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Supplementary Figure 1 | Web of Science search of electrochemical reactions studied with

density functional theory. These data were collected using the Web of Science search engine

for articles containing both the phrases “density functional theory”/DFT and “electrochemi*”,

where the quotes enclose exact-phrase matching and the asterisk indicates an any-character-

length wildcard.
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Supplementary Figure 2 | Reaction energies for theVolmer step on Pt(111) under acidic condi-

tions calculatedwithdifferentwater structures. TheVolmer reaction involves a proton-electron

pair adsorbing to an empty site on a metal surface, written as H+ + e – + * ⇀↽ H*. The Volmer

reaction energy is shown at different work functions on a Pt(111) surface, obtained with differ-

ent cell sizes and water structures.1 The dependence of the reaction energy on potential should

be unity, corresponding to the expected charge of a solvated hydronium ion, as shown in the

black trace (the computational hydrogen electrode reference).2 However, explicitly simulating

the proton in the outer Helmholtz layer gives a charge of between 0.6 to 0.7, as shown by the

slope of the line of best fit for the blue data points.
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Supplementary Figure 3 | Charge on a NaCl molecule separated at 10 Å obtained at differ-

ent levels of theory. The correct integral charge on chloride is obtained only with EXX1.0. The

sodium ion has a charge of +0.99 in all cases, with the residual charges localizing on the water

molecules. The residual charges on the water molecules are omitted for clarity.
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Supplementary Figure 4 | Atom-decomposed Bader charges for the 3×3 cell with the proton

solvated in the outermost water layer. The hydronium ion is highlighted in bold outlines, and

the net charge is shown for each atom (relative to the neutral atom). The excess charge is only

slightly delocalized to the other water molecules within the same layer (0.11 e), with themajority

of the positive charge residing on the hydronium ion itself.
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Supplementary Figure 5 | Contour plots showing the embedding potential at particular planar

slices cutting through the solvent layer and the Al slab. Red: negative, blue: positive, contour

line intervals: 0.2 V (set minimum: –2 V, set maximum: +2 V). The negative potentials be-

tween the O and H atoms of the water molecules that form hydrogen bonds in the full system,

serve to simulate these severed interactions (left panel). Slices through the Al slab (center and

right panels) show the sharper negative potential features between the Al atoms at the cluster-

environment interface to simulate metallic bonding. See also Figure 4a and 4b in the main text

for structural legends.
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Supplementary Figure 6 | CAS natural orbitals and their respective occupations for the CAS

(11e,10o) obtained from the embedded-CASSCF calculation for the Al10(H2O)3(H3O) cluster.

Al: blue spheres, O: red spheres, and H: grey spheres. Isosurface: 0.02 a.u.
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Supplementary Table 1 | Comparison of Charge Partitioning Schemes for H3O
+ in the third

solvent layer.

Scheme Metal Solvent 1 Solvent 2 Solvent 3 Charge

Ideal 271.00 48.00 48.00 48.00 +1.00

Bader 270.66 48.20 47.97 48.17 +0.86

Minima 270.66 48.20 47.97 48.17 +0.86

Average∆ρ = 0 270.99 47.85 48.01 48.15 +0.84

Discrete∆ρ = 0 270.86 48.03 47.99 48.12 +0.89
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Supplementary Note 1 | Charge Partitioning Schemes

We analyzed the charge in the metal and solvent using several partitioning methods, all of which

gave charges similar to within 0.1 e. These charge partitioning schemes with a proton in the third

solvent layer are summarized in Supplementary Table 1. The number of electrons in each layer is

listed for each method of partitioning, with the expected (column “Ideal”) numbers listed for ref-

erence. These partitioning schemes used the electron density obtained with the PBE functional.3

The charge of the ion is obtained by taking the outer two solvent layers and subtracting from it

the number of electrons in two neutral water layers (96). Row “Bader” was obtained with Bader

charge analysis.4, 5 Row “Minima” was calculated by finding local minima in the plane-integrated

total electron density and integrating between these minima. The integration limits in row “Av-

erage ∆ρ” was obtained by first taking the electron density difference between the system and its

individual components:

∆ρ = ρall – ρmetal – ρsolvent – ρion (1)

then identifying nodes in the resulting plane-integrated electron density difference plots. Finally,

“Discrete ∆ρ = 0” takes individual nodal points in the electron density differences and integrates

between them, as opposed to the plane-integrated electron density differences which has nodal

planes. Note that all integration is done on the total valence electron density. All four charge par-

titioning methods give values that vary within 0.1 e. Thus, we use the Minima method throughout

the main text due to its consistency with Bader analysis and physical simplicity.
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Supplementary Note 2 | Charge Integration in Embedded DFT and CWMethods.

To integrate the electron density when using a GTO basis, a (280 × 280× 900) three-dimensional

Cartesian grid of step size 0.1, 0.1, and 0.04 Bohr along x, y, and z is used to represent the electron

density in real space [total volume = (28× 28× 36) Bohr3]. To calculate for the residual charge in

the solvent layer, the minima of the plane-integrated electron densities between the metal and the

solvent layer are numerically determined; from this point, the plane-integrated electron densities are

numerically integrated along z via the the trapezoidal rule. Here, the fine grid density is required to

be able to properly accommodate the real-space integration of the sharp features at the core regions

within the solvent layers arising from the O 1s states.
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Supplementary Note 3 | Optimization of the Embedding Potential from DFET

From the relaxed structure obtained using the procedure described in the main text for a three-

layer (3×3) Al(111)+(H2O)5(H3O) slab and vacuum size of ≈ 20 Å, a larger three-layer slab of

size (3
√
3) × 3

√
3)R30◦ Al(111)+(H2O)15(H3O)3 was constructed. The electron density for the

larger slab was then re-optimized at a 660 eV plane-wave kinetic energy cut-off with a (3×3×1)

Γ-centered k-point mesh. Electronic smearing of 0.09 eV introduced via the Methfessel-Paxton

method6 was used to aid electronic convergence. Additionally, a dipole correction to the potential

and energy is employed. A fragment corresponding to Al10(H2O)3H3Owas assigned as the cluster,

while the rest of the atoms [Al71(H2O)12(H3O)2] were treated as the environment. The embedding

potential within the PAW formalism was optimized using an in-house modified VASP code version

5.3.3.7 For the cluster, only the Γ point is sampled in the Brillouin zone. The optimized embedding

potential has a root-mean-square deviation on the sum of the fragment electron densities relative

to the full slab of about 4×10–5 e/Å3.

11



Supplementary References

1. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–

2668 (2015).

2. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J.

Phys. Chem. B 108, 17886–17892 (2004).

3. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximationmade simple. Phys.

Rev. Lett. 77, 3865–3868 (1996).

4. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decompo-

sition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

5. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice

bias. J. Phys.: Condens. Matter 21, 084204 (2009).

6. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration inmetals.

Phys. Rev. B 40, 3616–3621 (1989).

7. Yu, K., Libisch, F. &Carter, E. A. Implementation of density functional embedding theory within

the projector-augmented-wavemethod and applications to semiconductor defect states. J. Chem.

Phys. 143, 102806 (2015).

12


