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ABSTRACT

We report on observations of two quasar host galaxies made with the Lick Observatory adaptive optic system
using a laser guide star tuned to the wavelength of the sodium D lines. A brief outline of the system is given, and
a description of its performance when obtaining science data. We discuss techniques for obtaining calibration of
the point spread function and the analysis steps required to obtain useful scientific results. We present H-band
images of quasar host galaxies made with the system. Estimates of the host galaxy magnitudes and central black
hole masses were made from these data. These are the first observations of quasar host galaxies with a sodium
laser guide star.
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1. INTRODUCTION

Detection of the faint host galaxies of bright quasars has been a long-standing problem in observational extra-
galactic astronomy. Although the host galaxy and the bright, unresolved quasar nucleus typically have similar
total fluxes, the diffuse nature of the galaxy emission can frequently be confused with the extended wings of
a poorly-characterized PSF. Cosmological surface brightness dimming by a factor of (1 + z)4, where z is the
redshift, makes detecting the host galaxies of high redshift quasars particularly challenging. Initial attempts at
host galaxy detection using photographic plates were successful in only finding the hosts of nearby relatively faint
quasars.1, 2 Application of digital scanning technology to photographic plates allowed the first attempts at PSF
subtraction,3 pushing host detections to redshifts, z ∼ 0.5, and allowing quantitative estimates of host galaxy
magnitudes. The advent of digital, linear CCD detectors made modeling of the contribution of the PSF easier
(e.g., Smith et al.4). The real breakthroughs in quasar host studies came with the advent of HST, with its small,
more stable PSF, and near-infrared array detectors. Early HST studies with the optical instruments on board
allowed the detailed study of nearby quasar hosts.5, 6 In parallel, ground-based studies in the near-infrared
were able to study the quasars at wavelengths where the flux of the quasar was minimized with respect to the
flux of the host galaxy.7 The marriage of HST’s PSF and the near-infrared NICMOS detector allowed routine
discoveries of quasar hosts up to z ∼ 2.8, 9

Adaptive optics are a relatively recent addition to the available techniques for quasar host imaging. Although
problematic in some respects (principally PSF variability) AO offers the ability to study larger samples than
are practical with the limited observing time available with HST, and, through using 10 m-class telescopes,
better resolution and surface brightness sensitivity (e.g., Stockton, Canalizo and Close,10 Lacy et al.,11 Croom
et al.12). Although it is important to bear in mind that surface brightness sensitivity is fundamental to the
detection of quasar hosts (for example, with a warm deformable mirror, observing in H-band is usually superior
to K-band due to the lower background, even though the PSF is poorer), AO does significantly improve the
ability to detect hosts through concentrating the quasar light into the center of the galaxy image, thus improving
contrast between the quasar PSF and the extended galaxy.

Send correspondence to: E.L.G.: egates@ucolick.org; 1 831 459 5910

Advancements in Adaptive Optics, edited by Domenico Bonaccini Calia, Brent L. Ellerbroek,
Roberto Ragazzoni, Proceedings of SPIE Vol. 5490 (SPIE, Bellingham, WA, 2004)
0277-786X/04/$15 · doi: 10.1117/12.552078

421

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 8/7/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In parallel with the development of the techniques for observing quasar hosts the scientific reasons for observ-
ing them have also evolved. Initially, observations were seen as an aid in understanding the nature of quasars
themselves, to help determine whether their redshifts were cosmological in origin. Later, the triggering mech-
anism for quasars was the principal interest when several quasars were found to have interacting host galaxies
(e.g. Stockton and MacKenty13). In recent years, the discovery that the (now mostly dormant) black holes in the
nuclei of nearby galaxies have masses which correlate with the luminosity and velocity dispersion of their host
galaxies has directly linked the quasar phenomenon to galaxy evolution. Black hole mass estimates from host
galaxy luminosities can be compared to those which use the results of reverberation mapping and the widths
of broad emission lines, with generally consistent results.14, 15 This gives us the possibility of understanding the
black hole mass–galaxy mass correlation through a study of the evolution of quasar hosts.

Reliable black hole mass estimates have also stimulated long-standing debates on how the observational
properties of quasars, such as their emission-line spectra, radio-loudness and accretion rates may (or may not)
depend on black hole mass.16–20 Recent work on the relationship between starbursts and active galactic nuclei
using results from the Sloan Digital Sky Survey (SDSS)21 have reinvigorated studies on the links between quasar
activity, starbursts and galaxy mergers.

One problem that has bedeviled quasar astronomy throughout its history is that selection of quasar samples
has been somewhat haphazard. Optical and X-ray selection techniques are only sensitive to quasars with little
dust or gas in the host galaxy to redden or absorb the quasar light. Radio selection is not sensitive to reddening,
but only ∼ 10% of quasars are bright radio emitters, and the selection effects associated with radio quasar samples
are only just beginning to be understood. The advent of the SDSS quasar sample has been a large step forward
in this respect as, by selecting candidate quasars on the basis of having colors inconsistent with them being stars,
rather than simply being very blue, they are able to pick objects that would be missed from traditional quasar
surveys.22, 23 We picked the SDSS quasar sample as the basis for our adaptive optics study in the hope that it
would give us a better understanding of the quasar population rather than the samples previously studied by
HST, which were typically selected either on the basis of being very blue, bright in the X-ray, or bright in the
radio, and therefore may not be representative of the quasar population as a whole.

2. LICK OBSERVATORY LGS-AO SYSTEM

Data were acquired using the laser guide star (LGS) AO system on the 3-m Shane Telescope at Lick Observatory.
The natural guide star (NGS) AO instrument has been in routine scientific use by the University of California
observing community since 2000 and the LGS system has been available since 2002. The AO system is located at
the Cassegrain focus of the telescope, has 40 subapertures, uses a Shack-Hartmann wavefront sensor (WFS), and
a 61 actuator deformable mirror. An upgrade to the real-time control computer during 2003 allows the system
to operate at up to 1 kHz rates. In LGS mode an avalanche photodiode (APD) quadcell is used to measure
tip-tilt from an mV < 16 natural guide star within 55′′ of the science target. Observing efficiency in LGS mode
is now approaching the observing efficiency of NGS for brighter (mV < 15) tip-tilt stars. LGS efficiency and
performance continues to improve through upgrades to the motor control software and hardware to compensate
for system flexure and real-time control computer software upgrades.

An artificial star is created by a laser tuned to the 589 nm resonance line of atomic sodium, which is present
in the atmosphere at about 90 km altitude. The laser beacon is generated by four frequency doubled ND:YAG
lasers pumping a dye laser. The 589 nm seed beam for the dye amplifier is created by a dye master oscillator
grating and etalon system. The laser pulse rate is 15 kHz and pulse width is 150 ns. The laser launch telescope
is mounted on the side of the the Shane telescope and aligned so that the artificial star is on the telescope optical
axis and aligned with the same WFS as used in NGS observations. During LGS operations a mirror in front of
the WFS is swapped for a dichroic beamsplitter that sends λ < 600 nm light to the WFS and 600 < λ < 1000
nm light to the APD tip-tilt sensor. The sodium laser power is typically 12 W, corresponding to an mV ∼ 9
star and produces a spot size of approximately 2.′′2 FWHM at the sodium layer. Spot elongation is insignificant
because the launch telescope is only 1.5 m from the telescope optical axis. The WFS is on a moving stage that
can track changes in the height of the sodium layer with airmass. A low-bandwidth Hartmann WFS is used to
monitor the height of the sodium layer and adjust positioning of the primary WFS. An FAA safety agreement
limits LGS propagation to between 11 pm and 5 am and to zenith distances less than 45 degrees because of
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Figure 1. Absolute magnitude versus redshift for the quasars observed so far. Closed symbols show objects observed
using the laser guide star, open symbols those observed with a natural guide star. The two quasars whose analysis is
discussed in this paper are shown as the large closed symbols. Note that the magnitude limit of the SDSS sample is
responsible for the apparent correlation of absolute magnitude with redshift.

Lick Observatory’s close proximity to a number of large international airports. The Lick AO system is further
described in Bauman et al.24, 25 and Gavel et al.26–28

The AO system feeds IRCAL, a near-infrared (NIR) camera containing a PICNIC HgCdTe 256x256 array.29

The f/28 output of the AO system gives a plate scale of 0.′′076/pixel and a field of view of 19.′′4 x 19.′′4. The
diffraction limited point spread function (PSF) is Nyquist sampled at K band (2.2 µm) with this plate scale.
The camera contains cold aperture and filter wheels populated with typical NIR broadband filters, a selection
of narrowband filters, H- and K-grisms, slits, occulting finger, and a Wollaston prism,30 enabling a wide range
of imaging, spectroscopic, and polarimetric capabilities. A warm filter wheel can be placed in front of the IR
camera to accommodate additional filters if necessary.

3. SAMPLE SELECTION

Quasars were selected from the SDSS EDR and DR1 releases.23, 31 We used the USNO and HST Guide Star
catalogs to find quasars with guide stars within 45′′. Targets for adaptive optics imaging using the Natural
Guide Star (NGS) mode were selected to have guide stars brighter than R ≈ 12. For the Laser Guide Star
mode, we selected objects with tip-tilt guide stars brighter than R ≈ 15. About 1% of the of the 16,700 SDSS
DR1 quasars have a suitable NGS guide star within 35

′′
, and about 8% have a suitable LGS guide star within

35
′′
. We imposed a magnitude limit of r = 20 to ensure that the quasars were well-detected on individual 300 s

exposures in H band so that images could be accurately centroided in individual frames. We also imposed an
upper redshift limit of z = 1.8, beyond which surface brightness dimming makes detection of faint quasar hosts
difficult using only a 3-m telescope. The absolute magnitude versus redshift for all the quasars in our sample is
displayed in Figure 1.

4. DATA ACQUISITION

Successful observations of quasar hosts requires both a small PSF and surface brightness sensitivity. The 3-m
Shane Telescope and both the NGS and LGS AO systems were used for data acquisition. While the best AO
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performance for the Lick system is at K band, the thermal background from warm instrument optics makes it
desirable to use H band to get a higher signal-to-noise ratio on the low surface brightness host galaxy emission.

Our observational strategy was a compromise between low overheads and reliable PSF monitoring. Observa-
tions of each quasar were interspersed with observations of the quasar guide star (QGS) approximately every 50
minutes. A single observation of a PSF star–PSF guide star (PGS) pair was made for each quasar. The selected
PSF star was at the same distance and position angle from its guide star as the quasar was from its guide star.
The PSF star observation was used to calibrate the effect of going off-axis.

Our first successful attempt to obtain science-quality data on quasar hosts occurred on 2002 September 22
(UT). Two quasars from the LGS sample were observed, SDSS 2324+0021 (z = 0.28) and SDSS 0244+0028
(z = 0.84). Details of the quasars are given in Table 1, and they are shown as the large symbols in Figure 1.
Observations of further quasars with the LGS system have been made (shown by small closed symbols in Figure 1),
but the data have yet to be analyzed. Our first three NGS quasar host observations appeared in Lacy et al..11

Table 2 lists the details of the guide stars for these two quasars, and Table 3 lists the PSF stars and their guide
stars.

The data were taken as several five-point dither position mosaics, each pointing lasting 5 minutes. Small
offsets of 1′′–2′′ were made between each mosaic. Total integration times were 55 minutes for SDSS 2324+0021
and 125 minutes for SDSS 0244+0028. The QGS observations were made using the same five-point mosaic
with integration times of 10 s per pointing. The PSF stars were also observed using the five-point grid with
exposures times of 2–3 s per point. Flux calibration was achieved using standard stars P533-D and P138-C.32

The natural seeing was ∼ 0.′′9 in H band. AO corrections were made at 200 Hz for SDSS 2324+0021 and 100 Hz
for SDSS 0244+0028. The slower AO correction rate for SDSS 0244+0028 was necessary because the laser spot
size increased and also decreased in brightness. This was caused by SDSS 0244+0028 being observed at a higher
airmass than SDSS 2324+0021. It did not significantly change the image quality of the data, as the FWHM of
the QGS for both quasars were comparable (see Table 4). Images of the fields are shown in Figure 2.

Table 1. Quasar Targets

Quasar RA Dec rAB z

(J2000.0) (J2000.0)

SDSS 2324+0021 23 24 08.4 +00 21 19 18.8 0.28

SDSS 0244+0028 02 44 48.9 +00 28 59 19.7 0.84

Table 2. Quasar Guide Stars

Quasar QGS RA QGS Dec QGS mR Separation P.A.
(J2000.0) (J2000.0) (arcsec) (degrees)

SDSS 2324+0021 23 24 10.0 +00 21 43 14.1 34 46

SDSS 0244+0028 02 44 47.8 +00 29 28 13.3 34 330

5. DATA ANALYSIS AND PSF CALIBRATION

Following dark subtraction and flat fielding, the quasar data were combined using the DIMSUM package in
IRAF∗.

∗IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Uni-
versities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
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Table 3. PSF Stars and PSF Guide Stars

Quasar PSF mR RA Dec PGS mR Separation P.A.
(J2000.0) (J2000.0) (arcsec) (degrees)

SDSS 2324+0021 11.8 23 26 55.8 +00 04 46 13.6 36 52

SDSS 0244+0028 15.5 02 45 45.4 +00 11 31 13.9 33 325
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Figure 2. Left: AO corrected field of SDSS 2324+0021. A foreground star is visible approximately 10′′ to the southeast
of the quasar. Right: AO corrected field of SDSS 0244+0028. Two additional faint galaxies are visible within a few
arcseconds of the quasar. North is up and east is to the left.

The key to analyzing these data is the AO PSF, which is both variable in time and dependent on many
observing parameters. The brightness and color of the natural guide star (which determines the accuracy of the
tip-tilt correction), the spot size and brightness of the LGS (which determines the accuracy of the AO correction),
and the color of the PGS compared to the QGS can influence the size and shape of the PSF. Ideally, quasar
observations would be interleaved with frequent sampling of the off-axis PSF, using observations of a nearby PSF
star–PGS pair well matched in guide star brightness, color, separation and position angle to the quasar–QGS pair.
However, to produce a more efficient procedure, we used the technique described in Section 4 and later attempted
to reconstruct the PSF from frequent observations of the guide star and a single observation of a PSF star–PGS
pair chosen for proximity to the quasar rather than exact matches in color and brightness to the quasar–QGS
pair. The procedure, as described below, enables us to synthesize a PSF with a FWHM close to that of the
quasar observations, even if the QGS and PGS have slightly different brightnesses and therefore AO corrections
that differ in quality. It also enables us to remove any component of the aberration due to anisoplanatism effects,
which are constant in time. Steinbring et al.33 show that a similar strategy of determining a kernel map for the
off-axis variation of the PSF by observing a crowded stellar field can be effective, and remove the bulk of the
anisoplanatism effects on the PSF.

The first step of the PSF synthesis procedure is to deconvolve the PSF star by the PGS. We used the
Lucy deconvolution algorithm and enough iterations were performed to reduce the FWHM of the PSF star
to significantly less than that of the PGS. Care was taken to stop the deconvolution process before artifacts
appeared in the deconvolved image. This produces an “off-axis kernel.”
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Figure 3. Off-axis kernels for each of the quasar observations, obtained by deconvolving the PSF star by the PGS
observations. This kernel is convolved with the QGS observations to synthesize the observed PSF. The contours are
logarithmic, spaced by factors of two, overplotted on a linear gray-scale stretch.

The off-axis kernel is then convolved with the average on-axis QGS observations to make the synthesized
PSF. This process minimizes problems of a mismatch between the QGS and PGS brightness and color.

While this procedure was developed and tested for NGS observations,11 it is also applicable to LGS obser-
vations because of the natural off-axis tip-tilt star, even though anisoplanatism effects are minimized due to the
LGS always being on axis. In using this technique in NGS mode, we saw a characteristic elongation of the PSF
kernel along the axis aligned with vector joining the PSF to its guide star. This elongation is not seen in the
LGS PSF observations, presumably because all high order corrections are on axis and the only off-axis errors are
from residual tip-tilt errors. Figure 3 shows the off-axis PSF kernels for both observed quasars.

Because the diffraction limited PSF is undersampled at H Band, the image quality was assessed by measuring
the Gaussian FWHM rather than the Strehl ratio. Table 4 summarizes the FWHMs of the QGS, PGS, and PSF
star for each observed quasar.

Table 4. Image Quality

Quasar Raw QSO FWHM Synth. PSF QGS FWHM PSF Star PGS FWHM
(arcsec) FWHM (arcsec) (arcsec) FWHM (arcsec) (arcsec)

SDSS 2324+0021 0.39 0.32 0.23 0.30 0.22

SDSS 0244+0028 0.33 0.39 0.24 0.33 0.31

6. HOST GALAXY DETECTION AND PROPERTIES

6.1. Modeling the Host Galaxies
The host galaxies were modeled according to the method outlined by McLure, Dunlop, and Kukula34 by fitting
PSF plus galaxy model profiles (convolved by the PSF) and minimizing χ2.
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Figure 4. Host galaxies after subtraction of the best fit PSF model of the quasar nucleus. Images were smoothed by a
0.′′27 FWHM Gaussian. North is up and east is to the left.

Initial host magnitudes and scale sizes were determined by subtracting the PSF so that the residual was
roughly flat in the center of the quasar within radius rin and declined monotonically outside rin. rin was chosen
such that outside this radius the PSF residuals were small compared with the noise in the images. The resulting
image was smoothed and fit using the ELLIPSE routine in IRAF to provide an estimate of the host major axis
position angle and axial ratio. This technique provides galaxy parameters that are model independent and a
reasonable starting point for full modeling.

We fitted the scale size, flux, major axis position angle, and axial ratio of the host galaxy model and the
flux and position of the nucleus. The galaxy and quasar centers were constrained to be the same. Also, small
adjustments in the background subtraction were made to set the residual to zero at large radii (r > 3′′).
Figure 4 shows the host galaxies after subtraction of the best fit PSF corresponding to the quasar nucleus. Both
elliptical and disk galaxy models were tried, but neither was a significantly better fit to the data. Results of
the modeling are listed in Table 5. We used NFIT1D within IRAF to fit one-dimensional exponential disk and
elliptical profiles to the host galaxy radial profiles. The host radial profiles were determined using the RADPROF
procedure in IRAF on the host after the best two-dimensional PSF fit to the quasar core was subtracted. The
SDSS 2324+0021 host radial profile is clearly better fit by the exponential disk model than the elliptical model, as
shown in Figure 5. One-dimensional modeling of the SDSS 0244+0028 host favored the elliptical galaxy profile,
but PSF fitting errors of the quasar nucleus dominated the inner region of the host radial profile and the field
galaxies caused confusion at large radii for the fits. The one-dimensional profile is difficult to fit unambiguously
for fainter hosts because the amount of point-source nuclear emission is degenerate with the inner part of the
host profile, which is where most of the information on the profile shape is.

Errors in the magnitudes of the hosts were estimated by combining errors from noise, systematics from PSF
mismatch, and photometric errors. Errors in the magnitudes and scale sizes due to noise in the χ2 fitting were
estimated by randomly shuffling the pixel values in the residual image, adding back the model, and refitting with
a starting vector randomly changed by 10% in each fitted paramter (PSF scale, galaxy flux, half-light radius,
axial ratio, and position angle) from the best fitting parameter set.

In the case of SDSS 0244+0028 the synthesized PSF had a FWHM that was wider than either the PSF star
or the quasar due to both the large PGS FWHM and as yet undetermined deconvolution errors. In this case we
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Table 5. Observed Host Galaxy Properties

Quasar me md ∆m θe θd ∆θ χ2
e/dof χ2

d/dof ARe ARd PAe PAd

SDSS 2324+0021 16.5 16.8 0.1 0.43 0.50 0.1 1.05 1.03 2.2 1.9 71 72

SDSS 0244+0028 17.3 17.5 0.1 0.80 0.81 0.4 0.57 0.57 2.3 1.0 154 0
Notes: me is the magnitude of the best-fitting elliptical galaxy model, and md is the best-fitting disk galaxy model.
All magnitudes are H-band, Vega magnitudes and are measured in square apertures 7.′′5 on a side centered on the
quasar. ∆m is the estimated error in the magnitudes (both systematic and random). θe and θd are the angular
half-light radii for the elliptical and disk model host, respectively, in arcseconds. ∆θ is the estimated error in the
angular half-light radius in arcseconds. χ2

e/dof and χ2
d/dof are the reduced χ2 values for the elliptical and disk model

fits, respectively. ARe and ARd are the axial ratios of the hosts for the elliptical and disk models, respectively. PAe

and PAd are the position angles of the major axis, in degrees, for the elliptical and disk models, respectively.
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Figure 5. The one-dimensional radial profile of the SDSS 2324+0021 host galaxy (after subtraction of the best fit
two-dimensional modeled quasar point source) is plotted as the solid line. The one-dimensional elliptical galaxy and
exponential disk profile fits are denoted by the dotted and dashed lines, respectively.

also modeled the galaxy using the PSF star directly, rather than the synthesized PSF. Using the PSF star for
the modeling made little difference to the flux and indicates that PSF mismatch errors have little influence on
the magnitude estimate for the quasar host in these cases, probably because most of the flux of the host galaxy
is outside the core of the PSF.

6.2. Galaxy Magnitudes and Black Hole Masses

Black hole masses were estimated from the galaxy luminosities using the empirical relationship of van der Marel,35

adjusted to H0 = 70 km/s/Mpc. We also assumed a cosmology of ΩΛ = 0.7 and ΩM = 0.3 when calculating the
intrinsic properties of the quasars.

To obtain the galaxy absolute magnitudes we estimated the K-corrections from the observed H-band to the
rest frame V -band magnitude, assuming the galaxies formed at high redshift, z ∼ 5. We used the galaxy models
of Fioc and Rocca-Volmerange36 to make the K-corrections, assuming a spiral model for SDSS 2324+0021 host
and elliptical model for SDSS 0244+0028 host. The passive evolution of the stellar luminosity of the host galaxy36
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Table 6. Derived Quasar Host Properties

Quasar MV r1/2 MBH(Host) MBH(BLR)
(kpc) (M�) (M�)

SDSS 2324+0021 −20.9 ± 0.1 3.8 ± 0.8 < 2.3x108 7.0x107

SDSS 0244+0028 −22.7 ± 0.1 22 ± 11 1.3x109 3.4x108

Notes: r1/2 is the half-light radius. MBH(Host) is the black hole mass estimated from
the host galaxy luminosity. MBH(BLR) is the black hole mass estimated using the
width of the Mg II emission line.

was also estimated in order to relate the host galaxies at z ∼ 1 to those in the local universe, on which the black
hole mass–bulge luminosity correlation is calibrated.

We also estimated black hole masses from the FWHM of the Mg II emission line37 for comparison to the
galaxy luminosity black hole masses. Host galaxy absolute magnitudes and black hole mass estimates are listed
in Table 6.

7. DISCUSSION

The SDSS 2324+0021 host is one of the lower redshift quasars in our sample, so it is unsurprising that it was
easily detected with relatively short total integration time.

The SDSS 0244+0028 host was comfortably detected, but residual PSF error is apparent. However, the outer
regions of the galaxy dominate the galaxy luminosity and small errors within the core fitting region will have
little effect on the total galaxy magnitude. The image clearly shows two probable companion galaxies, 3.′′3 to
the west and 3.′′6 to the northwest, though there is no clear indication of interaction.

The LGS AO observations have proved effective at detecting hosts around z < 1 quasars. The accuracy
of the PSFs most limits the accuracy of the galaxy host luminosity measurements. However, for these lower
redshift quasars the errors are not large enough to prevent us from obtaining scientifically useful results. It will
be necessary to make better PSF calibration if we wish to study much brighter quasars relative to their hosts
or quasars at significantly higher redshift. This may involve more frequent PSF observations, better matching
of the PSF star–PGS to the quasar–QGS pair, or a different approach, such as PSF reconstruction from WFS
telemetry information, such as Veran38 has suggested.

Scale sizes and magnitudes of the quasar hosts are comparable to the nine z ∼ 1 quasar hosts from the
HST/NICMOS study by Kukula et al.,9 as shown in Figure 6. Our hosts (both NGS11 and LGS observed) are,
in general, a little fainter and closer to the predictions of Kauffmann and Haehnelt39 concerning the correlation
between host magnitude and quasar magnitude. Our observed sample is thus far too small to make any definitive
finding, but a larger sample will show if this trend continues. If this trend continues in the larger sample, it may
be as a result of the SDSS quasar survey having fewer selection biases than typical optical surveys. Previous
optical surveys tended to select very blue quasars, which are sensitive to small amounts of reddening in the host.
These surveys would be expected to favor quasars in less dusty hosts, i.e. giant ellipticals.

Comparing the black hole mass estimates show that for both SDSS 2324+0021 and SDSS 0244+0028 the
black hole mass estimated from the galaxy luminosity is about a factor of 3.5 higher than the black hole mass
estimated from the Mg II line width. The black hole mass estimated from the host luminosity for SDSS 2324+0021
is an upper limit because the spiral model includes the disk emission and the host luminosity–black hole mass
correlation is valid only for the bulge luminosity. SDSS 0244+0028 has nearby galaxies in the field, so there is
the possibility of interactions. The most discrepant black hole mass estimates in Dunlop et al.,40 who examined
z ∼ 0.2 quasar hosts with HST and made similar black hole mass estimates, were in galaxies showing interactions.
Perhaps the bulge mass–luminosity estimates in interacting systems are too high. Possible reasons for this include
a starburst in the merger system, the merger of the black holes of the two galaxies and the subsequent accretion

Proc. of SPIE Vol. 5490     429

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 8/7/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 6. Host MV plotted against quasar MB . Our points are shown as triangles, with the large triangles denoting the
quasars analyzed for this paper; the points of Kukula et al.9 are indicated by circles. Filled symbols denote radio-quiet
quasars and open symbols radio-loud quasars. The dotted line indicates the magnitude of an L∗ galaxy at z = 0, the
dashed line is the same galaxy at z = 1, assuming passive evolution of a stellar population formed at z ∼ 5.

of significant amounts of matter into the black hole. Large differences between black hole mass estimates derived
from emission-line widths and host bulge luminosities may thus be indicators of a quasar formed from a recent
merger event.

The advent of large samples of quasar from the SDSS and Anglo-Australian 2dF surveys means that significant
numbers of quasars near sufficiently bright stars for tip-tilt correction have become available. The image quality
achieved with LGS AO correction has proven that scientifically interesting results can be obtained. Thus we
expect to be able to form statistically useful samples of high-quality quasar host images in the near future.
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38. J.-P. Véran, F. Rigault, H. Mâitre, and D. Rouan, “Estimation of the adaptive optics long-exposure point-
spread function using control loop data,” J. Opt. Soc. Am. A 14, pp. 3057–3062, 1997.

39. G. Kauffmann and M. Haehnelt, “A unified model for the evolution of galaxies and quasars,” Mon. Not.
Roy. Astron. Soc. 311, pp. 576–588, 2000.

40. J. S. Dunlop, R. J. McLure, M. J. Kukula, S. A. Baum, C. P. O’Dea, and D. H. Hughes, “Quasars, their
host galaxies and their central black holes,” Mon. Not. Roy. Astron. Soc. 340, pp. 1095–1135, 2003.

432     Proc. of SPIE Vol. 5490

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 8/7/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


