. The
speed control of the wheel is done using a Hall sensor integrated into the selected Maxon motor.

Hardware Implementation of the Hierarchical Control Law

In this section, we elaborate on the implementation of the hierarchical control law discussed
earlier. The schematic of the control law is shown in Fig. 11. The attitude control is done in the
inner-loop with control frequency between 80−100 Hz using reaction wheels. The thrusters can be
used to do coarse attitude control, or desaturate the reaction wheels. The X,Y position controller
is done using thrusters, it is coupled with the attitude dynamics by a rotation matrix to map the
actuator force in the body frame to the inertial frame. The position dynamics are slow compared
to the attitude dynamics, so it is run as an outer-loop with feedback on position data for control
computations and attitude data for control allocation at control frequency between 1− 10 Hz.
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Figure 11: Closed-loop control implementation for the 6DOF simulator.

EXPERIMENTS

In this section, we present the preliminary experimental results for the position tracking controller
discussed earlier. Here, we try to track a step input and demanding harmonic trajectories using the
control law, control allocation and firing time schemes developed in the paper. The position and
orientation data of the simulator is measured using the motion capture camera system running at
100 Hz. The thrusters are operated at 50 psi. The tracking results are discussed in the following
section.

Results

Figures 12 and 13 show preliminary results of waypoint reaching experiments. The task for the
controller was to reach origin of the inertial frame and stay there until a further command was
communicated. The controller performs well for the two presented cases. The current position
controller can be easily extended for tracking a trajectory with coarse way points. The steady-state
error in both of the cases was less than the assigned value of 5cm. In this particular test the yaw
angle attitude was coarsely maintained around 0, except when the system faced perturbations from
uneven flow and varying pressure in the pressure manifold that supplies air to the thrusters, which
caused a couple on the simulator due to firing forces that do not balance. Further investigation into
characterizing the viscous friction due to air gap between the simulator and the epoxy floor, and the
dead zone of the thrusters needs to be done to improve the performance of the controller.
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(a) x position (m) vs. time (s). (b) y position (m) vs. time (s).
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(d) Thruster firing time vs. time.

Figure 12: Closed-loop waypoint reaching experimental result- test case 1.

(a) x position (m) vs. time (s). (b) y position (m) vs. time (s).
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Figure 13: Closed-loop waypoint reaching experimental result- test case 2.
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CONCLUSION

In this paper, we discussed the hardware development of a 6-DOF robotic spacecraft simulator
M-STAR for testing formation guidance, navigation and control algorithms. The simulator has 6-
DOF with translation and attitude stages decoupled using a spherical air bearing. The translation
stage floats on the epoxy flat floor using three flat round air bearings. The hardware architecture of
M-STAR and its subsystems including mechanical structure, pneumatic system for flat air bearings,
spherical air bearing required to achieve frictionless and disturbance torque free motion of the sim-
ulator were discussed in detail. The low level control architecture for thrusters and reaction wheels
was mentioned for controlling the dynamics.

A nonlinear dynamic model of M-STAR was presented by modelling the system as a 3D pendu-
lum on a floating platform. A hierarchical model-based control law for the nonlinear system was
discussed for tracking a given position and attitude trajectory. A generalized pseudo-inverse control
allocation scheme, with a thruster actuator model developed using experiments, was used to imple-
ment the control law in a ROS based software framework for testing position control. Future work
will focus on multi-agent guidance and control experiments exercising all five M-STARs.
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