
ar
X

iv
:0

70
6.

27
46

v1
 [

cs
.D

M
]

 1
9

Ju
n

20
07

Abstract Storage Devices

Robert König∗ Ueli Maurer† Stefano Tessaro‡

Abstract

A quantum storage device differs radically from a conventional physical
storage device. Its state can be set to any value in a certain (infinite) state
space, but in general every possible read operation yields only partial
information about the stored state.

The purpose of this paper is to initiate the study of a combinatorial
abstraction, called abstract storage device (ASD), which models determin-
istic storage devices with the property that only partial information about
the state can be read, but that there is a degree of freedom as to which
partial information should be retrieved.

This concept leads to a number of interesting problems which we ad-
dress, like the reduction of one device to another device, the equivalence of
devices, direct products of devices, as well as the factorization of a device
into primitive devices. We prove that every ASD has an equivalent ASD
with minimal number of states and of possible read operations. Also, we
prove that the reducibility problem for ASD’s is NP-complete, that the
equivalence problem is at least as hard as the graph isomorphism prob-
lem, and that the factorization into binary-output devices (if it exists) is
unique.

Keywords: Discrete Structures, Storage Devices, NP-Completeness,
Computational Complexity, Factorizations.

1 Introduction

1.1 Motivation

The term storage device is conventionally used for a physical device with a
write and a read operation which can store data reliably, i.e., with the property
that the read operation yields an exact copy of the data previously written into
the device. In this paper, we consider a generalized type of storage devices for
which the write operation consists of setting the device’s state to some value in

∗Centre for Quantum Computation, University of Cambridge, United Kingdom, E-mail:

r.t.koenig@damtp.cam.ac.uk
†Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland, E-mail: mau-

rer@inf.ethz.ch
‡Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland, E-mail: tes-

saros@inf.ethz.ch

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216291329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0706.2746v1

the state space, and the subsequent read operation consists of performing some
measurement and provides some (usually only partial) information about the
state.

Such a storage device is a relevant special case of a general physical system.
The state of such a system can in general not be measured exactly. This may
be due to intrinsic reasons. For example, it is inherently impossible to per-
fectly measure a quantum state1. Also, practical constraints (like the required
efficiency) may impose an unavoidable inaccuracy to the measurement of the
state. For instance, a tape only allows to efficiently retrieve its content locally
by sequentially accessing the small portion of it being of interest.

The task of a conventional storage device (e.g., a hard disc) is to store
information reliably. The design goal of such a system is therefore to define
a finite subset of its state space (as large as possible) such that the available
read operation allows to distinguish different such states with negligible error
probability. For this reason, a conventional storage device is characterized by
its storage capacity, i.e., the number of bits that can be stored reliably in it.

Here, we take a more general approach to storage devices, by modeling
explicitly the fact that, on one hand, a read operation provides only partial
information about the state, but that, on the other hand, many different such
read operations can be available. We typically assume that only one of these
operations can be performed, but that the choice is free.

There are different motivations for considering such a setting. A first mo-
tivation is quantum cryptography or, more precisely, privacy amplification, the
last step of a quantum key agreement protocol (see [6]). In simplified terms, an
adversary is assumed to have access to a bit string S of length n, shared by the
legitimate users, and can store information about S in a 2k-dimensional quan-
tum device, where k < n. Since the (reliable) storage capacity of the device is
only k, the adversary cannot store S perfectly. Later, the legitimate users select
a hash function h from n bits to t bits (where t < k) at random from a class of
such functions, and the adversary can now perform a measurement of the quan-
tum state, depending on the choice of h. In this context, the goal is to prove that
every such measurement yields only a negligible amount of information about
h(S). One can naturally generalize the setting of privacy amplification to other
types of storage devices.

As an additional motivating example, one can consider the following game:
An entity, say Alice, is given access to an n-bit string s = [s1, . . . , sn] about
which she stores partial information. Later, she will learn a function f drawn
from a given set and will have to guess the output f(s). For example, this
set of functions might consist of all linear predicates a1s1 + · · ·+ ansn (mod 2)
for some a1, . . . , an ∈ {0, 1}. A natural question one may ask is finding the
minimal amount of reliable storage required to win this game. More generally,
one may be interested in deciding whether keeping information about s in a
certain storage device suffices to succeed in the game. Also, one may even want
to compare such games in the sense of determining whether one game is strictly

1unless it is known to be one of a set of orthogonal states

2

more difficult than another one. Similar games, which may be of independent
interest, occur in the security analyses of certain cryptographic schemes.

The purpose of this paper is to initiate the study of a combinatorial abstrac-
tion, called abstract storage device (ASD), which models the described property
that only partial information about the state can be read, but that there is a
degree of freedom as to which partial information should be retrieved. Both
generalized storage devices as well as the above game can be described as an
ASD. Here we only consider deterministic storage devices, i.e., we analyze the
case with no error probability. This is similar in spirit to the investigation of
the zero-error capacity [8] in communication theory. Like there, the treatments
of the zero-error and the negligible-error cases are quite different and deserve
separate investigation.

A natural problem related to the above game is reducibility of devices, which
asks for deciding whether a certain device can be implemented by a second one.
Additionally, this concept directly implies a notion of equivalence for devices.

In many branches of science, a common approach to analyze complex objects
is to represent such objects as compositions of simpler and better-understood
ones. From a mathematical point of view, product factorizations of discrete
structures have been studied in many forms in the past, for instance in the con-
text of graph products and of finite relational structures (see [4, 5] for respective
surveys). Along similar lines, one can introduce direct products of ASD’s and
study direct product factorizations into simpler primitive devices.

1.2 Contributions and Outline of This Paper

The main contribution of this paper is the introduction of abstract storage
devices (ASD). Section 3.1 presents this abstraction and gives some examples.
There, we also define direct products of ASD’s. Moreover, we state the problems
of reducibility and equivalence of ASD’s in Section 3.2.

We prove in Section 3.3 that every ASD has an equivalent ASD which has
both a minimal number of states and a minimal number of possible read opera-
tions, and we discuss properties of such devices with respect to reducibility and
equivalence.

Also, we present and analyze relevant quantities related to ASD’s. The
storage capacity provides a measure of the amount of information that can be
reliably stored in a device, while the state complexity characterizes the minimal
amount of reliable storage needed to simulate the device. Finally, the perfectness
index of an ASD’s is the minimal number of read operations needed to entirely
retrieve the state of a device. These quantities yield easily-verifiable necessary
conditions for reducibility, and Section 3.4 is devoted to their discussion.

In Section 4, we prove the general problem of deciding reducibility of ASD’s
to be NP-complete, whereas deciding equivalence of ASD’s is shown to be at
least as difficult as deciding the isomorphism of graphs. Furthermore, the latter
problem is unlikely to be NP-complete, as its NP-completeness would imply a
collapse of the polynomial hierarchy.

3

The last section (Section 5) addresses the direct product factorization of
ASD’s. We prove that every device admits a unique factorization in terms
of binary devices, if such a factorization exists. This result can be seen as
a first step towards answering the general question of the existence of unique
factorizations into (prime) ASD’s, which we state as an open problem.

Relevant basic facts about set partitions and the partition lattice are briefly
reviewed in Section 2.

2 Preliminaries

Throughout this paper, we make use of capital calligraphic letters to denote
sets. An (undirected) graph is an ordered pair G = (V , E), where V is the set of
vertices, and E ⊆

(

V

2

)

is the set of edges of G.
A (set) partition π of a set S is a family {B1, . . . ,Bk} of disjoint subsets of

S, called blocks, with the property that
⋃k

i=1 Bi = S. We write s ≡π t whenever
both elements s, t ∈ S are in the same block of π. Moreover, we denote by Π (S)
the set of partitions of S. We say that π ∈ Π(S) refines π′ ∈ Π(S), denoted
π ⊑ π′, if for all B ∈ π there exists a B′ ∈ π′ such that B ⊆ B′. Recall that
(Π (S) ;⊑) is a bounded lattice (cf. e.g. [3]), with the minimal element being
idS = {{s} | s ∈ S} and the maximal element being {S}. The meet of π, π′ ∈
Π(S) is the partition π∧π′ = {B ∩ B′ | B ∈ π,B′ ∈ π′,B ∩ B′ 6= ∅}, whereas their
join π∨π′ is such that x ≡π∨π′ y if and only if we can find a sequence of elements
x = x0, x1, . . . , xr = y (for some r) such that xi ≡π xi+1 or xi ≡π′ xi+1 holds for
all i = 0, . . . , r − 1. For a set Π of partitions, we generally write

∧

Π =
∧

π∈Π π
and

∨

Π =
∨

π∈Π π. Also, such a set Π is called an antichain if π 6⊑ π′ for all
distinct π, π′ ∈ Π.

The direct product of the partitions π ∈ Π(S) and π′ ∈ Π(S ′) is the
partition π × π′ = {B × B′ | B ∈ π,B′ ∈ π′} ∈ Π(S × S ′). In particular, we
have (s, s′) ≡π×π′ (t, t′) if and only if s ≡π s′ and t ≡π′ t′ for all s, t ∈ S,
s′, t′ ∈ S ′. Let now π, ρ ∈ Π(S) , π′, ρ′ ∈ Π(S ′) be partitions. Then, both equal-
ities (π∧ρ)×(π′∧ρ′) = (π×π′)∧(ρ×ρ′) and (π∨ρ)×(π′∨ρ′) = (π×π′)∨(ρ×ρ′)
hold. Furthermore, π × π′ ⊑ ρ× ρ′ is satisfied if and only if π ⊑ π′ and ρ ⊑ ρ′.
We refer the reader to Appendix A for a proof of these facts.

Given sets S,S ′, a partition π ∈ Π(S ′), and some function φ : S → S ′,
we define π ◦ φ ∈ Π(S) as the partition such that x ≡π◦φ y if and only if
φ(x) ≡π φ(y) for all x, y ∈ S. Notice that (π ◦ φ) ∧ (π′ ◦ φ) = (π ∧ π′) ◦ φ,
and (π ◦ φ) ∨ (π′ ◦ φ) = (π ∨ π′) ◦ φ. Moreover, the kernel (partition) of a
function f : X → Y is ker(f) = {f−1({y}) | y ∈ range(f)}. Given a further
function φ : S → X , we have ker(f ◦ φ) = ker(f) ◦ φ.

Finally, recall that a k-variate lattice polynomial p in the variables x1, . . . , xk
is a formal expression of the form either (i) xi for i = 1, . . . , k, or (ii) one
of q(x1, . . . , xk) ∧ q′(x1, . . . , xk) and q(x1, . . . , xk) ∨ q(x1, . . . , xk) for k-variate
lattice polynomials q, q′. Given partitions π1, . . . , πk, ρ1, . . . , ρk such that πi ⊑
ρi for i = 1, . . . , k, then p(π1, . . . , πk) ⊑ p(ρ1, . . . , ρk) holds for every k-variate
lattice polynomial p.

4

3 Abstract Storage Devices

3.1 Definition

In the following, we look at storage devices used by two entities, called the writer
and the reader, respectively2. The writer writes to such a device by selecting
a state s from the state space of the device. The reader subsequently chooses
a (possibly randomized) function g mapping states to output symbols from a
set of possible such mappings, and obtains the output g(s). Note, however,
that the actual labeling of the outputs is irrelevant, as long as the reader knows
a complete description of the function to be read out. In particular, as we
only focus on devices whose behavior is entirely deterministic, we abstract from
the notion of an output domain and we solely describe the kernel partitions of
the functions of the storage device. This allows us to formulate the following
combinatorial abstraction of deterministic devices.

Definition 1. An abstract storage device (ASD) D is a pair D =
(

SD,ΠD
)

,
where SD is a set called the state space of D, and ΠD is a family of partitions
of SD, called the partition set of D.

For an ASD D, a write operation of the writer consists in selecting a state s ∈
SD, and in a subsequent read operation the reader selects a partition π ∈ ΠD

and learns the (unique) block B ∈ π such that s ∈ B. We assume that a single
read operation is performed. Furthermore, in the following, we are going to
focus on ASD’s with finite state space and partition set.

Whenever idSD ∈ ΠD, the reader can distinguish any pair of states with a
single read operation. In this case, D is called perfect, and it is called non-perfect
otherwise. If the partition set contains only the trivial partition {SD}, the ASD
is called trivial. Moreover, it is called r-regular if |π| = r for all π ∈ ΠD. In
particular, 2-regular ASD’s are also called binary.

The following are examples of ASD’s.

Perfect device. For a given set X , the ASD CX has state space X and its
state can be retrieved perfectly, that is, ΠD = {idX }. The special case where
X = {1, . . . ,m} for m ∈ N is denoted as Cm.

Projective device. For i ∈ {1, . . . , n}, we denote by pi : {0, 1}n → {0, 1}
the function such that pi(x1, . . . , xn) = xi for all (x1, . . . , xn) ∈ {0, 1}n. The
projective device Pn has state space SPn = {0, 1}n and its partition set is ΠPn =
{ker(pi) | i = 1, . . . , n}. This device is similar to the 1-out-of-n oblivious transfer
(OT) primitive considered in cryptography (introduced in [7]). One may also
extend this device to allow for retrieving any k < n consecutive bits of the state.
Such a device could be used to model a tape-based storage device.

2These entities are not necessarily distinct in a physical sense.

5

Linear device. The linear device Ln,k where n ≥ k is the ASD having state
space SLn,k = {0, 1}n, and the partition set is the set of the kernel partitions of
all linear maps {0, 1}n → {0, 1}k. We denote by Ln the binary ASD Ln,1.

One way of constructing a complex device from simpler devices is the parallel
composition of two ASD’s to obtain a new ASD modeling a setting where the
reader and the writer use both devices in a non-adaptive fashion. That is, if D
has state s and D′ has state s′, the reader first selects both partitions π ∈ ΠD

and π′ ∈ ΠD′

, and only subsequently learns the unique blocks B ∈ π, B′ ∈ π′

such that s ∈ B and s′ ∈ B′.

Definition 2. The direct product D ×D′ of the ASD’s D,D′ is the ASD with
SD×D′

= SD × SD′

and ΠD×D′

= {π × π′ |π ∈ ΠD, π′ ∈ ΠD′

}.

For example, since idSD×SD′ = π × π′ holds if and only if π = idSD and
π′ = idSD′ , we immediately see that D×D′ is perfect if and only if both D and
D′ are perfect.

In general, we may want to look at more than a single read operation. For

an integer k ≥ 1 and an ASD D, we denote as D(k) the ASD with SD(k)

= SD

and ΠD(k)

=
{

∧k
i=1 πi

∣

∣

∣
πi ∈ ΠD, i = 1, . . . , k

}

. It models the scenario where

the reader is allowed to perform (at most) k non-adaptive read operations, i.e.
given state s ∈ SD, it first chooses k partitions π1, . . . , πk ∈ ΠD to be retrieved,
and only subsequently learns the corresponding blocks B1 ∈ π1, . . . ,Bk ∈ πk
such that s ∈

⋂k
i=1 Bi.

Note that both the direct product and the device D(k) can be extended
to allow for adaptive read operations, as it essentially suffices to consider all
partitions induced by every possible (deterministic) retrieval strategy. However,
we do not address this case in this paper.

3.2 Reducibility and Equivalence

In the problem of reducibility of ASD’s, we want to decide whether an ASD D
can be implemented by a second ASD D′. This is formalized by the following
definition.

Definition 3. We say that an ASD D is reducible to an ASD D′, denoted
D ≤ D′, if there exist functions φ : SD → SD′

and α : ΠD → ΠD′

such
that α(π) ◦ φ ⊑ π for all π ∈ ΠD. Such a pair of functions (φ, α) is called a
reduction of D to D′.

In order to clarify this concept, consider the following abstraction in terms
of ASD’s of the game introduced in Section 1.1. The writer and the reader are
given an ASD D′ as well as the description of a further ASD D. The writer
is told an arbitrary state s ∈ SD and selects the state φ(s) ∈ SD′

for D′.
Later, an arbitrary partition π ∈ ΠD is revealed to the reader, and it performs
a read operation for a partition α(π) ∈ ΠD′

. The goal is to find appropriate
functions φ : SD → SD′

and α : ΠD → ΠD′

such the reader can perfectly guess

6

the unique block B ∈ π such that s ∈ B from the result of retrieving α(π)
from D′. If such functions exist, the writer and the reader can simulate D using
D′. Note that the ASD D itself can alternatively be seen as the specification of
a particular game the writer and the reader try to win by using the ASD D′.

It is easy to see that the condition α(π)◦φ ⊑ π must hold. Otherwise, there
would be s, s′ ∈ SD such that s /≡ πs

′, but φ(s) ≡α(π) φ(s
′), and hence s and s′

could not be distinguished. Conversely, if α(π)◦φ ⊑ π, then given state s ∈ SD

and B′ ∈ α(π) such that φ(s) ∈ B′, there exists a unique block B ∈ π such that
s ∈ B. Hence, Definition 3 expresses the precise condition in order for φ and α
to be a winning strategy in the game.

Reducibility is a reflexive and transitive relation. However, it is not antisym-
metric, and thus it is only a quasi-order on the set of ASD’s. In this respect,
we say that two ASD’s D,D′ are equivalent, denoted D ≡ D′, if both D ≤ D′

and D′ ≤ D hold. The relation ≡ is an equivalence relation and reducibility
implicitly defines a partial order on its equivalence classes.

The following proposition relates reducibility to direct products and multiple
read operations.

Proposition 1. Let D,D′, E,E′ be ASD’s.

(i) If D ≤ D′ and E ≤ E′, then D × E ≤ D′ × E′.

(ii) If D ≤ D′, then D(k) ≤ D′(k).

Proof. The first claim is obvious. For the second one, let (φ, α) be a reduction

of D to D′. Define α̃ : ΠD(k)

→ ΠD′(k)

such that α̃(
∧k

i=1 πi) =
∧k

i=1 α(πi).

Then, (φ, α̃) reduces D(k) to D(k′), since α̃(
∧k

i=1 πi) ◦ φ =
(

∧k
i=1 α(πi)

)

◦ φ =
∧k

i=1(α(πi) ◦ φ) ⊑
∧k

i=1 πi.

The perhaps most natural question related to storage devices is to determine
how many bits of information can be reliably stored in it with the guarantee of
no errors at read out. This quantity can be expressed in terms of the largest
perfect device that can be reduced to the considered device.

Definition 4. The storage capacity of an ASD D is C(D) = max{logm |Cm ≤
D,m ∈ N}.

Equivalence of ASD’s captures that two ASD’s D and D′ such that D ≡ D′

have the same behavior. As an example, it is clear that D×D′ ≡ D′ ×D, and
that D×(D′×D′′) ≡ (D×D′)×D′′, that is, the direct product is commutative
and associative with respect to equivalence. The direct product of D1, . . . , Dn is

thus simply written as ×n
i=1Di, and D

k =×k
i=1D for any device D. Finally,

notice that D × E ≡ D holds for any trivial device E.

3.3 Minimality

In this section, we have a closer look at the equivalence relation ≡ and at the
inner structure of its equivalence classes. In particular, we are interested in

7

the minimal number of states and partitions needed in order to implement the
functionality of a certain ASD.

Definition 5. An ASD D is state-minimal if there is no equivalent device D′

with |SD′

| < |SD|. Furthermore, D is partition-minimal if there is no equivalent
device D′ with |ΠD′

| < |ΠD|. Finally, we say that D is minimal if D is both
state and partition-minimal.

For every ASD D there exist by definition equivalent ASD’s D′ and D′′

such that D′ is state-minimal and D′′ is partition minimal. However, it is not
clear whether an equivalent ASD exists that satisfies both, i.e., which is mini-
mal. This is shown in the following theorem, which also provides an equivalent
characterization of state and partition-minimality.

Theorem 2. For an ASD D we have the following.

(i) D is state-minimal if and only if for all pairs of distinct states s, s′ ∈ SD

there exists a set partition π ∈ ΠD such that s /≡ πs
′. In particular, this

holds if and only if
∧

ΠD = idSD .

(ii) D is partition-minimal if and only if ΠD is an antichain (with respect to
⊑).

Furthermore, for every ASD D, there exists a minimal ASD D′ ≡ D.

Proof. We prove the two parts of the theorem separately.

(i) Assume that D is a state-minimal ASD and that there are distinct states
s1, s2 ∈ SD such that for all π ∈ ΠD we have s1 ≡π s2. Construct a new
ASD D′ as follows. We define SD′

:= SD − {s2} and ΠD′

:= {π ◦ ψ |π ∈
ΠD} where ψ : SD′

→ SD is such that ψ(s) = s. Clearly, D′ ≤ D.
On the other hand, one can easily see that D ≤ D′: Define a function
φ : SD → SD′

as

φ(s) :=

{

s, if s ∈ SD′

,
s1, if s = s2,

and let α be such that α(π) = π ◦ ψ. Then (φ, α) is a reduction of D to
D′ as α(π) ◦ φ = π ◦ (ψ ◦ φ) ⊑ π because of the choice of s1 and s2.

For the converse, assume that for an ASD D we have for every pair of
distinct states s, s′ ∈ SD a partition π ∈ ΠD such that s /≡ πs

′. Assume now
thatD is not state-minimal. That is, there is a deviceD′ with |SD′

| < |SD|
and D′ ≡ D. Let (φ, α) be a reduction of D to D′. There must be two
states s1, s2 ∈ SD such that φ(s1) = φ(s2), and hence for all π′ ∈ ΠD′

we have φ(s1) ≡π′ φ(s2). In particular, let π ∈ ΠD be such that s1 /≡ πs2.
Then π′ ◦ φ 6⊑ π for all π′ ∈ ΠD′

, and thus D � D′.

It is straightforward to verify that
∧

ΠD = idSD holds if and only if for all
s, s′ ∈ SD there exists π ∈ ΠD such that s 6≡π s

′.

8

(ii) Assume that D is a partition-minimal ASD and that ΠD is not an an-
tichain. That is, there exist distinct π1, π2 ∈ ΠD such that π1 ⊑ π2. We
build a new device D′ with SD′

:= SD and ΠD′

:= ΠD − {π2}. Clearly,
we have D′ ≤ D. Furthermore, define φ : SD → SD′

as the identity and
α : ΠD → ΠD′

such that

α(π) :=

{

π, if π ∈ ΠD′

,
π1, if π = π2,

for all π ∈ ΠD. This implies that α(π) = α(π) ◦φ ⊑ π for all π ∈ ΠD, and
thus D ≤ D′. Consequently, D′ ≡ D. However, |ΠD′

| = |ΠD| − 1, which
contradicts the fact that D is partition-minimal.

For the converse, assume that ΠD is an antichain. Without loss of gen-
erality let D be state-minimal. Towards a contradiction, additionally
assume that D is not partition minimal, that is, there is D′ such that
D′ ≡ D and |SD| = |SD′

| but |ΠD′

| < |ΠD|. In particular, let (φ′, α′)
and (φ′′, α′′) be reductions of D to D′ and of D′ to D, respectively.
Note that |range(α′)| ≤ |ΠD′

| < |ΠD| by our assumption. Moreover, let
φ := φ′′ ◦ φ′ and α := α′′ ◦ α′. Then, (φ, α) is a reduction of D to itself
where the function α is not injective, since |range(α)| ≤ |range(α′)| < |ΠD|.
Moreover, as D is state-minimal, φ is a permutation of SD. (Otherwise,
one would easily be able to build an equivalent ASD with fewer states,
hence contradicting state-minimality.) Since α is not injective, there are
distinct π1, π2 ∈ ΠD such that α(π1) = α(π2). Additionally, we have
α(π1) ◦ φ ⊑ π1 as well as α(π1) ◦ φ = α(π2) ◦ φ ⊑ π2, and therefore
α(π1) ◦φ ⊑ π1 ∧π2. Also, since α maps partitions of D to partitions of D,
for all integers k ≥ 1, we have

αk(π1) ◦ φ
k ⊑ π1 ∧ π2. (1)

Because of our assumption, {π1, π2} is an antichain, and therefore, π1 ∧
π2 /∈ {π1, π2}, which implies π1 ∧ π2 ⊏ π1 and π1 ∧ π2 ⊏ π2. Using this
fact, for all integers k ≥ 1, we see that αk(π1) /∈ {π1, π2} since

|αk(π1)| = |αk(π1) ◦ φ
k| ≥ |π1 ∧ π2| > max{|π1|, |π2|}.

However, there has to exist an integer k′ such that φk
′

is the identity
permutation. By plugging k′ into (1) we obtain

αk′

(π1) ⊑ π1 ∧ π2 ⊏ π1,

which contradicts the fact that ΠD is an antichain.

Note that by the proofs of (i) and (ii) we see that, given an ASD D, one can
iteratively construct a state-minimal ASD D′ such that D′ ≡ D. Furthermore,
one can construct out of D′ a partition-minimal ASD D′′ ≡ D′ ≡ D such
that |SD′

| = |SD′′

|. Hence D′′ is minimal, and this concludes the proof of
Theorem 2.

9

As an example, observe that the projective device Pn is state minimal.
Indeed, given distinct x, x′ ∈ {0, 1}n, there exists a component i such that
xi 6= x′i, and thus x /≡ ker(pi)x

′. This also implies that the linear device Ln is
state-minimal. Furthermore, every r-regular device (for some r) is necessarily
partition-minimal, since any two partitions with the same number of blocks are
either equal or incomparable (with respect to ⊑).

The following lemma provides some properties of minimal devices with re-
spect to device reducibility.

Lemma 3. (i) If D,D′ are state-minimal and (φ, α) reduces D to D′, then
φ is injective. In particular, |SD| ≤ |SD′

|.

(ii) If D,D′ are both r-regular for some r (and hence partition minimal) and
(φ, α) reduces D to D′, then α is injective. In particular, |ΠD| ≤ |ΠD′

|.

(iii) If D,D′ are both state-minimal (partition-minimal), then the direct prod-
uct D ×D′ is state-minimal (partition-minimal).

Proof. To prove (i), assume that there are indeed s0, s1 ∈ SD such that φ(s0) =
φ(s1), then there exists a partition π ∈ SD such that s0 6≡ s1, while for all
π′ ∈ ΠD′

we have s0 ≡π′◦φ s1 and hence π′ ◦ φ 6⊑ π.
For (ii), assume that α is not an injection, then there exists π0 6= π1 ∈ ΠD

such that α(π1) = α(π2). That is α(π1) ◦ φ ⊑ π1 ∧ π2. But then |α(π1) ◦ φ| ≥
|π1 ∧ π2| > r, since ΠD is an antichain. However, this contradicts the fact
that |α(π1) ◦ φ| ≤ r.

Finally, in order to prove (iii), let D,D′ be state-minimal. Then
∧

ΠD×D′

=
(

∧

ΠD
)

×
(

∧

ΠD′

)

= idSD ×idSD′ = idSD×D′ , and thus D×D′ is state-minimal

by Theorem 2. Furthermore, let D,D′ be partition-minimal, and assume D×D′

is not. Then there exist distinct π×π′, ρ×ρ′ ∈ ΠD×D′

such that π×π′ ⊑ ρ×ρ′.
But then π ⊑ ρ and π′ ⊑ ρ′. Since π 6= ρ or π′ 6= ρ′ holds, at least one of D and
D′ is not partition-minimal.

It also turns out that equivalence of devices is easier to characterize in the
minimal case.

Proposition 4. Let D,D′ be minimal ASD’s. Then D ≡ D′ if and only if
there exist bijections φ : SD → SD′

and α : ΠD → ΠD′

such that π = α(π) ◦ φ
for all π ∈ ΠD, or, equivalently, π′ = α−1(π′) ◦ φ−1 for all π′ ∈ ΠD′

.

Proof. Clearly, if such bijections exist, then D ≡ D′. Now, assume that D ≡ D′,
then there exists a reduction (φ, α) of D to D′. Note that φ must be a bijection
by Lemma 3. Furthermore, α must also be a bijection, otherwise there would be
an equivalent ASD with fewer partitions, contradicting the partition-minimality
of D.

Assume towards a contradiction that there is π ∈ ΠD such that α(π)◦φ ⊏ π.
Note that since D′ ≤ D, there exists a reduction (φ′, α′) of D′ to D where φ′

and α′ are both bijections. Consequently, there exists a reduction (φ̃, α̃) from
D to itself where φ̃ := φ′ ◦ φ and α̃ := α′ ◦ α are permutations of SD and ΠD,

10

respectively. Moreover, for all k ≥ 1, we have α̃k(π)◦ φ̃k ⊑ α̃(π)◦ φ̃ ⊑ α(π)◦φ ⊏

π. Thus, by choosing k ≥ 1 such that φ̃k is the identity permutation, we obtain
a contradiction to the partition-minimality of D.

For example, given ASD’s D,D′, where ΠD = {π1, . . . , πk}, as well as a k-
variate lattice polynomial p, Proposition 4 implies that p(α(π1) ◦ φ, . . . , α(πk) ◦
φ) = p(α(π1), . . . , α(πk)) ◦ φ = p(π1, . . . , πk). As φ is a bijection, in order to
prove that D 6≡ D′ it is sufficient to find a k-variate lattice polynomial p such
that |p(π1, . . . , πk)| 6= |p(α(π1), . . . , α(πk)|.

3.4 Necessary Conditions for Reducibility

In this section, we discuss easily characterizable necessary conditions for re-
ducibility. Let D be a set of ASD’s and let f : D → R be a function. We
say that f is order-preserving on D if D ≤ D′ implies f(D) ≤ f(D′) for all
ASD’s D,D′ ∈ D. In particular, note that f(D) = f(D′) whenever D ≡ D′.
Such a function yields a necessary condition for reducibility. In the following
paragraphs, we discuss three order-preserving functions.

Storage capacity. The storage capacity (cf. Section 3.2) is order-preserving
on the set of all ASD’s: Given D,D′ such that D ≤ D′, let m be maximal such
that Cm ≤ D. By transitivity we have Cm ≤ D′, and hence logm = C(D) ≤
C(D′). The storage capacity is easy to compute, as stated in the following
proposition, which also provides properties with respect to direct products and
multiple read operations.

Proposition 5. (i) C(D) = maxπ∈ΠD log |π| for all ASD’s D.

(ii) C(D ×D′) = C(D) + C(D′) for all ASD’s D,D′.

(iii) For all k ≥ 1, we have C(D(k)) ≤ k · C(D) for all ASD’s D.

The first claim follows from the simple observation that Cm ≤ D holds if
and only if there exists π ∈ ΠD such that |π| ≥ m. The simple proofs of (ii)
and (iii) are omitted.

For instance, C(D) = log r for every r-regular ASD D. Furthermore, the
storage capacity allows us to easily see that L2 × L2 × L2 � L3 × L3, since
C(L2 × L2 × L2) = 3 · C(L2) = 3, but C(L3 × L3) = 2 · C(L3) = 2.

State complexity. The state complexity σ(D) of an ASD D provides the min-
imal number of states that are necessary in order to reproduce the behavior of
D, that is, σ(D) = minE≡D log |SE |. The state complexity is order-preserving:
Given devices D,D′, let E,E′ be state-minimal such that D ≡ E and D′ ≡ E′.
Since D ≤ D′, we have E ≤ E′ by transitivity, and by Lemma 3 this implies
σ(D) = log |SE | ≤ log |SE′

| = σ(D′). Furthermore, σ(D ×D′) = σ(D) + σ(D′)
by Lemma 3.

Note that D ≤ C2σ(D) , whereas Lemma 3 yields D � Cm′ for all m′ < 2σ(D).
For this reason, we obtain σ(D) = min{logm |m ∈ N, D ≤ Cm}. Therefore,

11

the state complexity σ(D) provides the minimal amount of reliable storage in
terms of bits needed to win the game (in the sense of Section 3.2) described by
the ASD D.

Perfectness index. The perfectness index i(D) of a device D is the minimal
integer k such that D(k) is perfect, if such k exists. Otherwise, i(D) = ∞.
Thus, i(D) provides the minimal number of read operations needed to retrieve
the state perfectly. If i(D) is finite, then in particular i(D) ≤ |ΠD|, and by
Theorem 2 i(D) is bounded if and only if D is state-minimal. In the following,
for an integer m, consider the set of ASD’s Dm such that for all D ∈ Dm we
have |SD| = m.

Proposition 6. Let D,D′ ∈ Dm for some m be such that D ≤ D′. Then,
i(D) ≥ i(D′). That is, D 7→ −i(D) is an order-preserving function on Dm.

Proof. If i(D) = ∞ holds, the claim is trivially satisfied. Therefore, assume
that i(D) is finite, and, towards a contradiction, that D ≤ D′, but i(D) <
i(D′). There is an integer k ≥ 1 such that D(k) is perfect, but D′(k) is not.

Thus, idSD ∈ ΠD(k)

, but idSD′ /∈ ΠD′(k)

. Since |SD| = |SD′

| = m, for all

possible φ : SD → SD′

there is no partition π′ ∈ ΠD′(k)

such that π′ ◦φ ⊑ idSD .
Hence D(k) � D′(k), which contradicts D ≤ D′ according to Proposition 1.

One can easily verify that i(×n
i=1Di) = max1≤i≤n i(Di) for any ASD’s

D1, . . . , Dn. Furthermore, i(Ln) = n, since exactly n distinct, linearly indepen-
dent, linear predicates have to be read out to learn the state. As an example,
consider the ASD’s L4×L2 and L3×L3. By the above, we have i(L4×L2) = 4,
and i(L3 × L3) = 3. Therefore, L3 × L3 � L4 × L2 by Proposition 6.

The presented quantities are related by the following proposition.

Proposition 7. For all ASD’s D, we have σ(D) ≤ i(D) · C(D).

Proof. The claim is trivially true if i(D) = ∞. Otherwise, we just combine the
facts that σ(D) ≤ C(D(i(D))) = log |SD| and that C(D(i(D))) ≤ i(D)·C(D).

4 Complexity of Reducibility and Equivalence

We investigate the computational complexity of deciding reducibility and equiv-
alence of ASD’s. Both problems are obviously in NP , since given a reduc-
tion (φ, α) reducibility can be verified in polynomial-time (in the numbers of
states and partitions)3, and hence also equivalence (by giving two correspond-
ing reductions). In this section, we prove the following theorem.

Theorem 8. Reducibility of ASD’s is NP-complete. Furthermore, deciding
equivalence of ASD’s is at least as hard as deciding graph isomorphism.

3We assume some canonical encoding of ASD’s.

12

First, we briefly recall some graph-theoretic notions. A graph G = (V , E)
is isomorphic to G′ = (V ′, E ′), denoted G ∼= G′, if there exists a bijection φ :
V → V ′ such that {v, w} ∈ E if and only if {φ(v), φ(w)} ∈ E ′. Furthermore,
G is a subgraph of G′ if V ⊆ V ′ and E ⊆ E ′. Finally, G is contained in G′,
denoted G � G′, if there exists a subgraph H of G such that G ∼= H. Let Kk

be the complete graph on k vertices. The k-clique problem consists in deciding,
given a graph G, whether Kk � G. For arbitrary k, this is a well-known NP-
complete problem.

In order to prove Theorem 8, we introduce a class of ASD’s representing
graphs. For a given graph G = (V , E), we define its graph device D(G) as
the 3-regular ASD such that SD(G) = V and ΠD(G) = {πe | e ∈ E}, where for
e = {u, v} ∈ E , we have πe =

{

{u}, {v}, V − {u, v}
}

. Note that graph devices
are only meaningful if |V| ≥ 4, since in the case where |V| = 3, all edges define
the same partition.

For instance, if one takes the complete graph Kk (for k ≥ 4), the resulting
graph device D(Kk) has state space {1, . . . , k} and all its partitions are of the
form {{i}, {j}, {1, . . . , k} − {i, j}} for all i < j, i, j ∈ {1, . . . , k}.

The following result can easily be verified using Theorem 2.

Lemma 9. The ASD D(G) is minimal for all graphs G = (V , E) with |V| ≥ 4
and no isolated4 vertices.

The following lemma is the central point in the proof of Theorem 8.

Lemma 10. Let G = (V , E) and G′ = (V ′, E ′) be graphs with no isolated vertices
such that min{|V|, |V ′|} ≥ 4. Then, G � G′ if and only if D(G) ≤ D(G′).

Proof. For notational convenience, let ΠD(G) = {πe | e ∈ E} and ΠD(G′) =
{π′

e′ | e
′ ∈ E ′}. If G � G′, then there is an injective map φ : V → V ′ such

that, for all u, v ∈ V , {u, v} ∈ E implies {φ(u), φ(v)} ∈ E ′. That is, for all e ∈ E ,
we have π′

φ(e) ∈ ΠD(G′). Construct a map α : ΠD(G) → ΠD(G′) such that for all

e ∈ E , we set α(πe) = π′
φ(e). One can now easily see that for all e ∈ E , we have

πe = π′
φ(e) ◦ φ, and thus (φ, α) reduces D(G) to D(G′).

For the converse, assume that D(G) ≤ D(G′), and let (φ, α) be a reduction
of D(G) to D(G′). Since both graphs have at least four vertices D(G) and D(G′)
are both state-minimal by Lemma 9, and therefore the function φ is injective
by Lemma 3. For all e ∈ E , there is e′ ∈ E ′ such that α(πe) = πe′ and such that
πe = π′

e′ ◦ φ. For all e = {v, w}, this means that φ(v) /≡ π′

e′
φ(w), and that the

remaining block of π′
e′ contains at least two elements. Thus, e′ = {φ(v), φ(w)},

and since e′ ∈ E ′, we have G � G′.

Given a graph G with at least four vertices, none of which is isolated, as well
as an integer k ≥ 4, in order to decide whether G contains a k-clique, one simply
constructs the ASD’s D(Kk) and D(G), and checks whether D(Kk) ≤ D(G).

4A vertex v ∈ V is isolated if there exists no e ∈ E such that v ∈ e.

13

It is easy to see that the reduction is polynomial-time, and this implies NP-
completeness5. Lemma 10 also implies that D(G) ≡ D(G′) if and only if G ∼= G′

for any two graphs G,G′ as in the statement of the lemma. Hence, deciding
equivalence of ASD’s is at least as difficult as deciding graph isomorphism, since
deciding isomorphism is clearly not (computationally) easier when restricted to
such graphs. This completes the proof of Theorem 8.

We conclude this section by noting that one can provide a simple two-round
interactive proof for the problem of deciding non-equivalence of ASD’s (see
Appendix B). This means that deciding non-equivalence is in the complexity
class IP(2), and hence also in AM [2]. For this reason, if the problem of de-
ciding equivalence of ASD’s were NP-complete, we would have NP ⊆ co-AM,
and it is well-known [1] that this implies a collapse of the polynomial hierar-
chy PH to its second level. Therefore, it is very unlikely that deciding device
equivalence is NP-complete.

5 Binary ASD’s and Unique Factorizations

We say that an ASDD has direct product factorization ×m
i=1Di if this product is

equivalent toD. Furthermore, an ASD D is prime if, wheneverD ≡ E×E′, then
either E or E′ is trivial. For example, if D is minimal with a partition π ∈ ΠD

such that |π| = p for a prime number p, then D is prime. Furthermore, every
ASD D has a prime factorization with at most log |SD| factors.

In the following, we look at the class D×
2 of ASD’s having (at least one)

prime factorization consisting uniquely of binary ASD’s. Note that this class
is closed under taking direct products. The following lemma provides a strong
necessary and sufficient condition for deciding reducibility among members of
the class D×

2 with the same number of states, and such that no perfect factor
appears in their binary factorization. The reader is referred to Appendix C for
a proof.

Lemma 11. Let D1, . . . , Dm, D′
1, . . . , D

′
n be non-perfect state-minimal binary

ASD’s such that
∏m

i=1 |S
Di | =

∏n
j=1 |S

D′

j |. Then ×m
i=1Di ≤×n

j=1D
′
j holds if

and only if there exists a partition {J1, . . . , Jm} of the indices {1, . . . , n} such
that Di ≤×j∈Ji

D′
j for all i ∈ {1, . . . ,m}.

As a corollary of this fact, for given linear devices Lk1 , . . . , Lkm
, Lr1 , . . . , Lrn

with
∑m

i=1 ki =
∑n

j=1 rj , we have ×m
i=1 Lki

≤ ×n
j=1 Lrj if and only if m ≤ n

and there exists a partition {J1, . . . , Jm} of {1, . . . , n} such that ki =
∑

j∈Ji
rj .

For instance, one can see that L3 × L3 � L2 × L2 × L2. Otherwise, the above
would imply that L3 ≤ L2, which is obviously false.

The following theorem makes use of Lemma 11 to show that the factorization
in terms of binary ASD’s in unique.

5Of course, the k-clique problem is still NP-complete even when imposing k ≥ 4 and when

looking at graphs with no isolated vertices.

14

Theorem 12. Let D be an ASD, and assume that ×m
i=1Di is a factorization

of D where D1, . . . , Dm are binary. Then, this factorization is unique (with
respect to the set of all factorizations into binary devices), up to order and
equivalence of the factors.

Proof. Let D1, . . . , Dm, D
′
1, . . . , D

′
m be binary ASD’s such that ×m

i=1Di ≡
×m

j=1D
′
j. In order to prove the theorem, it suffices to show that these fac-

torizations are equivalent, that is, there exists a permutation γ : {1, . . . ,m} →
{1, . . . ,m} such that Di ≡ D′

γ(i) for all i = 1, . . . ,m. Without loss of generality,
assume that all devices are minimal.

First, note that for a minimal binary ASD’s D, we have
∨

ΠD = idSD

whenever D is perfect, whereas
∨

ΠD = {SD} otherwise. Therefore, if ex-

actly ℓ binary devices in the product×m
i=1Di are perfect, then

∣

∣

∣

∨

Π×
m

i=1 Di

∣

∣

∣
=

∣

∣

∣×m
i=1

(
∨

ΠDi
)

∣

∣

∣
= 2ℓ. For this reason, both products ×m

i=1Di and ×m
j=1D

′
j

have exactly the same number of perfect binary devices, otherwise they would
not be equivalent by Proposition 4. Hence, we can rewrite both products as

C × E1 × · · · × Ek ≡ C × E′
1 × · · · × E′

k

for some k ≤ m, non-perfect binary ASD’s E1, . . . , Ek, E
′
1, . . . , E

′
k, and a per-

fect ASD C. By Proposition 4, there exist bijections φ : SC×E1×···×Ek →
SC×E′

1×···×E′

k and α : ΠE1×···×Ek → ΠE′

1×···×E′

k such that

idSC × π = (idSC × α(π)) ◦ φ (2)

for all π ∈ ΠE1×···×Ek . This in particular implies

idSC ×
{

SE1×···×Ek
}

=
∨

ΠC×E1×···×Ek

=
(

∨

ΠC×E′

1×···×E′

k

)

◦φ =
(

idSC ×
{

SE′

1×···×E′

k

}

)

◦ φ.

For a fix s ∈ SC and any two e0, e1 ∈ SE1×···×Ek we have (s, e0) ≡W

ΠC×E1×···×Ek

(s, e1) by Proposition 4, and thus φ(s, e0) ≡W

ΠC×E′

1
×···×E′

k
φ(s, e1). In order

for this to hold, there has to exist t ∈ SC such that φ(s, e) = (t, e′) for all

e ∈ S×
k

i=1 Ei , where e′ ∈ S×
k

i=1 E′

i .
Without loss of generality, we can assume that there exists a bijection φ̃ :

SE1×···×Ek → SE′

1×···×E′

k such that φ(s, e) = (s, φ̃(e)), and therefore by (2) we
have idSC × π = idSC × (α(π) ◦ φ̃) for all π. This implies that π = α(π) ◦φ, and
thus E1 × · · · × Ek ≡ E′

1 × · · · × E′
k, again by Proposition 4.

It now suffices to prove that these two last factorizations are equivalent in
order to conclude the proof. Note that since all devices are non-perfect, both

×k
i=1Ei ≤ ×k

i=1 E
′
i and ×

k
i=1E

′
i ≤ ×k

i=1 Ei hold. By Lemma 11, there exist
permutations γ, γ′ of {1, . . . , k} such that Ei ≤ E′

γ(i) and E
′
j ≤ E′

γ′(j). Assume

that there is an i ∈ {1, . . . , k} such that Ei and E′
γ(i) are not equivalent, i.e.,

E′
γ(i) � Ei. Define γ̃ = γ′ ◦ γ. Then, Ei ≤ E′

γ(i) ≤ Eγ̃r(i) for all r > 0. Since k

15

is finite there exists r′ > 0 such that γ̃r
′

(i) = i. Therefore, Ei ≡ E′
γ(i), which is

a contradiction.

An immediate corollary of the theorem is the following.

Corollary 13. Two products of binary linear devices are equivalent if and only
if they consist of exactly the same devices.

For instance, the corollary immediately yields L4 ×L3 ×L3 /≡L4 ×L4 ×L2.
Note that this non-equivalence could not be proved using simpler arguments
based on order-preserving functions.

We stress that Theorem 12 does not rule out the fact that there might
be additional factorizations in terms of non-binary prime ASD’s. Indeed, the
general question of deciding whether prime factorizations of ASD’s are unique
appears to be challenging. For instance, it is easy to see that every perfect
ASD Cm where m =

∏r
i=1 p

αi

i for distinct primes p1, . . . , pr, and positive in-
tegers α1, . . . , αr can be uniquely factorized as ×r

i=1 C
αi
pi
. We leave the more

general question as an open problem. Note that the problem is related to a line
of research investigating unique factorizations of relational structures (cf. e.g. [5]
for a survey). Even though ASD’s are related to relational structures, known
results only apply to a weaker form of direct product.

Acknowledgments

This research was partially supported by the Swiss National Science Foundation
(SNF), project no. 200020-113700/1. We also thank Thomas Holenstein for
helpful discussions.

References

[1] R. B. Boppana, J. H̊astad, and S. Zachos, “Does co-NP have short interactive
proofs?,” Inf. Process. Lett., vol. 25, no. 2, pp. 127–132, 1987.

[2] S. Goldwasser and M. Sipser, “Private coins versus public coins in interac-
tive proof systems,” in STOC ’86: Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, pp. 59–68, 1986.

[3] G. Grätzer, General Lattice Theory. Basel: Birkhäuser, 1998.

[4] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition. Wi-
ley, 2000.

[5] B. Jónsson, “The unique factorization problem for finite relational struc-
tures,” Colloq. Math., vol. 14, pp. 1–32, 1966.

[6] R. König, U. Maurer, and R. Renner, “On the power of quantum memory,”
IEEE Transactions on Information Theory, vol. 51, no. 7, pp. 2391–2401,
2005.

16

[7] M. O. Rabin, “How to exchange secrets with oblivious transfer.” Technical
Memo TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[8] C. E. Shannon, “The zero-error capacity of a noisy channel,” IEEE Trans-
actions on Information Theory, vol. 2, pp. 8–19, 1956.

A Direct Products of Set Partitions

We prove here two facts about direct products of partitions. The first proposi-
tion states that one can look at the refinement order component wise.

Proposition 14. Let S,S ′ be sets, π, ρ ∈ Π(S), and π′, ρ′ ∈ Π(S ′). Then

(π × π′) ⊑ (ρ× ρ′) ⇐⇒ (π ⊑ ρ) ∧ (π′ ⊑ ρ′).

Proof. The proof follows from the fact that, given sets B,B′, C, and C′, we have
B×B′ ⊆ C×C′ if and only if B ⊆ C and B′ ⊆ C′. If π ⊑ ρ and π′ ⊑ ρ′ both hold,
then for every B ∈ π, B′ ∈ π′ there have to exist C ∈ ρ, C′ ∈ ρ′ such that B ⊆ C
and B′ ⊆ C′, and hence B × B′ ⊆ C × C′, which implies (π ⊑ ρ) and (π′ ⊑ ρ′).
Conversely, if (π× π′) ⊑ (ρ× ρ′), then for every B×B′ there is C ×C′ such that
B ⊆ B′ and C ⊆ C′. In particular, π ⊑ ρ and π′ ⊑ ρ′.

The second proposition states that the meet (join) of direct product parti-
tions is the direct product of the meets (joins).

Proposition 15. Let S,S ′ be sets, π, ρ ∈ Π(S), and π′, ρ′ ∈ Π(S ′). Then

(i) (π × π′) ∧ (ρ× ρ′) = (π ∧ ρ)× (π′ ∧ ρ′)

(ii) (π × π′) ∨ (ρ× ρ′) = (π ∨ ρ)× (π′ ∨ ρ′)

Proof. For the first statement, we have directly

(π × π′) ∧ (ρ× ρ′) = {(B × B′) ∩ (C × C′) | B ∈ π,B′ ∈ π′, C ∈ ρ, C′ ∈ ρ′}

= {(B ∩ C)× (B′ ∩ C′) | B ∈ π,B′ ∈ π′, C ∈ ρ, C′ ∈ ρ′}

= (π ∧ ρ)× (π′ ∧ ρ′).

To prove the second statement, first note that by definition π ⊑ π ∨ ρ and π′ ⊑
π′∨ρ′, and therefore π×π′ ⊑ (π∨ρ)× (π′ ∨ρ′) by Proposition 14. Analogously,
ρ× ρ′ ⊑ (π ∨ρ)× (π′ ∨ρ′), which implies (π×π′)∨ (ρ× ρ′) ⊑ (π ∨ρ)× (π′ ∨ρ′).

Now, let (s, s′), (t, t′) ∈ S × S ′ be such that (s, s′) ≡(π∨ρ)×(π′∨ρ′) (t, t′).
This implies that s ≡π∨ρ t and s′ ≡π′∨ρ′ t′. There are y1, . . . , yk ∈ S with
s = y1 and t = yk such that for all i = 1, . . . , k − 1 we have yi ≡π yi+1 or
yi ≡ρ yi+1. Analogously, there are y′1, . . . , y

′
ℓ ∈ S ′ with s′ = y′1 and t′ = y′ℓ

such that for all j = 1, . . . , ℓ − 1 we have y′j ≡π′ y′j+1 or y′j ≡ρ′ y′j+1. In
particular, for all i = 1, . . . , k−1 we have (yi, s

′) ≡π×π′ (yi+1, s
′) or (yi, s

′) ≡ρ×ρ′

(yi+1, s
′). Additionally, for all j = 1, . . . , ℓ− 1 we have (t, y′j) ≡π×π′ (t, y′j+1) or

(t, y′j) ≡ρ×ρ′ (t, y′j+1). Therefore, (s, s
′) ≡(π×π′)∨(ρ×ρ′) (t, t

′). That is, (π ∨ ρ)×
(π′ ∨ ρ′) ⊑ (π × π′) ∨ (ρ× ρ′), and this implies equality.

17

B Interactive Proof for Device Non-Equivalence

In this section, we briefly sketch a two-round interactive proof for the problem
of non-equivalence of ASD’s. The protocol follows the same lines as the one for
graph non-isomorphism.

Assume that Alice and Bob are given a pair of ASD’s (D0, D1), and Alice
would like to prove D0 6≡ D1 to Bob. Also, assume without loss of generality
that D0 and D1 are minimal, and that SD0 = SD1 = {1, . . . , n} for some inte-
ger n, and |ΠD0 | = |ΠD1 |. Bob starts the protocol by choosing a bit b ∈ {0, 1}
uniformly at random and generates an equivalent device D ≡ Db uniformly at
random. (By Proposition 4, this can be done efficiently by choosing an ap-
propriate pair of permutations (φ, α) uniformly at random.). He subsequently
sends the description of D to Alice. Finally, Alice returns a bit b′ ∈ {0, 1} to
Bob, and Bob accepts if and only if b = b′.

Whenever D0 6≡ D1 holds, Alice is able to decide whether D0 ≡ D or
D1 ≡ D, and hence to perfectly guess b. However, if D0 ≡ D1, Alice can make
Bob accept with probability at most 1

2 regardless of her strategy.

C Proof of Lemma 11

Sufficiency is obvious. To prove the converse, assume that×m
i=1Di ≤×n

j=1D
′
j ,

and let (φ, α) be an arbitrary reduction of ×m
i=1Di to ×n

j=1D
′
j . By Lemma 3,

the function φ is a bijection. In the following, we show that such a φ induces
a partition of the set of indices {1, . . . , n} as in the statement of the theo-
rem. To do this, we introduce the following function τ : Let j ∈ {1, . . . , n} and

(s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n) ∈ SD′

1 × · · · × SD′

j−1 × SD′

j+1 × · · · × SD′

n , then we
define

τ(j, s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n) :=

{

j | |φ−1
j ({s′1} × · · · × {s′j−1} × SD′

j × {s′j+1} × · · · × {s′n}| > 1
}

,

where φ−1
j denotes the j-th component of the output of the function φ−1. In

other words, the value τ(j, s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n) provides the set of indices

of the devices in the product ×m
i=1Di for which the state is modified when one

goes over all possible states of the ASD D′
j , fixing the states of the remaining

ASD’s to s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n, and looks at the output of φ−1. We start

by proving the following claim, which states that for a given j ∈ {1, . . . , n},
arbitrarily modifying the j-th component of a vector in SD′

1 × · · · × SD′

n only
alters a single component of the output with respect to φ−1.

Claim 1. For all j ∈ {1, . . . , n} and (s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n) ∈ SD′

1 × · · · ×

SD′

j−1 × SD′

j+1 × · · · × SD′

n , we have |τ(j, s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n)| = 1.

Proof. Assume, towards a contradiction, that the claim is false. In particular,

18

there are states s̃1, s̃2 ∈ SD′

j such that

(s11, . . . , s
1
m) := φ−1(s′1, . . . , s

′
j−1, s̃

1, s′j+1, . . . , s
′
n),

(s21, . . . , s
2
m) := φ−1(s′1, . . . , s

′
j−1, s̃

2, s′j+1, . . . , s
′
n)

differ in two components p and q, that is, s1p 6= s2p and s1q 6= s2q. Since |SD′

j | ≥ 3

by our assumption, pick an arbitrary third element s̃3 ∈ SD′

j different from s̃1

and s̃2, and define (s31, . . . , s
3
m) := φ−1(s′1, . . . , s

′
j−1, s̃

3, s′j+1, . . . , s
′
n). We look

for partitions π1, . . . , πm, where πi ∈ ΠDi , such that the vectors (s11, . . . , s
1
n),

(s21, . . . , s
2
n), and (s31, . . . , s

3
n) are each in a distinct block of π1 × · · · × πm. In

order to do so, consider the following two cases:

(i) s1p = s3p: Choose a partition πp ∈ ΠDp such that s1p 6≡πp
s2p (this exists

by state-minimality). Furthermore, there must exist a component r 6= p
such that s1r 6= s3r. Then, simply pick πr ∈ ΠDr such that s1r 6≡πr

s3r.
All πi for i 6= p and i 6= r can be chosen arbitrarily. The cases s1q = s3q,
s2p = s3p, and s2q = s3q are analogous. (Notice that these cases are not
mutually-exclusive.)

(ii) s3p 6= s1p, s
3
p 6= s2p, s

3
q 6= s1q , and s

3
q 6= s2q : Choose a partition πp ∈ ΠDp such

that s1p 6≡πp
s3p. Now, it might be that either s2p ≡πp

s3p or s2p ≡πp
s1p. In

the first case, choose πq ∈ ΠDq such that s2q 6≡πq
s3q, whereas in the second

case choose πq ∈ ΠDq such that s2q 6≡πq
s1q. All πi for i 6= p and i 6= q are

chosen arbitrarily.

Since D′
j is binary, there are distinct u, v ∈ {1, 2, 3} such that

(s′1, . . . , s
′
j−1, s̃

u, s′j+1, . . . , s
′
n) ≡α(π1×···πm) (s

′
1, . . . , s

′
j−1, s̃

v, s′j+1, . . . , s
′
n).

However, we have (su1 , . . . , s
u
m) 6≡π1×···×πm

(sv1 , . . . , s
v
m), and (φ, α) cannot be a

reduction.

We now want to prove that the unique component which varies is indepen-
dent of the other states.

Claim 2. For all j ∈ {1, . . . , n} and for all (s′1,1, . . . , s
′
1,j−1, s

′
1,j+1, . . . , s

′
1,n),

(s′2,1, . . . , s
′
2,j−1, s

′
2,j+1, . . . , s

′
2,n) ∈ SD′

1 × · · · × SD′

j−1 × SD′

j+1 × · · · × SD′

n , we
have

τ(j, s′1,1, . . . , s
′
1,j−1, s

′
1,j+1, . . . , s

′
1,n) = τ(j, s′2,1, . . . , s

′
2,j−1, s

′
2,j+1, . . . , s

′
2,n).

Proof. We start by assuming that there is a unique component r ∈ {1, . . . , n}−
{j} such that s′1,r 6= s′2,r. Also, assume without loss of generality that j 6= n and
r = n. In particular, denote s′j′ := s1,j′ = s2,j′ for all j

′ ∈ {1, . . . , n− 1} − {j}.

Given two states s′A,j , s
′
B,j ∈ SD′

j , we define the following states of D′
1×· · ·×D′

n:

s′1,A := (s′1, . . . , s
′
j−1, s

′
A,j, s

′
j+1, . . . , s

′
n−1, s

′
1,n),

s′1,B := (s′1, . . . , s
′
j−1, s

′
B,j, s

′
j+1, . . . , s

′
n−1, s

′
1,n),

s′2,A := (s′1, . . . , s
′
j−1, s

′
A,j, s

′
j+1, . . . , s

′
n−1, s

′
2,n),

s′2,B := (s′1, . . . , s
′
j−1, s

′
B,j, s

′
j+1, . . . , s

′
n−1, s

′
2,n).

19

Furthermore, using the previous claim, we define

{p1} := τ(j, s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n−1, s

′
1,n)

{p2} := τ(j, s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n−1, s

′
2,n),

as well as

{rA} := τ(n, s′1, . . . , s
′
j−1, sA,j, s

′
j+1, . . . , s

′
n−1)

{rB} := τ(n, s′1, . . . , s
′
j−1, sB,j , s

′
j+1, . . . , s

′
n−1).

Finally, we define the following states of D1 × · · · ×Dm making use of φ−1:

w := φ−1(s′1,A), x := φ−1(s′1,B), y := φ−1(s′2,B), z := φ−1(s′2,A).

We have wp1 6= xp1 and xp = wp for all p ∈ {1, . . . ,m} − {p1}. Analogously
yp2 6= zp2 and yp = zp for all p ∈ {1, . . . ,m} − {p2}. And again, by the same
argument, x and y differs only at component rA, and z and w differ only in
component rB . According to this, there are two ways to modify state w into
x. The first one is by changing component p1. The second one is by going
through states z and y, modifying components rA, p2, and rB. Assume, towards
a contradiction, that p1 6= p2. Since wp2 = xp2 , we must have either rA = p2
and rB = p1 or rA = p1 and rB = p2. If the former holds, we necessarily
have w = y, while if the latter holds, then z = x. In both cases, we have a
contradiction with the fact that φ is a bijection.

The proof of the claim easily follows by repeating the same argument itera-
tively for r 6= n.

Hence, for j ∈ {1, . . . , n} we are now allowed to denote by τ(j) the unique
component which varies when altering the state of D′

j . Additionally, for i ∈
{1, . . . ,m}, we define

ρ(i) := {j | τ(j) = i} .

Note that {ρ(i) | i = 1, . . . ,m} = ker(τ) is a set partition of {1, . . . , n}. Now,
take a fix i ∈ {1, . . . ,m} and let ρ(i) = {j1, . . . , jr}. Furthermore, fix states
s1, . . . , si−1, si+1, . . . , sm for the devices D1, . . . , Di−1, Di+1, . . . , Dm. The j-th
component φj(s1, . . . , si−1, s, si+1, . . . , sn) is constant for all j /∈ ρ(i), since for

any two states s′, s′′ ∈ SD′

1×···×D′

n differing at two distinct components p 6= q
such that τ(p) 6= τ(q), the states φ−1(s), φ−1(s′) differ at both components τ(p)
and τ(q).

Furthermore, fix arbitrary partitions π1, . . . , πi−1, πi+1, . . . , πn for the de-
vices D1, . . ., Di−1, Di+1, . . ., Dn, and finally define

φ
i(s) := (φj1(s1, . . . , si−1, s, si+1, . . . , sn), . . . , φjr (s1, . . . , si−1, s, si+1, . . . , sn))

α
i(π) := (αj1(π1, . . . , πi−1, π, πi+1, . . . , πn), . . . , αjr (π1, . . . , πi−1, π, πi+1, . . . , πn)).

It is now easy to verify that (φi, αi) is a reduction of Di to ×j∈ρ(i)D
′
j . If this

is not the case, there are distinct states si, s
′
i ∈ Di and πi ∈ ΠD such that

si 6≡πi
s′i, but si =αi(πi)◦φi s′i. By the arguments above, and by the definition

of φi and αi, this implies that (φ, α) is not a reduction.

20

	Introduction
	Motivation
	Contributions and Outline of This Paper

	Preliminaries
	Abstract Storage Devices
	Definition
	Reducibility and Equivalence
	Minimality
	Necessary Conditions for Reducibility

	Complexity of Reducibility and Equivalence
	Binary ASD's and Unique Factorizations
	Direct Products of Set Partitions
	Interactive Proof for Device Non-Equivalence
	Proof of Lemma ??

