
Simulating Developmental Cardiac Morphology in Virtual Reality 
using a Deformable Image Registration Approach

Arash Abiri#a,b,d, Yichen Ding#a,b, Parinaz Abiria,b, René R. Sevag Packardb, Vijay Vedulae, 
Alison Marsdene,f,g, C.-C. Jay Kuoh, and Tzung K. Hsiaia,b,c,†

aDepartment of Bioengineering, University of California, Los Angeles, CA 90095, USA

bDepartment of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, 
USA

cMedical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

dDepartment of Biomedical Engineering, University of California, Irvine, CA 92697, USA

eDepartment of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305, USA

fDepartment of Bioengineering, Stanford University, Stanford, CA 94305, USA

gInstitute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 
94305, USA

hDepartment of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, 
USA

# These authors contributed equally to this work.

Abstract

While virtual reality (VR) has potential in enhancing cardiovascular diagnosis and treatment, 

prerequisite labor-intensive image segmentation remains an obstacle for seamlessly simulating 4-

dimensional (4-D, 3-D + time) imaging data in an immersive, physiological VR environment. We 

applied deformable image registration (DIR) in conjunction with 3-D reconstruction and VR 

implementation to recapitulate developmental cardiac contractile function from light-sheet 

fluorescence microscopy (LSFM). This method addressed inconsistencies that would arise from 

independent segmentations of time-dependent data, thereby enabling the creation of a VR 

environment that fluently simulates cardiac morphological changes. By analyzing myocardial 

deformation at high spatiotemporal resolution, we interfaced quantitative computations with 4-D 

VR. We demonstrated that our LSFM-captured images, followed by DIR, yielded average dice 

similarity coefficients of 0.92 ± 0.05 (n = 510) and 0.93 ± 0.06 (n = 240) when compared to 

ground truth images obtained from Otsu thresholding and manual segmentation, respectively. The 

resulting VR environment simulates a wide-angle zoomed-in view of motion in live embryonic 
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zebrafish hearts, in which the cardiac chambers are undergoing structural deformation throughout 

the cardiac cycle. Thus, this technique allows for an interactive micro-scale VR visualization of 

developmental cardiac morphology to enable high resolution simulation for both basic and clinical 

science.
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medical simulation; light-sheet imaging; cardiology; image registration; dynamic imaging; 
surgical simulation

Introduction

Virtual reality (VR) is changing the 3-dimensional (3-D) simulation platform by 

implementing user-intuitive interaction in an immersive environment 8,31,48,49 Over the past 

decade, advances in the integration of VR simulators with surgical training have allowed for 

the enhancement of image visualization to improve clinical and procedural outcomes 19,53. 

However, generating a VR environment for the cardiac and pulmonary systems entails the 

implementation of time-dependent changes in organ morphology present during cardiac and 

respiratory cycles, respectively, rendering 4-D (3-D + time) VR visualization a challenge 
43,54,59 High capture rates exceeding 100 frames per second (FPS), as needed for imaging 

contracting embryonic zebrafish hearts (~2 beats per second), further complicates motion 

extraction at the micro-scale 3,34. Despite being a gold standard, manual segmentation is 

both labor-intensive and prone to human errors for time-dependent raw images. Its 

susceptibility to human errors frequently engenders coarse and inaccurate 4-D outputs. 

Specifically, the surface mesh topologies of the reconstructed 3-D organ systems tend to be 

inconsistent between the consecutive frames from one cardiac cycle to another, thus 

rendering quantitative studies on tissue contractile function and cardiac wall stress non-

physiological 62.

Although VR technology has been applied in clinical applications such as surgery 22,23,56, 

the insufficient spatial and temporal resolution of magnetic resonance imaging (MRI) and 

computed tomography (CT) has limited the uncovering of underlying physiological 

mechanisms of moving structures in live animal models 58,62. In this context, we sought to 

address the temporal dependence of structural deformations to recapitulate the dynamics of 

developmental cardiac physiology. Intensity-based deformable image registration (DIR) 

enables us to extract moving regions of interest (ROI) for 4-D image visualization 3,24,57, 

thus allowing for accurately tracking intricate displacements and deformations in the 

contracting heart 7,24,63,64. Therefore, to dynamically interrogate biophysical and 

biochemical events in the 4-D domain, we applied DIR to link light-sheet fluorescence 

microscopy (LSFM) images with VR. Unlike VR scenarios that are commonly generated by 

computer graphics or multiple cameras 20,27,28,65, the advent of LSFM 26,30,52 allows for 

capturing of authentic 4-D physiological events in zebrafish embryos, bypassing the 

wearable devices deployed in the motion capture system. In comparison to other frame-by-

frame segmentation methods 6,35–37,44,51, DIR also takes advantage of the correspondence 

of adjacent frames in 4-D image stacks, enabling an effective and accurate vertex 
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correspondences post image acquisition of LSFM. Thus, similar to other physics-based 

approaches 38,41,45, DIR enables accurate tracking of cardiac motion without encountering 

the banding artifacts that are frequently observed in surfaces reconstructed through 

independent segmentation of serial tomographic images. This is of particular importance, as 

many cardiovascular diagnostic procedures rely on the accurate tracking and deformation 

analysis of nonrigid, moving atria and ventricles 45.

To demonstrate the application of DIR for visualizing the imaging data in VR, we captured 

the developing heart in a live zebrafish embryo at 100 FPS via our in-house LSFM system 
11,15,32,47. We performed sequential registration on the 4-D LSFM-acquired cardiac images, 

starting from ventricular relaxation (diastolic) to contraction (systolic frames). Using the 

dice similarity coefficient (DSC), we demonstrated a high degree of spatial overlap between 

the registration outputs and their corresponding ground truth images, thus validating the 

accuracy of DIR-processed outcomes. Next, we applied the 3-D reconstruction tools and a 

VR development environment to generate an immersive VR scene that closely simulated the 

dynamic morphological and topological changes of developmental hearts undergoing 

structural deformation throughout the cardiac cycle. Furthermore, we utilized DIR to 

compute and visualize instantaneous myocardial deformation at end-diastole and end-

systole. As such, our novel pipeline enables micro-scale investigation of in vivo embryonic 

zebrafish hearts at high temporal resolution by integrating non-linear image registration with 

VR-LSFM. Thus, we made a substantive advance to marshal a novel DIR-based VR process 

to recreate a computed model of a 4-D contracting heart and its physiological function.

Materials and Methods

Generation of a VR environment for LSFM-acquired 4-D cardiac imaging data

We illustrated the fundamental steps of constructing a VR interface from the authentic 

dynamic imaging data.

i. We captured 4-D images of contracting heart in the live zebrafish embryos, and 

synchronized inconsistent periodicity of cardiac cycles 32. This dataset 

comprised of 50 image stacks. Each image stack represented a single time frame 

and consisted of 86 512×512 pixel images (Fig. 1A).

ii. We manually segmented the first stack of raw data from the 50 image stacks to 

label the region of interest (ROI), serving as the first segmented reference image 

stack for the contracting heart (Fig. 1B).

iii. Using the first image stack as an initial reference, we applied the DIR algorithm 

to the remaining 49 stacks of raw data to obtain their segmented counterparts 

(Fig. 1C) and propagated the prior segmentation results through the subsequent 

registrations. During this process, we also validated the accuracy of the DIR-

segmented images against ground truth images that were obtained from two 

different segmentation techniques: Otsu thresholding and manual segmentation.

iv. We reconstructed a 3-D model from the individually segmented image stacks 

using the voxel size (0.65 × 0.65 × 2 μm) and exported the 3-D object as an obj 
file for further processing (Fig. 1D).
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v. We edited the polygon mesh of each 3-D model while maintaining the 

authenticity of the anatomical structure, and we exported each 3-D object as an 

fbx file for VR integration (Fig. 1E).

vi. We generated an environment in which a dynamic visualization of all 50 models 

into a VR scene. We finalized the entire cardiac cycle in Unity with an 

educational license. (Fig. 1F).

Data acquisition and manual segmentation

Raw data from a single embryonic zebrafish heart was acquired from an in-house LSFM 

system as previously described 11,15,32,47. The entire cardiac cycle was captured at 100 FPS, 

amounting to 50 image stacks. With each stack consisting of 86 tiff image slices (512 × 512 

pixels), a total of 4300 2-D images were collected. We manually segmented the first raw 

data from the 50 image stacks by using Amira 6.1 (FEI Visualization Sciences Group). 

Scalar images were segmented by using global thresholding based on image intensity, 

followed by further manual segmentation of the epicardium (outer surface of the heart) and 

endocardium (inner surface of the heart).

Deformable image registration

We performed DIR on the remaining 49 stacks of raw images, amounting to 4214 2-D 

images, in MATLAB (MathWorks, Inc.) by using functions in the default application 

package and Image Processing Toolbox. We converted each stack of 2-D images into a 3-D 

image matrix prior to performing image registration. For each DIR iteration, we used the 3-

D matrices from two temporally consecutive frames. To correct illumination differences 

between matrices, we used imhistmatch to match the intensity histogram of the current 

iteration’s matrix (defined as the moving image) with that of the previous iteration's matrix 

(defined as the reference image).

To calculate the 3-D displacement field between the reference and moving images, we 

applied Maxwell demon’s 3-D non-rigid registration algorithm with a 3-pyramid level 

implementation (imregdemons). Demon’s algorithm estimated displacement vectors by 

mapping the pixel location from the reference image to a corresponding location in the 

moving image 57. Each pyramid level decreased the resolution of the image by a factor of 2. 

We performed 500, 400, and 300 iterations, respectively, for the high- (level 1), medium- 

(level 2), and low-resolution (level 3) pyramid levels. Thus, we initiated this algorithm with 

images at the 3rd level and an initial displacement field of zero. The displacement field was 

iteratively calculated for this level’s images until the iteration limit was reached. Next, the 

computed displacement field at the 3rd level was rescaled to the images at the 2nd level in 

the pyramid and used as the initial displacement field. An accumulated field-smooth factor 

of 1.3 was used to update the values in the 2nd level’s initial displacement field to decrease 

errors in subsequent computations. This process was repeated until we obtained the 

displacement field for the 1st level images. Finally, we used an inverse mapping algorithm 

(imwarp) in conjunction with the computed 3-D displacement field to perform a 3-D 

geometric transformation on the 3-D segmented reference image to generate the 3-D 

segmented moving image.
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During the first DIR application, the segmented reference image was a manually segmented 

3-D image of the first raw image stack (Fig. 2, Step A). In the subsequent iteration, this 

segmented reference image represented the calculated and segmented moving image from 

the previous round of registration (Fig. 2, Step B). For these reasons, we continuously 

applied the DIR algorithm until we had segmented all of the raw 3-D images. We then 

converted these 3-D images back to the 2-D segmented image slices for 3-D reconstruction. 

Finally, we validated the accuracy of the recurrent segmentation results by comparing the 

segmented images against ground truth images.

Calculation of dice similarity coefficient

Prior to determining the DSC, we normalized the 8-bit monochromatic images obtained 

from the DIR step into binary images. We used the DSC as the main validation metric to 

assess the spatial overlap between the segmented 2- or 3-D image slices. For a pair of 2-D 

images, we defined the DSC as

DSC(A, B) = 2(A ∩ B)/(A + B) (1)

where ∩ is the intersection, and A and B are the target regions of the two segmentations.

For a pair of 3-D images, we defined the DSC as

DSCV(A, B) = 2 ∗ ∑
s = 1

n
(As ∩ Bs)/ ∑

s = 1

n
(As + Bs)

where ∩ is the intersection, n is the number of 2-D image slices, and As and Bs are the target 

regions of two 2-D image slices within the two segmented 3-D images.

3-D reconstruction, volume rendering and modification

After obtaining 50 stacks of segmented data, we reconstructed the 3-D object from each 

image stack based on 0.65 × 0.65 × 2 μm voxel size in Amira 6.1. We labeled the ROIs to 

generate a polygon mesh for the volume. Next, we compressed this 3-D surface by reducing 

the number of vertices and faces, and subsequently exported it from Amira as an obj file.

We smoothened and scaled down the obj models in Autodesk 3DS-Max (Autodesk Inc) 

using an educational-purpose license. After modification, we exported these 3-D models 

separately as fbx files. Technically, the aforementioned steps in Autodesk 3D-Max are 

optional and were incorporated for the purpose of demonstrating the potential to implement 

volume optimization prior to VR integration.

VR application development in Unity

We used Google Cardboard (Google Inc.) as the VR viewer and an educational-purpose 

license version of Unity 5.5 (Unity Technologies) as the development engine. Before 

creating a new project, we installed the Android SDK onto the computer and integrated 

Google VR Software Development Kit (SDK) v1.20 into Unity. In a new Unity 3-D project, 
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we imported the fbx files, and replaced the default main camera of the scene with the 

CardboardMain Camera to edit all of the GameObjects in VR mode. We hereby 

implemented the interactive elements into the Unity scene to strengthen the immersive 

experience.

Visualization of instantaneous myocardial deformations in VR

Based on aforementioned procedures, we performed DIR by using 50 stacks of raw imaging 

data to obtain 49 3-D vector fields representing the myocardial deformations of the zebrafish 

heart during a cardiac cycle. For each 3-D stack, the magnitudes of tissue displacements 

were normalized to values ranging from 0 to 255 that were compatible with the intensity 

range of an 8-bit grayscale image. The resulting 3-D matrix of displacement magnitudes was 

projected onto its corresponding segmented 3-D stack to yield a 3-D grayscale image whose 

intensity values represented the relative displacement. This 3-D grayscale image was 

subsequently loaded into ParaView (http://www.paraview.org), an open-source visualization 

application, to generate a volume rendering of the displacement data. A 0.65 × 0.65 × 2 μm 

voxel size was used for 3-D reconstruction. In conjunction with the Visualization Toolkit 

(Kitware Inc), ParaView was used as a VR platform for visualizing color-mapped volume 

renderings of deformations in the zebrafish heart.

Statistics

We expressed all of the values as mean ± standard deviation. For statistical comparisons of 

the means between two normally-distributed data sets from the same experimental 

conditions, we performed a paired two-tailed t-test. To compare the means between two data 

sets from the same experimental conditions where normal distribution assumptions are not 

met, we performed a paired two-tailed Wilcoxon signed-rank test. We performed 

comparisons of variances using a Bartlett test. We further validated the data sets for normal 

distribution using a Lilliefors test. This test provides a normality assessment based on the 

Kolmogorov-Smirnov test to assess the null hypothesis that the data are from a normally 

distributed population 10. A p-value of < 0.05 was considered statistically significant.

Study approval

Zebrafish experimentation was performed in compliance with the UCLA Institutional 

Animal Care and Use Committee (IACUC) protocol (ARC no. 2015-055).

Results

Deformable image registration

To establish a gold standard without the labor-intensive segmentation, we generated a 

manually labeled ROI for only the first 3-D image stack. The result served as the segmented 

component of the initial reference data for the remaining series of unsupervised deformable 

image registration processes used to generate the 3-D segmented image stacks. In any DIR 

iteration, there was a 3-D stack of 2-D reference (Fig. 3A) and a 3-D stack of 2-D moving 

images (Fig. 3B), whose contrasting intensities represented their morphological differences 

(Fig. 3C). Traditionally, DIR is used to estimate a displacement field that would align the 

moving image with the reference image 5,9,17. Here, we utilized DIR to compute a 3-D 
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displacement field (Fig. 3D) to align the reference image with the moving image; hence, 

creating a transformed reference image (Fig. 3E). This image closely resembled the moving 

image (Fig. 3F). Therefore, this displacement field was applied onto the segmented reference 

image (Fig. 3G) to generate the segmented moving image (Fig. 3H). The qualitative 

differences between the raw reference and moving images (Fig. 3C) appeared to be well-

maintained in the segmented reference and moving images (Fig. 3I).

Validation of DIR Output

We performed two methods of validation to determine the accuracy of our DIR-based 

technique for generating an authentic VR simulation of the contracting zebrafish heart. 

Furthermore, we measured accuracy by comparing processed images against ground truth 

images using the DSC, a similarity metric that measures the degree of spatial overlap 

between image pairs 66. The DSC values range from 0 to 1, where 0 indicates no overlap and 

1 indicates complete overlap between two images.

First, we assessed the accuracy of DIR in computing a 3-D displacement field by comparing 

the binarized components of transformed reference images with the binarized components of 

their corresponding moving images. These images were binarized using Otsu’s cluster-based 

intensity thresholding method, which computed image-specific global histogram thresholds 

to maximize the interclass variance of each image’s thresholded black and white pixels 46. 

To maintain the integrity of our DSC calculations 29, we adjusted the intensity histograms of 

reference and moving images to match one another prior to performing thresholding. Since 

DSC image pairs consisted of slices at the same z-position, the effect of image noise on 

producing differences in threshold-based segmentation was considered negligible in 

impacting the accuracy of the computed DSC values.

We used 17 2-D image slices, evenly-spaced in the z-axis, from 30 3-D image stacks to 

compute a DSC average of 0.92 ± 0.05 (n = 510) to indicate a high degree of spatial overlap. 

To visualize the variability in DSC across the 3-D image stacks, we plotted the DSC values 

for 17 slices from each of these 3-D image stacks (Fig. 4A). A greater variation in DSC 

values was observed for the outer slices than the center slices. To assess the differences in 

means and variances between these slices, we first reorganized them into two sets of data: 

the outer slices representing DSC coefficients from the rostral and caudal ends of the 

zebrafish heart (slices 0-20, 70-85), and the inner slices from the middle (slices 25-65) of the 

heart. The average DSC coefficients for the outer and inner slices were 0.89 ± 0.07 and 0.93 

± 0.03, respectively. Next, we averaged and organized these data sets into two 1-D arrays. 

The items from each array represented the average DSC coefficients of the slices for their 

respective 3-D image stack. We performed a Lilliefors test on the outer and inner arrays, 

yielding p--values of 0.42 and 0.27, respectively, indicating that both arrays were normally 

distributed. Next, a paired two-tailed t-test demonstrated a significant difference between the 

two arrays (p < 0.001). A Bartlett test further demonstrated a significant difference between 

the two variances of the two data sets (p < 9.50×10−3).

In light of our segmentation-dependent propagation of antecedent DIR results, errors from 

the previous computations for displacement fields were possible to accumulate. To model 

these errors, we calculated the DSC coefficients by using the binarized 3-D moving and 
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transformed reference images generated in the previous step. We plotted the DSC 

coefficients for 30 image stacks to produce a trend line (Fig. 4B). A negative linear trend 

developed in the volumetric DSC as the number of DIR cycles increased. Despite 49 DIR 

iterations, the DSC was estimated to be approximately 0.80 and indicated high accuracy.

In our second validation step, we evaluated the accuracy of our DIR-segmented images by 

comparing them against images that were manually segmented by an expert. We used 8 2-D 

image slices, evenly-spaced in the z-axis, from 30 3-D image stacks to compute a DSC 

average of 0.93 ± 0.06 (n = 240) to indicate a high degree of spatial overlap. To visualize the 

variability in DSC across the 3-D image stacks, we plotted the DSC values for 8 slices from 

each of these 3-D image stacks (Fig. 4C). Following the same workflow as the first 

validation step, we demonstrated the average DSC coefficients for the outer and inner slices 

to be 0.89 ± 0.08 and 0.96 ± 0.01, respectively. We also averaged these data sets into two 1-

D arrays, with which we performed a Lilliefors test that yielded p-values of 0.087 and 0.035 

for outer and inner arrays, respectively, indicating that only the outer array was normally 

distributed. Next, we performed a paired two-tailed Wilcoxon signed-rank test to 

demonstrate a significant difference between the two arrays (p < 0.001). A Bartlett test also 

demonstrated a significant difference between the two variances of the two data sets (p < 

0.001).

To model the growing segmentation errors caused accumulating inaccuracies from previous 

segmentation operations, we averaged the DSC values from the 30 sets of 8 evenly-spaced 2-

D image slices to generate a 1-D array of DSCs, where each value represented the average 

DSC for its respective 3-D image stack, and hence time frame. We plotted the DSC values 

for the 30 image stacks to produce a trend line (Fig. 4D). A negative linear trend developed 

in the DSC as the number of DIR cycles increased. After 49 DIR iterations, the DSC was 

estimated to be approximately 0.84.

Results from both validation methods indicated significantly lower average and greater 

variance among the DSC values from the outer slices as compared to the inner slices. This 

difference in accuracy can be attributable to increased background noise from the LSFM-

acquired anterior and posterior image slices 18,60. Nonetheless, both validation techniques 

demonstrated that our DIR technique could not only achieve accurate results in the presence 

of complicated cardiac anatomy, but also enhance segmentation efficiency by a factor of 49.

Utilization of DIR for 4-D VR reproduction and analysis of cardiac contractile function

The ability to visualize dynamic imaging data in 4-D VR is limited by the need to accurately 

extract high-speed, micro-scale deformations in the organ morphology. However, by using 

DIR-based segmented image stacks, we were able to reconstruct 50 3-D digital embryonic 

hearts and to seamlessly simulate the dynamics of zebrafish cardiac structures throughout 

the cardiac cycle (systole + diastole) in 4-D VR (Figure S1). Ten representative time points 

during a cardiac cycle were visualized by contouring the epicardium with dashed lines (Fig. 

5A-J). We selected Fig. 5A (early diastole) as the baseline to contour the epicardium in the 

white dashed lines. We demarcated the cardiac morphological changes in the red dashed 

lines using the aforementioned white dashed lines as a reference (Fig. 5B-J). We further 

visualized 3-D projections of the instantaneous myocardial deformation at end-diastole and 
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end-systole to enable evaluation of local cardiac contractile function (Fig. 5K-L). Through 

user-directed volume slicing, the atrioventricular valve was isolated and its morphology and 

local deformation at these two instances in the cardiac cycle were also visualized in VR. As 

such, the immersive and interactive nature of VR enabled a unique perspective in the 

zebrafish cardiac morphology. Thus, the integration of DIR with 4-D VR reproduction 

provides promise to couple quantitative computations with 4-D VR applications to uncover 

the dynamics of cardiac physiology at the micro-scale.

Discussion

We demonstrated a novel pipeline to recapitulate light sheet-acquired embryonic hearts at 

the micro-scale in a 4-D VR environment. Based on only one stack of manually segmented 

data as the primary reference, we utilized DIR to perform automatic segmentation of 49 

other 3-D image stacks (4214 2-D images), resulting in a nearly 50-fold improvement in 

segmentation efficiency compared to traditional manual segmentation. We established an 

average DSC value of 0.92 ± 0.05 to support a high degree of spatial overlap in agreement 

with the ground truth images. The segmented image stacks were reconstructed into 3-D 

models, followed by mesh rendering, and subsequent importing into a Unity scene for VR 

environment deployment. By integrating DIR with 4-D reconstruction and VR visualization 

tools, we reconstructed the developing zebrafish hearts for a 4-D VR experience in 

developmental cardiac physiology for precision training. Moreover, by visualizing 

instantaneous myocardial deformation at end-diastole and end-systole, we were able to 

observe cardiac contractile function at high spatiotemporal resolution.

Unlike our previous reports 11,12,15,32, we have developed a resolution-enhancement method 
16 with the retrospective synchronization algorithm for 4-D volumetric imaging of zebrafish 

embryos in a large field-of-view. Our novel pipeline was demonstrated linking deformable 3-

D model architecture with the authentic dynamic LSFM data, and, founding the basis for 

recapitulating into a 4-D VR simulation of a contracting embryonic zebrafish heart. By 

uncovering the transformation of each voxel between reference and moving images to 

compute instantaneous myocardial deformation, this pipeline further established a basis for 

linking quantitative computations with 4-D VR applications. Dynamic morphological and 

topological changes of inner and outer structures of tissues and/or organs are captured for 

complete visualization. Interactions such as slicing, rotating, and scaling of models further 

provide users with unique perspectives. The rate of 4-D simulation is adjustable to provide 

users with new outlooks on dynamic biological processes for medical training and surgical 

planning. Virtual reality in conjunction with the haptic feedback technologies has been 

investigated as a potential platform for providing realistic surgical simulations that replicate 

operative experiences 1,33,42. However, current efforts have been limited to generating such 

an environment using computer-generated 3-D models. In this context, combining our 

pipeline with the haptic feedback system shows potential in revolutionizing medical training 

and surgical planning.

In light of the segmentation process, errors in displacement field calculations were 

accumulated over the subsequent DIR iterations. While the DSC coefficients of the 

processed 3-D image stacks remained close to 1 for the later time frames, errors are likely to 
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accumulate in situations involving much greater numbers of image stacks. At the expense of 

processing speed, these calculation errors may be reduced by increasing the number of 

optimal transformation estimates per pyramid level. This reduction in speed can be offset by 

implementing the Demons image registration on a GPU using the computed unified device 

architecture programming environment 21. In addition, B-spline registration has been 

recently recognized as an alternative to the Demons image registration algorithm for its 

relatively high accuracy and reproducibility 55. However, B-spline registration has been 

reported to be nearly twice as slow as Demons registration 2. Nonetheless, our robust 

framework supports integration of B-spline registration for applications such as monitoring 

respiratory variations in association with sub-diaphragmatic tumors with accuracy 4,5,39. 

Ultimately, both of these algorithms are limited in their capacity to accurately calculate 

displacement fields, resulting in an inevitable accumulation of errors. For processing a large 

number of image stacks, we may need to resort to utilizing multiple manually segmented, 

intermediate image stacks to reset the accumulated calculation errors. Despite the 

aforementioned errors, our technique remains viable to effectively reduce the labor-intensive 

manual segmentation.

Further analysis of DSC coefficients in the stacks of 2-D image slices revealed some 

variation and inaccuracy in our segmentation as a result of an increase in the background 

noise in both the upper and lower image slices along the z-axis. High image noise is 

recognized to hinder registration accuracy 25. For this reason, the low signal-to-noise ratio in 

the early and late slices along the z-axis from the LSFM-captured 3-D images likely 

accounted for a decrease in the overall accuracy and reproducibility of calculated 

displacement fields. It is possible to reduce these levels of noise by utilizing Gaussian low-

pass and smoothing filters 25,50. In addition, our technique is readily adapted to other 

imaging modalities, including CT, MRI, photoacoustic tomography (PAT), and optical 

coherence tomography (OCT) 13,14,40,61. Thus, our framework is designed to utilize raw data 

from various imaging systems as an input for developing a 4-D VR environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A flow chart to depict the processes of visualizing image data in VR.
(A) 3-D image stacks were collected from imaging system and stored as tiff files. (B) The 

first 3-D image stack was manually segmented to serve as the primary segmented reference 

image. (C) DIR was applied to the subsequent 49 3-D images to generate their 

corresponding segmented components. (D) The segmented 3-D images were loaded into 

Amira for reconstruction into the 3-D editable models. (E) The 3-D model meshes were 

rendered and edited in Autodesk 3DS-Max, and subsequently exported as 3-D objects. (F) 

The 3-D objects were imported into a Unity scene to provide an immersive VR simulation.
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Fig. 2. The workflow for segmenting time-dependent imaging data with DIR.
(A) The first stack of raw data was manually segmented. (B) The Nth and N-1th raw image 

stacks were used in DIR to compute a displacement field. The displacement field was 

applied onto the segmented N-1th image stack to generate the segmented Nth image stack, 

which, upon validation against the ground truth Nth image stack, was saved and passed onto 

the next iteration of DIR for a total of 49 loops.
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Fig. 3. Results following deformable image registration.
(A) A reference 3-D image stack. (B) A moving 3-D image stack. (C) The difference in 

intensity between the reference and moving images. (D) 3-D displacement field (green 

arrows) on a reference image. (E) The transformed reference image. (F) The difference in 

intensity between the transformed reference and original moving images. (G) The 3-D 

displacement field (green arrows) on segmented reference image. (H) The transformed 

segmented reference image. (I) The difference in intensity between the segmented and 

transformed reference images. (C, F, I) The green coloration indicates a higher intensity in 

the reference image, and purple indicates a higher intensity in the moving image. The 

grayscale areas represent nearly equal values before and after registration. Red dotted lines 

outline the regions with the most significant cardiac wall movement resulting from 

ventricular contraction.
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Fig. 4. Dice similarity coefficients for processed images validated against Otsu thresholded (A-B) 
and manually segmented (C-D) ground truth images.
(A) A box plot of DSC values (n = 510) for 17 evenly-spaced, processed 2-D image slices 

from 30 time frames demonstrates a lower mean and higher variance among the outer slices 

as compared to the inner slices. (B) A linear regression analysis (blue line) of volumetric 

DSC measurements (n = 30) shows a negative correlation between DSC and the number of 

DIR iterations. (C) A box plot of DSC values (n = 240) for 8 evenly-spaced, segmented 2-D 

image slices from 30 time frames demonstrates a lower mean and higher variance among the 

outer slices as compared to the inner slices. (D) A linear regression analysis (blue line) of 

mean DSC measurements (n = 30) shows a negative correlation between DSC and time 

frame. (B, D) The uncertainties of the linear regression relationships are expressed by the 

95% confidence intervals (blue bands) and 95% prediction intervals (gray bands).
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Fig. 5. VR visualization of contracting embryonic zebrafish heart and localized myocardial 
deformation.
(A-J) Images of the contracting heart during evenly-spaced times in the cardiac cycle. White 

dashed lines represent contour of the baseline heart model. Red dashed lines represent the 

contour of the dilating or contracting heart. (K) Volume rendering of the zebrafish cardiac 

epicardial deformations at end-diastole. Inset demonstrates localized deformation at the 

atrioventricular valve. (L) Volume rendering of the zebrafish cardiac epicardial deformations 

at end-systole. Inset demonstrates localized deformation at the atrioventricular valve. 

Deformations in (K-L) were represented by displacement magnitudes and mapped to colors 

designated by the corresponding color bars.
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