nature protocols

In the format provided by the authors and unedited.

Systemic AAV vectors for widespread and targeted gene delivery in rodents

Rosemary C. Challis^{1,3}, Sripriya Ravindra Kumar^{1,3}, Ken Y. Chan¹, Collin Challis¹, Keith Beadle¹, Min J. Jang¹, Hyun Min Kim¹, Pradeep S. Rajendran¹, John D. Tompkins², Kalyanam Shivkumar², Benjamin E. Deverman¹ and Viviana Gradinaru¹

¹Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. ²Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, USA. ³These authors contributed equally: Rosemary C. Challis and Sripriya Ravindra Kumar. *e-mail: viviana@caltech.edu

AAV-PHP capsid	Production	Species (strain or line), age injected	Organs/cell populations transduced	References	
AAV-PHP.B	Good	Mouse (C57BL/6J and Cre driver lines), ≥6 weeks	Neurons, astrocytes, oligodendrocytes, and endothelial cells across all brain and spinal cord regions examined. Transduction in the retina occurs with variable efficiency across all layers	Ref. 1-3	
		Mouse (C57BL/6J), P0-P1	Brain and spinal cord	Ref. 3	
		Rat (Sprague-Dawley), P1 and 6 weeks	Neurons throughout the brain and spinal cord	Ref. 4	
		Human iPSCs	Neurons and astrocytes in cortical spheroids	Ref. 2	
AAV-PHP.eB	Good	Mouse (C57BL/6J, C57BL/6NCrl, FVB/NCrl, 129S1/SvImJ, 129T2/SvEmsJ, and Cre driver lines), ≥6 weeks	Similar to AAV-PHP.B but with	Ref. 5, this work	
		Rat (Fischer), 6 weeks	transduction		
		Rat (Long Evans), 4 weeks			
		Rat (Sprague-Dawley), 6 weeks		Ref. 6	
AAV-PHP.S	Good	Mouse (C57BL/6J and Cre driver lines), 6-8 weeks	Sensory neurons, peripheral ganglia (sympathetic, nodose, dorsal root, and cardiac ganglia), and the myenteric and submucosal plexus of the enteric nervous system. Robust transduction of heart muscle, skeletal muscle, and circular and longitudinal muscle of the digestive tract, as well as the liver and lungs	Ref. 5, this work	
AAV-PHP.A	Poor	Mouse (C57BL/6J), 6 weeks	Astrocytes throughout the brain	Ref. 2	

Supplementary Table 1. Use of AAV-PHP capsids for efficient transduction across specific organs and cell populations. Species/strains, organs, and cell populations examined to-date following intravenous administration of AAV-PHP viruses. To restrict gene expression to distinct cell types, use rAAV genomes with cell type-specific gene regulatory elements and/or Cre- or Flp-dependent recombination schemes (Figs. 2-4 and Table 1).

Supplementary Table 2. Transfection calculator. This is an interactive calculator and provided as an Excel file (see Step 2 and REAGENT SETUP).

Volume of each step	Step		Number of gradients				
per gradient (ml)	%	Solution (ml)	1	2	4	6	8
6	15	DPBS + high salt	5.0	9.9	19.8	29.7	39.6
		60% iodixanol	1.7	3.3	6.6	9.9	13.2
6	25	DPBS + low salt	3.9	7.7	15.4	23.1	30.8
		60% iodixanol	2.8	5.5	11.0	16.5	22.0
		Phenol red	0.1	0.1	0.2	0.3	0.4
5	40	DPBS + low salt	1.8	3.7	7.3	11.0	14.7
		60% iodixanol	3.7	7.3	14.7	22.0	29.3
5	60	60% iodixanol	5.5	11.0	22.0	33.0	44.0
		Phenol red	0.1	0.1	0.2	0.3	0.4

Supplementary Table 3. Pouring the iodixanol density step solutions. Determine the number of gradients needed and prepare the iodixanol density step solutions (see REAGENT SETUP). The 15% step contains high salt to destabilize ionic interactions between viral particles and cell proteins in the clarified lysate⁷. In Step 16 (option B), prepare more step solution than is needed (see REAGENT SETUP).

Supplementary Table 4. Titration calculator. This is an interactive calculator and provided as an Excel file (see Step 42 and REAGENT SETUP).

SUPPLEMENTARY REFERENCES

- 1 Allen, W. E. *et al.* Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. *Neuron* **94**, 891-907, doi:10.1016/j.neuron.2017.04.017 (2017).
- 2 Deverman, B. E. *et al.* Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. *Nature Biotechnology* **34**, 204-209, doi:10.1038/nbt.3440 (2016).
- 3 Morabito, G. *et al.* AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. *Molecular Therapy* **25**, 2727-2742, doi:10.1016/j.ymthe.2017.08.004 (2017).
- 4 Jackson, K. L., Dayton, R. D., Deverman, B. E. & Klein, R. L. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B. *Frontiers in Molecular Neuroscience* **9**, doi:10.3389/fnmol.2016.00116 (2016).

- 5 Chan, K. Y. *et al.* Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. *Nature Neuroscience* **20**, 1172-1179, doi:10.1038/nn.4593 (2017).
- 6 Dayton, R. D., Grames, M. S. & Klein, R. L. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP.B. *Gene Therapy*, doi:10.1038/s41434-018-0028-5 (2018).
- 7 Zolotukhin, S. *et al.* Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. *Gene Therapy* **6**, 973-985, doi:10.1038/sj.gt.3300938 (1999).