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Chapter One

Gems of Spectral Theory

The central theme of this monograph is the view of a remarkable 1915 theorem
of Szegő as a result in spectral theory. We use this theme to present major aspects
of the modern analytic theory of orthogonal polynomials. In this chapter, we bring
together the major results that will flow from this theme.

1.1 WHAT IS SPECTRAL THEORY?

Broadly defined, spectral theory is the study of the relation of things to their spectral
characteristics. By “things” here we mean mathematical objects, especially ones
that model physical situations. Think of the brain modeled by a density function,
or a piece of ocean with possible submarines again modeled by a density function.
Other examples are the surface of a drum with some odd shape, a quantum particle
interacting with some potential, or a vibrating string with a density function. To
pass to more abstract mathematical objects, consider a differentiable manifold with
Riemannian metric. To get into number theory, this manifold might have arithmetic
significance, say, the upper half-plane with the Poincaré metric quotiented by a
group of fractional linear transformations induced by some set of matrices with
integral coefficients.

By spectral characteristics, mathematicians and physicists originally meant char-
acteristic frequencies of the object—modes of vibration of the drum or, to state the
example that gives the subject its name, the light spectrum produced by a chemical
like Helium inside the sun.

Eventually, it was realized that besides the discrete set of frequencies associated
with a drum, vibrating string, or compact Riemannian manifold, there were objects
with continuous spectrum where the spectral characteristics become scattering or
related data. For example, in the case of a brain, the spectral data is the raw output
of a computer tomography machine. For quantum scattering on the line, it might be
the reflection coefficient.

The process of going from the object to the spectral data or of going from some
property of the object to some property of the data is called the direct spectral
problem (or direct problem). The process of going from the spectral data to the
object or from some aspect of the spectral data to some aspect of the object is the
inverse spectral problem (or inverse problem).

The general wisdom is that direct problems are easier than inverse problems, and
this is true on two levels: first, on the level of mere existence and/or even specifying
the domain of definition; and second, in proving theorems that say if some property
holds on one side, then some other property holds on the other.
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Almost all these models (tomography is an exception) are described by a differ-
ential equation—ordinary or partial—or by a difference equation. In most cases,
the object is a selfadjoint operator on some Hilbert space. In that case, the direct
problem is usually solved via some variant of the spectral theorem, which says:

Theorem 1.1.1. If A is a selfadjoint operator on a Hilbert space, H, and ϕ ∈ H,
there is a measure dµ on R so that

〈ϕ, e−itAϕ〉 =
∫
e−ixt dµ(x) (1.1.1)

for all t ∈ R.

Remarks. 1. All our Hilbert spaces are complex and 〈 · , · 〉 is linear in the second
factor and antilinear in the first.

2. For a proof, see [14, 361, 369]. Also see Section 1.3 later for the case of
bounded A.

3. I have ignored subtle points here whenA is an unbounded operator (as happens
for differential operators) concerning what it means to be selfadjoint, how e−itA is
defined, and so on. Because we look at difference equations in most of these notes,
our A is bounded, and then for n = 0, 1, 2, . . . , (1.1.1) is equivalent to

〈ϕ,Anϕ〉 =
∫
xn dµ(x) (1.1.2)

4. We will also consider unitary operators, U, where dµ is now on ∂D =
{z | |z| = 1} and

〈ϕ,Unϕ〉 =
∫
zn dµ(z) (1.1.3)

for n ∈ Z.

Notice that a spectral measure requires both an operator and a vector, ϕ. Some-
times there is a natural ϕ, sometimes not. Sometimes the full spectral measure is
overkill—for example, the problem made famous by Mark Kac [212]: “Can you
hear the shape of a drum?” asks about whether the eigenvalues of the Laplace–
Beltrami operator of a (two-dimensional) compact surface determine the metric up
to isometry. The spectral measure typically has point masses at the eigenvalues but
also has weights for those masses so has more data than the eigenvalues alone.

It is worth noting that it is arguable whether the shape of a drum problem is
a direct or an inverse problem. It asks if the direct map from isometry classes of
manifolds to their eigenvalue spectrum is one-one. But on a different level, it asks
if an inverse map exists!

By the way, the answer to Kac’s question is no (see [181]). For a review of more
on this question and its higher-dimensional analogs, see [40, 64, 65, 180, 427].

Here is an example that shows we often do not understand the range of the di-
rect map, and hence also the domain of the inverse map. Let H0 = −d2/dx2 on
L2(−∞,∞) and consider a function V (x) ∈ L1

loc(R) so that (H0 + 1)−1(V + i)−1

×(H0+1)−1 is compact (e.g., this holds if V (x) → ∞ as |x| → ∞ but it also holds
for V = W 2 +W ′ with W = x2(2 + sin(ex)) where V is unbounded below). Then

H = H0 + V (1.1.4)
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has spectrum a set of eigenvalues {En}∞n=1 where En → ∞. It is well known that
this is not sufficient spectral data to determine V.

Here is some additional data that is sufficient. Let HD be H with a Dirichlet
boundary condition at x = 0, that is,

HD = H+
D ⊕H−

D (1.1.5)

where H+
D acts on L2(0,∞) and H−

D acts on L2(−∞, 0), and selfadjointness is
guaranteed by demanding u(0) = 0 boundary conditions.

Let EDn be the eigenvalues of HD . It is not hard to prove the following:
(i) En ≤ EDn ≤ En+1

(ii) EDn = En ⇔ un(0) = 0 ⇔ EDn = EDn−1
Here un is the eigenfunction for H with eigenvalue En. Notice that (i) says each
(En,En+1) contains at most one eigenvalue, and if there, it is simple. On the other
hand, if EDn ∈ {Ej }∞j=1, then it is a doubly degenerate eigenvalue.

If EDn ∈ (En,En+1), as noted EDn is simple, so we have a sign σDn ∈ {±1}, so

EDn is an eigenvector of H
σDn
D . If EDn ∈ {En,En+1}, σDn is undefined. We will

see shortly that {En}∞n=1 ∪ {EDn , σDn }∞n=1 is a complete set of spectral data and that
{V | En(V ) = En(V0)} is an infinite-dimensional set of potentials. In a situation
like this, where some set of the “spectral data” is distinguished but not determin-
ing, the set of objects whose spectral data in this subset is the same as for object0 is
called the isospectral set of object0. It is usually a manifold, so we will often call it
the isospectral manifold even if we have not proven it is a manifold!

Here is the theorem that describes what I have just indicated:

Theorem 1.1.2 ([165, 166]). If V,W ∈ L1
loc and En(V ) = En(W), EDn (V ) =

EDn (W), σ
D
n (V ) = σDn (W), then V = W (i.e., V �→ {En(V ),EDn (V ), σDn (V )}∞n=1

is one-one). Moreover, if V ∈ L1
loc and N < ∞ are given and Ẽn, ẼDn , σDn are such

that

Ẽn = En(V ) all n

ẼDn = EDn (V ) all n > N

σ̃Dn = σDn (V ) all n > N

{En,EDn } obey (i) and (ii) above, then there is a W with

En(W) = Ẽn EDn (W) = ẼDn σDn (W) = σDn

for all n.

It is an interesting exercise to fix N and picture the topology of the allowed
ẼDn , σ̃

D
n . Alas, it is not known precisely what direct data {ẼDn , σDn } can occur for

a given V. It is definitely not all {Ẽn, σDn } obeying (i), (ii). For example, it cannot
happen that

EDn = 1
4En + 3

4En+1 (1.1.6)

for all n.
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Open Question 1. What is the range of the map V �→ {En(V ),EDn (V ), σDn (V )} as
V runs through all L1

loc functions with (H0 +1)−1/2(V + i)−1(H0 +1)−1/2 compact,
or through all continuous functions obeying V (x) → ∞ as |x| → ∞.

Even the most basic isospectral manifolds such as V (x) = x2 where En(V ) =
2n+ 1 are not understood.

Open Question 2. Prove that the isospectral manifold of continuous V ’s with
V (x) → ∞ as x → ∞ and En(V ) = 2n+ 1 is connected.

I have described this example in detail to emphasize how little we understand
even some basic spectral problems.

Having set the stage with a very general overview, we are now going to focus in
these notes on two classes of spectral problems: those associated with orthogonal
polynomials on the real line (OPRL) and orthogonal polynomials on the unit circle
(OPUC). These are the most simple and most basic of spectral setups for several
reasons:
(a) As we will see, the construction of the inverse is not only simple and basic, but

historically these problems appeared initially as what we will end up thinking
of as an inverse problem.

(b) The objects are connected with difference—not differential—operators, so
various technicalities that might cause difficulty concerning differentiability,
unbounded operators, and so on are absent.

(c) They are, in essence, half-line problems; the parameters in the difference equa-
tion are indexed by n = 1, 2, . . . or n = 0, 1, 2, . . . .

(c) is a virtue and a flaw. It is a virtue in that, as is typical for half-line problems,
one can precisely describe the range of the direct map. It is a flaw in that the meth-
ods one develops are often not relevant to go to higher dimensions or, sometimes,
even to whole-line problems.

OPRL appear initially in Section 1.2 and OPUC in Section 1.7.

Remarks and Historical Notes. The centrality of spectral theory to modern sci-
ence can be seen by contemplating the variety of Nobel prizes that are related to the
theory—from the 1915 physics prize awarded to the Braggs to the 1979 medicine
prize for computer tomography.

1.2 OPRL AS A SOLUTION OF AN INVERSE PROBLEM

Let dρ be a measure onR. All our measures will be positive with finite total weight.
Normally, we will demand that ρ is a probability measure, that is, ρ(R) = 1. But
for now we only suppose ρ(R) < ∞. ρ is called trivial if L2(R, dρ) is finite-
dimensional; equivalently, if supp(dρ) is a finite set. Otherwise we call ρ nontrivial.

If ∫
|xn| dρ(x) < ∞ (1.2.1)

for all n, we say dρ has finite moments. We will always suppose this. Indeed, we
will soon mainly restrict ourselves to the case where ρ has bounded support.
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If ρ is nontrivial with finite moments, every polynomial, P , obeys

0 <
∫

|P(x)|2 dρ(x) < ∞ (1.2.2)

since the integral can only be zero if ρ is supported on the finite set of zeros of P .
Thus, {xn}∞n=0 are independent inL2(R, dρ). They may or may not spanL2. If the

support is bounded, they are spanning by the Weierstrass approximation theorem.
In the case where the support is unbounded, there is a beautiful theory of when
the polynomials span—it is presented in Section 3.8. One of the simplest examples
of a case where they are not spanning is exp(−√|x| ) dx (see Example 3.8.1 in
Sections 3.8 and 3.9 for a discussion).

Thus, we can define monic orthogonal polynomials {Pn(x)}∞n=0 of degree n by

Pn = π⊥
n [xn] (1.2.3)

where πn is the projection onto the n-dimensional space of polynomials of degree
at most n− 1 and

π⊥
n = 1 − πn (1.2.4)

So Pn is determined by

Pn(x) = xn + lower order

Pn ⊥ xj j = 0, . . . , n− 1
(1.2.5)

By an obvious induction, we have

Proposition 1.2.1. {Pj }nj=0 span Ran(πn+1). In particular, Pj/‖Pj‖ are an ortho-
normal basis of this n+ 1-dimensional space. So if Q ∈ Ran(πn+1),

Q =
n∑
j=0

〈Pj ,Q〉‖Pj‖−2Pj (1.2.6)

One gets (1.2.6) by noting Q−rhs of (1.2.6) ⊥ Pk for k = 0, . . . , n since
〈Pj , Pk〉 = ‖Pj‖2δjk . Here is a key fact for OPRL:

Proposition 1.2.2.

〈Pj , xPn〉 = 0 if j < n− 1 (1.2.7)

Proof. 〈Pj , xPn〉 = 〈xPj , Pn〉 = 0 since xPj has degree j + 1 < n.

This leads to the recursion relation obeyed by OPRL:

Theorem 1.2.3. For any nontrivial measure with finite moments, there exist {bj }∞j=1
in R∞ and {aj }∞j=1 in (0,∞)∞ so that for n ≥ 0,

xPn(x) = Pn+1(x)+ bn+1Pn(x)+ a2
nPn−1(x) (1.2.8)

where P−1(x) ≡ 0 (so we do not need an = 0).
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Proof. xPn(x)−Pn+1(x) is a polynomial of degree n (since the xn+1 terms cancel)
and so orthogonal to Pn+1, that is,

〈Pn+1, xPn〉 = ‖Pn+1‖2 (1.2.9)

which means the coefficient of Pn+1 in (1.2.6) with Q = xPn is 1. Moreover, the
coefficient of Pn−1 is

〈Pn−1, xPn〉‖Pn−1‖−2 = 〈Pn, xPn−1〉‖Pn−1‖−2 (1.2.10)

=
( ‖Pn‖

‖Pn−1‖
)2

(1.2.11)

where (1.2.10) follows from the reality of Pj and x, and (1.2.11) uses (1.2.9) for n
replaced by n− 1.

So we set

an+1 = ‖Pn‖
‖Pn+1‖ bn+1 = 〈Pn, xPn〉‖Pn‖−2 (1.2.12)

and (1.2.6) becomes (1.2.8) on account of (1.2.7).

The an’s and bn’s are called Jacobi parameters. We start labeling with n = 1, but
some authors start with n = 0 or even label b from n = 0 but a from n = 1. Also,
some reverse the a’s and b’s or use other letters.

The formula (1.2.12) for an implies

Theorem 1.2.4. We have that

‖Pn‖ = an . . . a1ρ(R) (1.2.13)

The orthonormal polynomials

pn(x) = Pn(x)

‖Pn‖ (1.2.14)

obey

xpn(x) = an+1pn+1(x)+ bn+1pn(x)+ anpn−1(x) (1.2.15)

and multiplication by x in the orthonormal set {pj }∞j=0 has the matrix

J =


b1 a1 0

a1 b2 a2
. . .

0 a2 b3
. . .

. . .
. . .

. . .
. . .

 (1.2.16)

Remarks. 1. Matrices of the form (1.2.16) are called Jacobi matrices.
2. When supp(dρ) is bounded, {pn}∞n=0 is a basis, as we have seen. Shortly we

will restrict to this case.

We now have our direct equation: {an, bn}∞n=1 defines a second-order difference
equation for n = 1, 2, 3, . . . ,

un+1 = a−1
n ((λ− bn)un − an−1un−1) (1.2.17)
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where a0 is picked in a convenient way and λ is a parameter. The solution with

u0 = 0 u1 = 1 (1.2.18)

is

un = pn−1(λ) (1.2.19)

In Section 1.3, we will turn to the direct problem of going from {an, bn}∞n=1 to
dρ, but we see that at the heart of OPRL is an inverse spectral problem! Central
to this language is the idea that going from a difference/differential equation is a
direct question.

We will eventually see (Section 3.2) that the inverse problem has a second
method of solution. We note that the Pn(x) for dρ and c0 dρ for any c0 are the
same and so also for Jacobi parameters. Thus, we will eventually mainly restrict to
ρ(R) = 1.

Before leaving this introduction, we want to discuss two other ways of under-
standing OPRL that actually work for positive measures onC, so we pause to define
OPs in that case. Let dζ(z) be a positive measure on C so that∫

|z|n dζ(z) < ∞ (1.2.20)

which is nontrivial (i.e., supp(dζ ) is not a finite set of points). Thus, we can form
monic orthogonal polynomials 	n(z).

Unlike OPRL,	n(z) do not obey a three-term recurrence relation because Propo-
sition 1.2.2 uses reality (in general, 〈	j, z	n〉 = 〈z̄	j ,	n〉). Indeed, only OPRL
and OPUC (and polynomials for sets affinely related to D and ∂D) are known to
obey finite-order recursion relations, and so fit into the scheme of “spectral theory.”

We note that {zn}∞n=0 may not span L2(C, dζ ) even if supp(dζ ) is bounded. For
example, if there is an open set U ⊂ C and c so that

dζ ≥ cχU d
2z (1.2.21)

then they are not dense since the closure of the set of polynomials is analytic on U
(see the Notes). And, as we will see (Section 2.11, especially Theorem 2.11.5), for
measures on ∂D, the issue of density is subtle. But we can define {	n(z)}∞n=0 in any
event.

Theorem 1.2.5 (Christoffel Variational Principle). LetMn be the monic polyno-
mials of degree n, that is, Q ∈Mn means

Q(z) = zn + lower order

Then

‖	n‖2 = min
Q∈Mn

‖Q‖2 (1.2.22)

that is, for all Q ∈Mn,∫
|	n(z)|2 dζ(z) ≤

∫
|Q(z)|2 dζ(z) (1.2.23)

with equality if and only if Q = 	n.
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Proof. This follows from the minimization property of orthogonalization, that is,
if π is any orthogonal projection in a Hilbert space,

‖(1 − π)u‖2 = min
v∈Ran(π)

‖u− v‖2 (1.2.24)

It is remarkable how powerful this principle is, given its simplicity.
The other general theorem concerns zeros.

Theorem 1.2.6. Let dζ be a measure obeying (1.2.20) and Mz multiplication by
z on polynomials. Let πn be the orthogonal projection in L2(C, dζ ) onto the n-
dimensional space of polynomials of degree at most n− 1. Let

A = πnMzπn (1.2.25)

on Ran(πn). Then
(i) The eigenvalues of A are precisely the zeros of 	n(z).

(ii) Each eigenvalue of A has geometric multiplicity 1.
(iii) Each eigenvalue z0 of A has algebraic multiplicity equal to the order of z0 as

a zero of 	n(z).
(iv) We have that

det(z − A) = 	n(z) (1.2.26)

Remark. Recall the geometric multiplicity of z0 is the dimension of {v | (A −
z0)v = 0}. The algebraic multiplicity is the dimension of {v | (A − z0)

�v = 0 for
some �}. It is the order of the zero in det(z − A).

Proof. Let v ∈ Ran(πn+1). Then πnv = 0 if and only if v = c 	n. Thus, if w ∈
Ran(πn), w �= 0, then (A− z0)w = 0 ⇔ πn(z − z0)w = 0 ⇔ (z − z0)w = c 	n.
Moreover, w �= 0 implies (z − z0)w �= 0, so c �= 0.

	n(z) = c−1(z − z0)w (1.2.27)

implies 	n(z0) = 0, so (i) is half proven. Conversely, if 	(z0) = 0, (1.2.27) is
solved precisely by

w(z) = c	n(z)

z − z0
(1.2.28)

which lies in Ran(πn). Thus, (i) is proven and so is (ii).
The same analysis shows (A− z0)

�w = 0 with (A− z0)
�−1w �= 0 if and only if

z0 is a zero of 	n(z) of order at least �, and this proves (iii).
(iv) holds since both sides are monic polynomials of degree n with the same

zeros counting orders.

Corollary 1.2.7 (Fejér’s Theorem). Zeros of 	n(z) lie in the convex hull of
supp(dζ ).
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Proof. If 	n(z0) = 0, there is w ∈ Ran(πn), with ‖w‖L2 = 1, so πn(z− z0)w = 0.
Thus, 〈w, (z − z0)w〉 = 0, so

z0 = 〈w, zw〉 =
∫
z|w(z)|2 dζ(z) (1.2.29)

Since ‖w‖ = 1, |w|2 dζ is a probability measure, so the integral lies in the convex
hull of supp(w2dζ ), which lies in the convex hull of supp(dζ ).

Corollary 1.2.8. Suppose that dρ is a measure on R, with a = min supp(dρ),
b = max supp(dρ). Then all the zeros of Pn(x; dρ) lie in [a, b].
Corollary 1.2.9. Let dµ be a measure on ∂D and�n(z; dµ) the monic orthogonal
polynomials. Then the zeros of �n lie in D.

Remark. One can show that if the convex hull of the support of dζ does not lie in
a straight line, then zeros lie in the interior of the convex hull of the support of the
measure. In particular, in the case of Corollary 1.2.9, the zeros lie in D, not merely
D. We will prove this explicitly in Theorem 1.8.4.

Often, one has an explicit matrix representation of the operator A of (1.2.27),
and so an explicit version of (1.2.24). For OPRL, one can take the basis {pj }n−1

j=0
and so get

Theorem 1.2.10. Let Jn;F be the n× n cutoff Jacobi matrix

Jn;F =



b1 a1 0

a1 b2 a2
. . .

0 a2 b3
. . .

. . .

. . .
. . .

. . .

bn−1 an−1

an−1 bn


(1.2.30)

Then

Pn(x) = det(x − Jn,F ) (1.2.31)

Since det(x −A) = xn − Tr(A)xn−1 +O(xn−2) for n× n matrices, we see that

Pn(x) = xn −
 n∑

j=1

bj

 xn−1 +O(xn−2) (1.2.32)

and, by (1.2.13)/(1.2.14),

pn(x) = (a1 . . . an)
−1

xn −
 n∑

j=1

bj

 xn−1

+O(xn−2) (1.2.33)

This provides another way of understanding the recursion (1.2.8). Expand
det(x − Jn+1,F ) in minors in the last row. The minor of x − bn+1 is Pn(x) and
the minor of −an is anPn−1(x).
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Remarks and Historical Notes. I would be remiss if I did not mention the “clas-
sical” OPRL: Jacobi, Laguerre, and Hermite associated, respectively, to the mea-
sures (1 + x)α(1 − x)β dx on [−1, 1] with α > −1, β > −1, xαe−x on [0,∞)

with α > −1, and Hermite with e−x2
dx. Jacobi polynomials with α = β = 0

are Legendre, and with |α| = |β| = 1
2 are Chebyshev (of four kinds depending

on the signs of α and β). Chebyshev with α = β = − 1
2 and α = β = 1

2 (of the
first and second kind) will occur repeatedly later in these notes. They obey (up to
normalization; Un is normalized but not monic, while Tn is neither the normalized
nor monic OP), respectively,

Tn(cos θ) = cos(nθ) (1.2.34)

Un(cos θ) = sin((n+ 1)θ)

sin θ
(1.2.35)

These and other specific examples are discussed in detail in Szegő [434] and Ismail
[204].

The classical polynomials obey many other relations like the Rodriguez formula
and second-order (in x) differential equations. This is specific to them; indeed, there
is a theorem of Bochner (see [48, 188, 371] and [204, Section 20.1]) that says any
set of orthogonal polynomials that obeys a second-order differential equation of the
proper form is one of the classical ones!

The question of when {xn}∞n=0 are dense in L2(R, dρ) is intimately connected to
the issue of determinacy of the moment problem discussed in the Notes to the next
section. We will return to this issue in Sections 3.8 and 3.9.

Analyticity often places restrictions on the density of polynomials. If U ⊂ C is
open and dζ ≥ cχU d

2z for some measure on C for which (1.2.20) holds, then by
the Cauchy integral formula, for any compact K ⊂ U , we have

sup
z∈K

|f (z)| ≤ CK‖f ‖L2(C,dζ )

for any function analytic in U and in L2. It follows that any f in the L2-closure of
the polynomials is analytic on U since the locally uniform limit of analytic func-
tions is analytic. Thus, when (1.2.21) holds, the polynomials do not span L2. A
celebrated theorem of Mergelyan (for a proof, see Greene–Krantz [183, Ch. 12])
says that if K is compact, with C \K connected, then the L∞-closure of the poly-
nomials is the functions continuous on K and analytic on K int.

OPRL have their roots in work of Legendre, Gauss, and Jacobi. As a general ab-
stract theory, the key figures were Chebyshev, Markov, Christoffel, and especially,
Stieltjes. You can find more history in the books of Szegő [434], Chihara [82],
Freud [141], Nevai [320], and Ismail [204].

Closely entwined to the history is the idea of continued fraction expansions of
resolvents, an issue we return to in Sections 2.5 and 3.2 and which was pioneered by
Jacobi for finite matrices (hence the name Jacobi matrix for (1.2.30)) and Stieltjes.

Variational principles like (1.2.22) for OPRL go back to Christoffel. Their use
in OPUC with a twist (see Section 2.12 later) is due to Szegő [434]. As a spectral
theory tool, they have been especially advocated and exploited by Freud [141] and
Nevai [321].
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That zeros of OPRL are eigenvalues of truncated Jacobi matrices is well known
in the Schrödinger operator community. I am unsure who noted it first. The ex-
tension to measures on C where there is the complication of nontrivial algebraic
multiplicity was arrived at in discussions I had with E. Brian Davies.

1.3 FAVARD’S THEOREM, THE SPECTRAL THEOREM,

AND THE DIRECT PROBLEM FOR OPRL

What the orthogonal polynomial community calls Favard’s theorem is the assertion
that the map from measures on R (with finite moments) to Jacobi parameters is
onto {an, bn}∞n=1 with an > 0 and bn ∈ R. It is intimately connected to the spectral
theorem; indeed, we will prove the spectral theorem for bounded selfadjoint opera-
tors in this section (modulo some remarks in the Notes that go from Jacobi matrices
to general operators). In the bounded case, we will see the map is also one-one if
we restrict to probability measures.

Our discussion will be in three stages: first, finite Jacobi matrices, then bounded,
and finally, unbounded (where we will assume, rather than prove, the spectral
theorem).

Consider a trivial probability measure, that is,

dρ =
N∑
j=1

ρjδxj (1.3.1)

for

x1 > x2 > · · · > xN (1.3.2)

and
N∑
j=1

ρj = 1 (1.3.3)

As usual, we can use Gram–Schmidt to define monic polynomials P0, . . . , PN−1

since our proof of independence of {xj }∞j=0 in the nontrivial case shows that

{xj }N−1
j=0 are independent in this case. We can also use (1.2.3) to define PN(x) as the

zero vector in L2(R, dρ), which, among monic N th degree polynomials, is unique,
namely,

PN(x) =
N∏
j=1

(x − xj ) (1.3.4)

The P ’s obey a recursion relation of the form (1.2.8) for n = 0, 1, 2, . . . , N − 1
and so define b1, . . . , bN , a1, . . . , aN−1 and an N ×N finite Jacobi matrix.

To go backward, we start with an N×N finite Jacobi matrix, that is, {bj }Nj=1 and

{aj }N−1
j=1 are given with aj > 0 and bj ∈ R, and we do not (yet) know they come

from a measure.
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We do not have a measure yet, so we cannot define Pj by orthogonality, but we
do have recursion coefficients, so we define {Pj }Nj=0 inductively by (1.2.8) with
P0(x) ≡ 1, P−1(x) ≡ 0 (they could also be defined directly by (1.2.31)!), then pj
for j = 0, 1, 2, . . . , N − 1 by p0(x) = 1, and for 1 ≤ j ≤ N − 1,

pj (x) = Pj (x)

a1 . . . aj
(1.3.5)

Then pn obey (1.2.15) for n = 0, 1, 2, . . . , N − 2 and

(bN − x)pN−1(x)+ aN−1pN−2(x) = −(a1 . . . aN−1)
−1PN(x) (1.3.6)

Proposition 1.3.1. Let J ≡ JN;F be a finite Jacobi matrix given by (1.2.30).
(a) Define the vector �v(x) ∈ CN by

vj (x) = pj−1(x) j = 1, 2, . . . , N (1.3.7)

Then

(J − x)�v(x) = −(a1 . . . aN−1)
−1δjNPN(x) (1.3.8)

(b) If �w ∈ CN obeys

[(J − x) �w]j = 0 j = 1, . . . , N − 1 (1.3.9)

then

wj = w1pj−1(x) (1.3.10)

(c) The eigenvalues of J are exactly the set of zeros of PN(x) and each zero has
geometric multiplicity 1.

(d) The zeros of PN are simple and real.
(e) If the zeros of PN are labeled by (1.3.2) and

(ϕ�)j = pj−1(x�)

(
∑N

j=1|pj−1(x�)|2)1/2
(1.3.11)

then the ϕ� are an orthonormal basis of eigenvectors.
(f) If

ρ� = |(ϕ�)1|2 =
 N∑

j=1

|pj−1(x�)|2
−1

(1.3.12)

then (1.3.3) holds and {Pj (x)}Nj=0 are the OPRL for the measure (1.3.1).

Proof. (a) (1.3.8) is just (1.2.15) for j = 1, . . . , N − 1 and (1.3.6) for j = N .
(b) (1.3.10) holds trivially for j = 1 and then inductively by subtracting (1.3.8)

from (1.3.10), and noting this implies

(wj+1−w1pj (x)) = (aj )
−1[(x−bj )(wj−w1pj−1(x))−aj−1(wj−1−w1pj−2(x))]

(1.3.13)
for j = 1, 2, . . . , N − 1 (with a−1 ≡ 0).

(c) Any eigenvector obeys (1.3.9) and so must be a multiple of �v. It obeys
[(J − x)�v(x)]N = 0 if and only if PN(x) = 0 by (1.3.8). This argument shows
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any eigenvector is a multiple of ϕj given by (1.3.9), and so the geometric multiplic-
ity is 1.

(d) Define ϕj by (1.3.9). Then 〈ϕk, Jϕ�〉 = 〈Jϕk, ϕ�〉 implies, using Jϕ� = x�ϕ�,
that

(x̄k − x�)〈ϕk, ϕ�〉 = 0 (1.3.14)

Taking k = �, we see xk is real since (ϕ�)1 �= 0 implies 〈ϕ�, ϕ�〉 �= 0.
To see that zeros are simple, suppose P ′

N(xj ) = 0. Let

�w = ∂ �v
∂x

∣∣∣∣
x=xj

(1.3.15)

(the components of v are polynomials, hence differentiable). Since P ′
N(x1) = 0,

(1.3.8) implies

(J − xj )w = v(xj ) (1.3.16)

That cannot be since it implies

〈v(xj ), v(xj )〉 = 〈v(xj ), (J − xj )w〉
= 〈(J − xj )v(xj ), w〉
= 0

and v1(xj ) = 1, so 〈v(xj ), v(xj )〉 �= 0.
(e) ‖ϕ�‖2 = 1 is immediate and 〈ϕj , ϕ�〉 = 0 for j �= � by (1.3.14). Since PN(x)

has N zeros, the ϕ�’s must span the space.
(f) Since {ϕ�}N�=1 are an orthonormal basis, Uk� = (ϕ�)k obeys∑

k

Ūk�Ukj = δ�j

that is, U ∗U = 1, so since it is finite-dimensional, UU ∗ = 1, that is (using (ϕ�)j
real to drop bars), ∑

�

(ϕ�)j (ϕ�)k = δjk (1.3.17)

This says, by the definitions (1.3.11) and (1.3.12),∑
�

ρ�pj−1(x�)pk−1(x�) = δjk (1.3.18)

Taking j = k = 1 and using p0(x) = 1, we see that (1.3.3) holds and (1.3.18)
implies that the {pj }N−1

j=0 are orthonormal polynomials for the measure (1.3.1), so

{Pj }N−1
j=0 are the monic OPRL. Since PN(xj ) = 0, PN is the monic OPRL for

dρ.

Remarks. 1. To be self-contained, we have given the standard argument that sym-
metric matrices have real eigenvalues and have algebraic multiplicities equal to
geometric ones.

2. Notice that we have, in essence, just proven the spectral theorem for finite
Jacobi matrices.
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3. For a more conventional proof that the zeros of OPRL are all real and simple,
see Subsection 5 of Section 1.2 of [399].

We have thus proven

Theorem 1.3.2 (Favard’s Theorem for Trivial Measures). Every finiteN×N Jacobi
matrix is the Jacobi matrix of some measure supported on N points.

Proof. (f) of the last theorem says the {Pj }Nj=0 are the OPRL for dρ defined by
(1.3.12) and PN(xj ) = 0. The Jacobi parameters of Pj are the given Jacobi matrix
since the polynomials alone obeying (1.2.8) determine a and b inductively by look-
ing at the xN and xN−1 terms on both sides of (1.2.8). For example, if x(n)� are the
roots of Pn(x),

bn =
[

n∑
�=1

x
(n)
�

]
−
[
n−1∑
�=1

x
(n)
�

]
as will occur prominently in Section 8.5.

Theorem 1.3.3. The map from dρ of the form (1.3.1)/ (1.3.3) to {aj }N−1
j=0 ∪ {bj }Nj=0

is one-one (and onto by Theorem 1.3.2).

First Proof. Given the Jacobi matrix, JN , of dρ, following the construction of
Theorem 1.3.2, construct a measure dρ ′ =∑N

j=1 ρ
′
j δx ′

j
. By construction, x ′

j are the
zeros of PN(x; dρ), which are exactly the xj ’s, that is, after renumbering x ′

j = xj .
Moreover, the construction shows the normalized eigenvectors with positive first
component are (1.3.11), so since ϕ� in L2(R, dρ) or L2(R, dρ ′) is the function
f (x) = δx�x , we have

ρ� = 〈ϕ�, 1〉L2(R,dρ)

= 〈ϕ�, p0〉L2(R,dρ)

= (ϕ�)1

= given by (1.3.12)

showing ρ� = ρ ′
�.

We want to give a second proof, not because this result is so important or so
difficult, but because a slightly more involved proof will yield tools that are useful
in the N = ∞ case.

Proposition 1.3.4. (a) Two (probability) measures dρ, dρ ′ (supports can be
infinite) have the same Jacobi parameters up to n, {aj }n−1

j=1 ∪ {bj }nj=0, if and
only if ∫

xk dρ =
∫
xk dρ ′ (1.3.19)

k = 0, 1, . . . , 2n− 1.
(b) Two measures, dρ, dρ ′, each supported at n (possibly different) points are

equal if and only if (1.3.19) holds for k = 0, . . . , 2n− 1.

Copyrighted Material



chapter01 June 24, 2010

GEMS OF SPECTRAL THEORY 15

Proof. (a) By (1.2.8), we see that if Jacobi parameters are equal, then

Pj (x; dρ) = Pj (x; dρ ′) (1.3.20)

Multiplying by x�, � = 0, . . . , j − 1 and integrating, we see∫
x�+j dρ = function of

{∫
x�+k dρ

}j−1

k=0

(1.3.21)

=
∫
x�+j dρ ′ (1.3.22)

where the function is the same by (1.3.20), and (1.3.19) then follows by induction.
As j runs from 0 to n and � from 0 to j − 1, �+ j goes from 0 to 2n− 1.

Conversely, if (1.3.19) for k = 0, . . . , 2n − 1, the Gram matrices
{〈xj , x�〉}0≤j, �≤n−1 are equal, which, by the Gram–Schmidt process, implies
pj (x; dρ) = pj (x; dρ ′) for 0 ≤ j ≤ n− 1, and so

Pj (x; dρ) = Pj (x; dρ ′) (1.3.23)

Since

Pn(x) = xn −
n−1∑
j=0

〈pj , xn〉pj (x)

the moments
∫
xn+� dρ, � = 0, . . . , n, then also determine Pn so (1.3.23) also

holds for j = n. As noted above, the polynomials determine the a’s and b’s in the
recursion relation.

(b) As noted in (a), the stated moments determine PN(x) and so its zeros, and so
{xj }Nj=1 and {x ′

j }Nj=1 are identical sets. Then the ρ’s are determined by the equations

N∑
j=1

ρjx
�−1
j =

∫
x�−1 dρ (1.3.24)

for � = 1, 2, . . . , N since the Vandermonde determinant

det(x�−1
j ) =

∏
i<j

(xi − xj ) (1.3.25)

is nonzero.

Second Proof of Theorem 1.3.3. By (a) of Proposition 1.3.4, the Jacobi parameters
determine the first 2n moments and then, knowing the support is n points, the mea-
sures by (b) of the proposition.

One can combine Theorems 1.3.2 and 1.3.3 and more in

Theorem 1.3.5. Fix N . There is a one-one correspondence among each of
(i) Jacobi parameters {aj }N−1

j=1 ∪ {bj }Nj=1 with bj ∈ R and aj > 0.
(ii) Trivial measures of the form (1.3.1) where (1.3.3) holds and ρj > 0.

(iii) Unitary equivalence classes of symmetric N × N matrices A with a distin-
guished cyclic vector, ϕ.
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Remarks. 1. ϕ is called cyclic if {Ajϕ}∞j=0 span the space. For N ×N matrices, we

can instead take {Ajϕ}N−1
j=0 since if P(A) is the (monic) characteristic polynomial

of A, P(A)A�ϕ = 0 shows inductively that {Ajϕ}∞j=N are functions of {Ajϕ}N−1
j=0 .

2. (A, ϕ) and (A′, ϕ′) are unitarily equivalent if and only if there is a unitary
U : CN → C

N so UAU−1 = A′ and Uϕ = ϕ′.

Proof. (i) ⇔ (ii) is precisely the construction of Section 1.2 combined with
Theorems 1.3.2 and 1.3.3.

It is easy to see that δ1 = (1, 0, . . . , 0)t is cyclic for a finite Jacobi matrix J .
Indeed, if {p�}n−1

�=0 are the orthonormal polynomials, then δ� = p�−1(J )δ1, so each
Jacobi matrix with distinguished δ1 is in an equivalence class.

Conversely, if ϕ is cyclic for A, {Ajϕ}N−1
j=0 must be independent (since they span

C
N ). Thus, by Gram–Schmidt, we can find polynomials {pj (A)}N−1

j=0 with p0(A) =
1 so ϕj = pj−1(A)ϕ, j = 0, . . . , N − 1, is an orthonormal basis. By the Gram–
Schmidt construction, 〈Akϕ, pj (A)ϕ〉 = 0 if k < j . So by the same argument as in
Section 1.2, there are constant {bj }Nj=1, {aj }N−1

j=1 , so

Aϕj = aj+1ϕj+1 + bj+1ϕj + ajϕj−1 (1.3.26)

for j = 0, . . . , N − 1 where we interpret aN and a0 as 0. Thus, 〈ϕj ,Aϕk〉 is a
Jacobi matrix! The construction is unitarily invariant so the map is from equivalence
classes to Jacobi matrices.

The two constructions are inverses showing the one-one correspondence.

Now we turn to the case of bounded semi-infinite Jacobi matrices.

Proposition 1.3.6. A Jacobi matrix (1.2.16) is bounded on �2 if and only if

sup
n

|an| + sup
n

|bn| < ∞ (1.3.27)

Proof. Let δn be the vector with components δnj . bn = 〈δn, J δn〉 while an =
〈δn+1, J δn〉 so |bn| ≤ ‖J‖ and |an| ≤ ‖J‖. Thus, J bounded implies (1.3.27).
A diagonal matrix D = {dnδnm} has ‖D‖ = supn|dn|, and if A,B are the diagonal
matrices with elements a and b, and if Sδn = δn+1, then

J = AS∗ + B + SA (1.3.28)

so

‖J‖ ≤ 2 sup
n

|an| + sup
n

|bn| (1.3.29)

We have thus proven

sup
n

|an| + sup
n

|bn| ≤ 2‖J‖ ≤ 4
(
sup
n

|an| + sup
n

|bn|
)

(1.3.30)
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We can now turn to the main theorem of this section (given our interest in the
bounded support regime):

Theorem 1.3.7 (Favard’s Theorem for Bounded Jacobi Matrices). Let {an}∞n=1,
{bn}∞n=1 be a set of Jacobi parameters obeying (1.3.27). Then there is a nontriv-
ial measure, dρ, of bounded support so that its Jacobi parameters are the given
ones.

Proof. Let J be a Jacobi matrix and Jn;F its finite truncations. By Theorem 1.3.2,
there are trivial n-point measures, dρn, whose Jacobi parameters are {aj }n−1

j=0 ∪
{bj }nj=0. By Proposition 1.3.4,∫

x� dρn =
∫
x� dρn′ (1.3.31)

for � = 0, 1, . . . , 2 min(n, n′)− 1. In particular, for each �,
∫
x� dρn is constant for

n large, so

lim
n→∞

∫
x� dρn

exists for each �.
By construction, dρn is supported on the eigenvalues of Jn;F and so on

[−‖Jn;F‖, ‖Jn;F‖], and so on [−‖J‖, ‖J‖]. Thus, the dρn’s are supported in a fixed
compact set. Since the polynomials are dense in C([−‖J‖, ‖J‖]), the probability
measures, dρn, have a weak limit dρ. This weak limit, by (1.3.31), obeys∫

x� dρn =
∫
x� dρ � = 0, . . . , 2n− 1 (1.3.32)

By Proposition 1.3.4, the Jacobi parameters of dρ are J .

Remark. Modulo discussion in the Notes, we have just proven the spectral theorem
for bounded operators!

In the following, we could also discuss cyclic vectors, but we will not (see the
Notes):

Theorem 1.3.8. There is a one-one correspondence between bounded Jacobi ma-
trices and nontrivial probability measures of bounded support under the map of
measures to Jacobi parameters.

Proof. Clearly, if dρ has support [−C,C], then

|bn| ≤
∫

|x| |pn(x)|2 dρ ≤ C

|an| ≤
∫

|x| |pn(x)| |pn−1(x)| dρ ≤ C

so J is bounded. By Favard’s theorem, the map from measures of bounded support
to bounded Jacobi parameters is onto. By Proposition 1.3.4, it is one-one.
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In this monograph, we are mainly interested in the bounded support case, so we
will state Favard’s theorem in the unbounded case without giving the proof for now.
We will essentially prove it in Section 3.8; see Theorem 3.8.4.

Theorem 1.3.9 (Favard’s Theorem). For any set of Jacobi parameters, there is
a measure, dρ, on R with

∫ |x|n dρ(x) < ∞ for all n, which has those Jacobi
parameters.

The measure may not be unique. This is discussed in Sections 3.8 and 3.9.

Remarks and Historical Notes. Favard’s theorem is named after Favard [128]
but goes back to Stieltjes [422]. The close connection to the spectral theorem also
predates Favard in work of Stone [423] and Wintner [461]; see also Natanson [313],
Perron [345], Sherman [382], and the discussion in Marcellán and Álvarez-Nodarse
[295]. I am not aware of the approach here appearing elsewhere, but it will not
surprise experts and I suspect is known to some.

Given any bounded selfadjoint operator, A, on a separable Hilbert space, H, it
is not hard to see that one can find {ϕj }Nj=1 (N finite or infinite) so that for any
�,m, j �= k, 〈A�ϕj ,Amϕk〉 = 0 and so that {A�ϕj }j,� spanH. Thus, Theorem 1.3.7
and Gram–Schmidt imply there is a unitaryU fromH onto ⊕N

j=1L
2(R, dµj ) so that

(UAU−1f )m(x) = xfm(x). This is the spectral theorem for bounded operators.
The same idea shows that if A has a cyclic vector, ϕ, then applying Gram–

Schmidt to {Ajϕ}∞j=0 yields an orthonormal basis in which J is a cyclic vector,
allowing the two-part equivalence of Theorem 1.3.8 to extend to the three-part
equivalence of Theorem 1.3.5.

1.4 GEMS OF SPECTRAL THEORY

In order to explain what I will mean by a gem of spectral theory, I begin by describ-
ing a pair of beautiful theorems in the spectral theory of OPRL:

Theorem 1.4.1 (Blumenthal–Weyl). Let J be a Jacobi matrix with Jacobi para-
meters {an, bn}∞n=1. If

an → 1 and bn → 0 (1.4.1)

then

σess(J ) = [−2, 2] (1.4.2)

Remarks. 1. Recall (see Reed–Simon [364, Section XIII.4]) that σess is defined
by σess(J ) = σ(J ) \ σd(J ), where σ(J ), the spectrum of J , is {λ | (J − λ)

does not have a bounded inverse}, and σd(J ) are isolated points λ0 of σ(J ), where∮
|z−λ0|=ε(z−J )−1 dz is finite rank. For J ’s with cyclic vector (like Jacobi matrices)

and spectral measure dρ, σess(J ) is the set of nonisolated points of supp(dρ).
2. See the Notes for a discussion of proof and history.
3. For any a, b ∈ R with a > 0, N(a, b), the Nevai class, is the set of measures

where an → a, bn → b. By scaling, σess(J ) = [b − 2a, b + 2a] if J ∈ N(a, b).

Copyrighted Material



chapter01 June 24, 2010

GEMS OF SPECTRAL THEORY 19

Theorem 1.4.2 (Denisov–Rakhmanov). Let J be a Jacobi matrix with measure dρ
and Jacobi parameters {an, bn}∞n=1. Suppose (1.4.2) holds and

dρ(x) = f (x) dx + dρs(x) (1.4.3)

where dρs is singular and (modulo sets of measure 0)

{x | f (x) > 0} = [−2, 2]
Then (1.4.1) holds.

Remark. See the Notes for a discussion of proof and history. We will return to this
theorem and prove it in Section 7.6.

These theorems are illuminated by the following:

Example 1.4.3. Let an ≡ 1
2 and bn be the sequence (1,−1, 1, 1,−1,−1, 1, 1, 1,

−1,−1,−1, . . . ), that is, 1 k times followed by −1 k times for k = 1, 2, . . . . It is
not hard to show σ(J ) = σess(J ) = [−2, 2], so (1.4.2) is not sufficient for (1.4.1)
to hold.

Thus, we have a pair of deep theorems that go in opposite directions, but they do
not set up equivalences. This leads us to:

Definition. By a gem of spectral theory, I mean a theorem that describes a class of
spectral data and a class of objects so that an object is in the second class if and
only if its spectral data lie in the first class.

This idea will be illuminated as we describe gems for OPUC and for OPRL
in Sections 1.8 and 1.10 and a nongem in Section 1.9. In a sense, the overriding
purpose of this book is to explore gems of OPRL/OPUC that depend on sum rules
with positive coefficients. As we will see, the focus is somewhat narrower than that!
And we will discuss some descendants of Szegő’s theorem that are not gems (yet).

Remarks and Historical Notes. I find that some listeners object strongly to my
use of the term “gem.” I respond that it is a definition and I add that for a mathe-
matician, a definition is not something that can be “wrong.” But if I called them the
“Jims of Spectral Theory,” I wouldn’t get the same reaction. And, of course, I used
gems because of its connotation. Gems of spectral theory are typically beautiful
and hard—but there can be beautiful and hard results that are not necessary and
sufficient: Theorem 1.4.2 comes to mind.

The Blumenthal–Weyl theorem is named after contributions of Blumenthal [46]
and Weyl [457]; Denisov–Rakhmanov after results of Rakhmanov [358, 359] and
Denisov [107]; see Sections 9.1 and 9.2 of [400] for further history.

Theorem 1.4.1 is a consequence of Weyl’s theorem (see Reed–Simon
[364, Section XIII.4]) that if C is compact and selfadjoint and A bounded and
selfadjoint, then σess(A + C) = σess(A). In Theorem 1.4.1, A = J0, the Jacobi
matrix with an ≡ 1, b ≡ 0, and C = J − J0 is compact when (1.4.1) holds.

Rakhmanov’s theorem for OPUC is proven in Chapter 9 of [400]. Theorem 1.4.2
is proven in Section 13.4 of that book. As mentioned, we will provide a proof of a
more general result in Chapter 7 of the present monograph.
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1.5 SUM RULES AND THE PLANCHEREL THEOREM

The basic tool we will use is to establish sum rules with positive terms. In this
section, we illustrate this with the granddaddy of all spectral sum formulae: the fact
that if A = {aij }1≤i,j≤N is a finite matrix and {λj }Nj=1 are its eigenvalues, then

N∑
j=1

λj = Tr(A) ≡
N∑
j=1

ajj (1.5.1)

The left side is spectral theoretic and the right side involves the coefficients of the
object.

One standard proof of (1.5.1) is to prove invariance of trace under similarity and
the fact that there is a similarity taking A to upper triangular (even Jordan) form.
But for us, the “right” proof is to note that the λj are the roots of the characteristic
polynomials, so

det(λ1 − A) =
N∏
j=1

(λ− λj ) (1.5.2)

Since, by expanding the determinant

det(λ1 − A) = λn − Tr(A)λn−1 + · · · (1.5.3)

we get (1.5.1). The idea that sum rules occur as Taylor coefficients of suitable
analytic functions recurs throughout this book.

In the infinite-dimensional case, there are convergence and other issues. LetX be
a Banach space. A bounded linear map A : X → X is called finite rank if Ran(A)
is finite-dimensional. Every such map has the form

Ax =
N∑
j=1

�j (x)xj (1.5.4)

For some {�j }Nj=1 ⊂ X∗ and {xj }Nj=1 ⊂ X. It is not hard to show that

Tr(A) =
N∑
j=1

�j (xj ) (1.5.5)

is independent of the �’s and x’s used in the representation (1.5.4) (essentially by
the invariance of trace in the finite-dimensional case). One defines the trace norm
of a finite-rank operator by

‖A‖1 = inf


n∑
j=1

‖�j‖X∗‖xj‖X
∣∣∣∣ A =

∑
�j (·)xj

 (1.5.6)

The nuclear operators, N(X), are the completion of the finite-rank operators in
‖·‖1. It is not hard to see that every such object is associated to an operator and that
one can define Tr(·) on N(X) since

|Tr(A)| ≤ ‖A‖1 (1.5.7)
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If X is a Hilbert space, then N(X) is called the trace class operators. A cele-
brated theorem of Lidskii says that

Theorem 1.5.1 (Lidskii’s Theorem). If A is a trace class operator on a Hilbert
space, H, then σess(A) = {0} and A has nonzero eigenvalues {λj }Nj=1 (counting
algebraic multiplicity) so that

N∑
j=1

λj = Tr(A) (1.5.8)

There are two limitations to note. First, on general Banach spaces, this result is
false. Indeed, there is a Banach space, X, with a nuclear operator A so that A2 = 0
(so any eigenvalue is 0) but Tr(A) = 1! (See the Notes.)

Second, consider the operator, C, on �2, which is a direct sum C1 ⊕ C2 ⊕ . . . of
2 × 2 matrices

Cj =
(
αj αj

−αj −αj
)

(1.5.9)

C2
j = 0, so C has only eigenvalue zero. Indeed, it is easy to see that σ(C) = {0}.

If
∑∞

j=1|αj | = ∞, but αj → 0, then C is compact but not trace class. The sum of
the eigenvalues is 0. As for the “trace,” the sum of the diagonal matrix elements of
C is conditionally convergent to zero, so it looks like a success. But conditionally
convergent sums can be rearranged to any value! And rearranged sums are just
rearranged bases. The moral is that, due to cancellations, (1.5.8) is subtle as soon
as one leaves trace class, and it is unlikely that there is any kind of necessary and
sufficient condition directly related to (1.5.8).

However, positivity can rescue something. It is not hard to prove

Theorem 1.5.2. Let A be a bounded selfadjoint operator on a Hilbert space. Then
A2 is trace class if and only if A has a pure point spectrum with eigenvalues
{λj (A)}∞j=1 obeying

∞∑
j=1

λj (A)
2 < ∞ (1.5.10)

In fact, if one writes Tr(A2) = ∞ if A2 is not trace class and
∑
λj (A)

2 = ∞ if
A has any nonpoint spectrum, Theorem 1.5.2 comes from a sum rule

Tr(A2) =
∑
j

λj (A)
2 (1.5.11)

There are no cancellations because of positivity.
On �2(∂D, dθ2π ), one can specialize to operators of the form

(Af g)(θ) =
∫
f (θ − ψ)g(ψ)

dψ

2π
(1.5.12)

where θ − ψ is computed mod 2π . Then λj (Af ) are the Fourier coefficients,
Theorem 1.5.2 is the Plancherel theorem, and the sum rule (1.5.11) is Parseval’s
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equality. As we will see in Section 2.11, Szegő’s theorem can be viewed as a kind
of nonlinear Plancherel theorem.

Remarks and Historical Notes. The view of Theorem 1.5.2 as a sum rule with
positivity, and so a model of Szegő’s theorem as a sum rule, has been pushed espe-
cially by Killip [222].

For a proof of Lidskii’s theorem, see, for example, [389], which obtains it from
an equality for trace class operators

det(1 + zA) =
∞∏
j=1

(1 + zλj (A)) (1.5.13)

An analog of (1.5.14) for Hilbert–Schmidt integral operators, namely,

det[(1 + zA)e−zA] =
∞∏
j=1

[(1 + zλj (A))e
−zλj (A)] (1.5.14)

goes back to Carleman [74] in 1921. One can regard him as the father of
Theorem 1.5.2. Lidskii’s theorem is named after [281], although the theorem was
found somewhat earlier by Grothendieck [187]. Unaware of Grothendieck’s work,
Simon [389] rediscovered his approach to the problem.

For an introduction to nuclear operators on a general Banach space, see
Chapter 10 of Simon [390]. (This book also discusses trace class, Lidskii’s theorem,
and proves (1.5.13) and (1.5.14); another reference on those subjects is Gohberg–
Krein [170].) In particular, the example mentioned of a nuclear operator with A2 =
0, but Tr(A) = 1 is from Grothendieck [186].

1.6 PÓLYA’S CONJECTURE AND SZEGŐ’S THEOREM

Pólya and Szegő have linked names much like Hardy and Littlewood or Laurel
and Hardy. This is most of all because of their great two-volume encyclopedia of
analysis [353] and because, as part of Szegő’s establishing of a great school of
mathematics at Stanford, he brought Pólya to Palo Alto. But they are also linked in
the initial history of the main theme of this monograph.

As we will see in Section 3.8, Hankel matrices, that is, finite matrices of the form
{cj+k}njk=1 are fundamental to the theory of the moment problem on R (since they
arise as Gram matrices for {xj }n−1

j=0). A Toeplitz matrix, T , is one of the form

tjk = cj−k 1 ≤ j, k ≤ n (1.6.1)

Just as in the Hankel case, a situation of special interest is when c are the moments
of a measure but now on ∂D:

ck =
∫ 2π

0
e−ikθ dµ(θ) (1.6.2)

We will, for now, restrict to the case dµs = 0 where

dµ(θ) = w(θ)

2π
dθ + dµs (1.6.3)

Copyrighted Material



chapter01 June 24, 2010

GEMS OF SPECTRAL THEORY 23

that is, to the case

ck =
∫
e−ikθw(θ)

dθ

2π
(1.6.4)

Define Dn(w) (more generally, Dn(dµ)) to be the determinant of the (n+ 1)×
(n+ 1) Toeplitz matrix

Dn(w) = det

∣∣∣∣∣∣∣∣∣
c0 c1 . . . cn
c−1 c0 . . . cn−1
...

...
...

c−n . . . . . . c0

∣∣∣∣∣∣∣∣∣ (1.6.5)

Because of a flurry of activity about moment problems on ∂D unleashed by
Carathéodory in 1907 (see the Notes to Section 1.3 of [399]), Toeplitz matrices
were all the rage from 1910–1915, and Pólya, a young postdoc, conjectured in
[352] that if w > 0 and in L1, then

lim
n→∞ Dn(w)

1/n = exp

(∫
log(w(θ))

dθ

2π

)
(1.6.6)

In a visit back to his native Budapest, Pólya mentioned this conjecture to Szegő,
then an undergraduate, and he proved the theorem below, published in 1915 [428].
At the time, Szegő was nineteen, and when the paper was published, he was serving
in the Austrian Army in World War I! Here is the first version of Szegő’s theorem:

Theorem 1.6.1 (Szegő’s Theorem). If w(θ) ≥ 0 and∫
w(θ)

dθ

2π
< ∞ (1.6.7)

then (1.6.6) holds.

Remarks. 1. Since log+(x) ≡ max(0, log(x)) ≤ x (i.e., x ≤ ex for x ≥ 1), (1.6.7)
implies

∫
log+(w(θ))

dθ
2π < ∞, so

∫
log(w(θ)) dθ2π is either convergent or −∞. In

the latter case, we interpret the right side of (1.6.6) as 0.
2. Szegő (following a suggestion of Fekete) actually proved a stronger result,

namely, that

Dn+1

Dn

→ RHS of (1.6.6) (1.6.8)

Since D1/n
n = D

1/n
0 (
∏n−1
j=0

Dj+1

Dj
)1/n, (1.6.8) implies (1.6.6).

This theorem (in an extended form) is the subject of Chapter 2 where it is proven.
For now, it does not appear to have a spectral content—its transformation to that
form is the subject of the next two sections. But we note (1.6.6) is an equality
(sum rule) with something involving a measure on one side and something rather
different on the other, so my assertion that there is a gem lurking nearby should not
be too surprising.
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Remarks and Historical Notes. Not only did Szegő find the leading term in the
asymptotics of log(Dn) in 1915, but he found the second term [433] thirty-seven
years later! The strongest form of this second-term asymptotics is the following:

Theorem 1.6.2 (Sharp Form of the Strong Szegő Theorem). If ck is given by
(1.6.4), if w(θ) ≥ 0, if (1.6.7) holds, and if

L̂k =
∫ 2π

0
e−ikθ log(w(θ))

dθ

2π
(1.6.9)

then

lim
n→∞

Dn

e(n+1)L̂0
= exp

( ∞∑
k=1

k|L̂k|2
)

(1.6.10)

Chapter 6 of [399] has six different proofs of this theorem, due in this strong
form to Ibragimov [203]. There is a seventh proof in Section 9.10 of [400]; see
also [401]. In Section 1.12, we show this implies a gem. We note that there are no
general terms in an asymptotic series—for nonvanishing analytic w’s, after the first
two terms, the error is O(e−cn).

Since log(det(A)) = Tr(log(A)) for positive matrices,A, if Tn+1(w) is the matrix
whose determinant is in (1.1.5), then (1.6.6) can be rewritten:

lim
n→∞

1

n
Tr(log(Tn(w))) =

∫
log(w(θ))

dθ

2π
(1.6.11)

More generally, one can prove that (see Theorem 2.7.13 of [399])

Theorem 1.6.3. If f is a continuous function on [0,∞) with limx→∞ f (x)/x = 0,
then

lim
n→∞

1

n
Tr(f (Tn(w))) =

∫
f (w(θ))

dθ

2π
(1.6.12)

We will focus on Szegő’s theorem and its descendants within spectral theory, but
it has given birth to many other children. In the period 1950–1970, it was a major
theme in a program called Function Algebras looking at fairly abstract Banach
algebras. This work is discussed in the Notes to Section 2.6 of [399].

1.7 OPUC AND SZEGŐ’S RESTATEMENT

In 1920, Szegő [430] revisited his theorem realizing, in part, that it could be restated
in terms of orthogonal polynomials on the unit circle (OPUC). We will discuss
that here. Another critical realization in that paper—rephrasing the theorem as a
variational principle—will be discussed in Section 2.12. A third—asymptotics of
OPUC—will appear in Section 2.9.

Let {fj }Nj=1 be a set of independent vectors in a Hilbert space. Let {gj }Nj=1 be the
set obtained by unnormalized Gram–Schmidt, that is,

gj = fj +
j−1∑
k=1

hjkfk (1.7.1)
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and

〈gj , gk〉 = 0 if j �= k (1.7.2)

Let H be the N ×N matrix

hjk =


1 k = j

hjk k < j

0 k > j

(1.7.3)

Then the Gram matrices are clearly related by

G(f )jk ≡ 〈fj , fk〉 G(g)jk ≡ 〈gj , gk〉 (1.7.4)

G(g) = H ∗G(f )H (1.7.5)

We thus conclude:

Theorem 1.7.1.

det(G(f )) =
N∏
j=1

‖gj‖2 (1.7.6)

Proof. By (1.7.3),

det(H) = det(H ∗) = 1

and by (1.7.5),

det(G(g)) = |det(H)|2 det(G(f ))

= det(G(f ))

Since G(g)jk = ‖gj‖2δjk , (1.7.6) is immediate.

Given a nontrivial measure, dµ, on ∂D, define the monic OPUC by

�n(z) = zn + lower order (1.7.7)∫
z̄j�n(z) dµ(z) = 0 j = 0, 1, . . . , n− 1 (1.7.8)

We will use �n(z; dµ) if we want the dµ dependence to be explicit.
Thus, if fj = zj−1, j = 1, . . . , N , and gj = �j−1, j = 1, . . . , N , we see that f

and g are related by (1.7.1)/(1.7.2). Recognizing G(f ) as the Toeplitz matrix with

ck−j = 〈zk, zj 〉 =
∫
e−i(k−j)θ dµ(θ) (1.7.9)

we obtain from (1.7.6) that

Corollary 1.7.2. The (N + 1)× (N + 1) Toeplitz determinant, DN(dµ), obeys

DN(dµ) =
N∏
j=0

‖�j(z; dµ)‖2 (1.7.10)
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Szegő also realized a special feature of OPUC that makes Fekete’s remark that
DN+1/DN has the same limit as D1/N

N transparent, namely,

Proposition 1.7.3. For each n,

‖�n‖ ≤ ‖�n−1‖ (1.7.11)

Thus, limn→∞ ‖�n‖2 exists and equals

lim
N→∞ DN(dµ)

1/N (1.7.12)

Proof. Since �n is orthogonal to any polynomial of degree n − 1, it minimizes
{‖�n + g‖ | deg(g) ≤ n− 1}. As a consequence,

‖�n‖ = min{‖Pn‖ | Pn(z) = zn + lower order}
Thus, since z�n−1 is monic and |z| = 1 on supp(dµ),

‖�n‖ ≤ ‖z�n−1‖ = ‖�n−1‖
proving (1.7.11). Since ‖�n‖ is decreasing and positive, it has a limit and, of course,
(‖�0‖2 . . . ‖�n‖2)1/n then converges to lim ‖�n‖2.

We thus see an equivalent form of Szegő’s theorem, Theorem 1.6.1:

Theorem 1.7.4. (1.6.6) is equivalent to

lim
n→∞

∥∥∥∥�n

(
z,
w(θ)

2π
dθ

)∥∥∥∥2

= exp

(∫
log(w(θ))

dθ

2π

)
(1.7.13)

Remarks and Historical Notes. Szegő’s great 1920–1921 paper [430] was the
first systematic exploration of OPUC, although he had earlier discussed OPs on
curves [429].

1.8 VERBLUNSKY’S FORM OF SZEGŐ’S THEOREM

In this section, we give the final reformulation of Szegő’s theorem as a sum rule and
see that it implies a gem of spectral theory. The first element we need is the recur-
sion relation obeyed by the monic OPUC, �n(z), that will give us the parameters
of the direct problem.

We first define natural maps δn : L2(∂D, dµ) to itself by

(δnf )(e
iθ ) = einθ f (eiθ ) (1.8.1)

Proposition 1.8.1. (i) δn is an anti-unitary map of L2 to L2.
(ii) If πn is the orthogonal projection onto the span of {zj }n−1

j=0, then δn maps
Ran(πn+1) to itself. Indeed, if P ∈ Ran(πn+1), then

(δnP )(z) = zn P (1/z̄) (1.8.2)
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Equivalently, if

P(z) =
n∑
j=0

cj z
j (1.8.3)

then

(δnP )(z) =
n∑
j=0

c̄n−j zj (1.8.4)

(iii) If f ∈ Ran(πn+1) and f ⊥ {z, z2, . . . , zn}, then f is a multiple of δn(�n).

Proof. (i) Multiplication by einθ is unitary and f → f̄ is anti-unitary.
(ii) Immediate from δn(z

j ) = znzj = zn−j .
(iii) Since δn is anti-unitary and δn(zj ) = zn−j , δnf ⊥ {1, z, . . . , zn−1}, so δnf =

c�n, and thus f = δ2
n(f ) = c̄δn(�n).

We now shift to standard, albeit unfortunate, notation and use�∗
n for δn(�n) and,

more generally, P ∗ for δn(P ). It is hoped that in context, the value of n is clear. But
for dµ = dθ

2π ,�n(z) = zn,�∗
n = 1, and (�∗

n)
∗ = zn becomes 1∗ = zn. The notation

is awful but, as I said, standard.

Theorem 1.8.2 (Szegő Recursion Relations). For any nontrivial measure dµ on
∂D, there exist constants αn ∈ C so that

�n+1 = z�n − ᾱn�
∗
n (1.8.5)

Proof. Since �n and �n+1 are monic, �n+1 − z�n is a polynomial of degree n.
Moreover, if j = 1, . . . , n,

〈zj ,�n+1 − z�n〉 = 〈zj ,�n+1〉 − 〈zj−1,�n〉 = 0

so, by (iii) of Proposition 1.8.1, there is αn, so (1.8.5) holds.

Applying ∗ on n+ 1 degree polynomials, we obtain

�∗
n+1 = �∗

n − αnz�n (1.8.6)

The {αn}∞n=0 are called Verblunsky coefficients. They are the analog of the Jacobi
parameters for OPRL. The reason for the minus sign and complex conjugate will
become clear later (see Theorem 2.5.2). Setting z = 0 in (1.8.5) and using the fact
that �n monic implies

�∗
n(0) = 1 (1.8.7)

we have

αn = −�n+1(0) (1.8.8)

The following is critical:

Theorem 1.8.3. We have that

‖�n+1‖2 = (1 − |αn|2)‖�n‖2 (1.8.9)
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so that

|αn| < 1 (1.8.10)

and if µ(∂D) = 1, then

‖�n‖2 =
n−1∏
j=0

(1 − |αj |2) (1.8.11)

Remark. Of course, more generally,

‖�n‖2 =
 n−1∏
j=0

(1 − |αj |2)
µ(∂D) (1.8.12)

Proof.

‖�n‖2 = ‖z�n‖2 = ‖�n+1 + ᾱn�
∗
n‖2

= ‖�n+1‖2 + |αn|2‖�n‖2 (1.8.13)

since ‖�∗
n‖ = ‖�n‖ and �∗

n ⊥ �n+1. (1.8.13) implies (1.8.9). ‖�n‖2 > 0 implies
(1.8.10) and (1.8.11) follows by induction.

From (1.8.11) and (1.8.5)/(1.8.6), we obtain

ϕn+1 = ρ−1
n (zϕn − ᾱnϕ

∗
n) (1.8.14)

ϕ∗
n+1 = ρ−1

n (ϕ∗
n − αnzϕn) (1.8.15)

where

ρn = (1 − |αn|2)1/2 (1.8.16)

The same calculation that led to (1.8.13) implies

Theorem 1.8.4. If �n(z0) = 0, then |z0| < 1. If �∗
n(z0) = 0, then |z0| > 1.

Proof. Since |z0| < 1 ⇔ |1/z0| > 1, the first sentence implies the second. If
�n(z0) = 0, let P(z) = �n(z)/(z − z0), which is a polynomial of degree n− 1, so
orthogonal to �n. Then

‖P ‖2 = ‖zP ‖2 = ‖(z − z0)P + z0P ‖2

= ‖�n + z0P ‖2

= ‖�n‖2 + |z0|2‖P ‖2 (1.8.17)

Since ‖�n‖2 > 0, |z0| < 1.

By Theorem 1.8.3, dµ �→ {αn(dµ)}∞n=0 maps the nontrivial measure to D∞. The
following is fundamental to thinking of OPUC as a spectral problem:

Theorem 1.8.5 (Verblunsky’s Theorem). The map of dµ �→ {αn(dµ)}∞n=0 is a
one-one map of nontrivial probability measures onto D∞.
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We will prove this in Section 2.5 (see Theorem 2.5.3); see also the Notes to this
section. We can now state Verblunsky’s form of Szegő’s theorem; by (1.8.11), the
limit on the left of (1.7.13) is just an infinite product:

Theorem 1.8.6 (Verblunsky’s Form of Szegő’s Theorem). For any nontrivial prob-
ability measure dµ on ∂D with w given by (1.6.3), we have

∞∏
n=0

(1 − |αn|2) = exp

(∫
log(w(θ))

dθ

2π

)
(1.8.18)

This is the version we will prove in Chapter 2; see Section 2.7. We note that it
has two differences from Szegő’s theorem, even the variant in Theorem 1.7.4. First,
we have written it in terms of Verblunsky coefficients, and second, unlike Szegő’s
original version, this allows dµs �= 0. One has the remarkable fact that the left side
of (1.8.18) is independent of dµs!

(1.8.18) always holds, although both sides can be zero connected with a “diver-
gent product” on the left and a diverging integral on the right. The two sides are
nonzero at the same time, so we get the following gem:

Corollary 1.8.7. For nontrivial probability measures dµ on ∂D obeying (1.6.3),
∞∑
n=0

|αn|2 < ∞ ⇔
∫

log(w(θ))
dθ

2π
> −∞ (1.8.19)

Remarks and Historical Notes. The Szegő recursion, (1.8.5)/(1.8.6), appeared
first in 1939 in his famous book on orthogonal polynomials [434]. But at roughly
the same time, they appeared in work of Geronimus [156, 157]. The history is
murky, but especially as their proofs and presentations are different, it seems like
Geronimus’ work was independent but several months later. Interestingly enough,
an equivalent form was rediscovered by Levinson [277] about ten years later, and
the engineering literature sometimes calls it the Levinson or Levinson–Szegő algo-
rithm.

Five years before Szegő, the αn appeared in work of Verblunsky in two remark-
able papers [452, 453] that were mainly ignored for almost seventy years! Verblun-
sky did not define the αn via a recursion relation, but in [452], he proved there were
rational functions ζn(c0, c1, . . . , cn−1; c̄0, . . . , c̄n−1) ∈ C and Rn(c0, c1, . . . , cn−1;
c̄0, . . . , c̄n−1) ∈ (0,∞) so that if {cj }n−1

j=0 were moments of some nontrivial measure
on ∂D, then the allowed values of cn for nontrivial measures were all the possible
values in the open disk of radius Rn in C centered at ζn. He then defined αn−1 by

cn = ζn + αn−1Rn (1.8.20)

This is discussed in Section 3.1 of [399]. Interestingly enough, the analog of this
approach for OPRL was rediscovered by Krein [252], Karlin–Studden [213], and
Krein–Nudel’man [253], and codified in a book by Dette–Studden [112] who in-
cluded the analysis of OPUC, thus reinventing [452]!

Theorem 1.8.4 goes back to Szegő [430]. The proof we give is due to Landau
[263]. [399] has six proofs of the theorem.
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In [452], Verblunsky also proved Theorem 1.8.5 using his definition of {αn}∞n=0.
Other proofs of this theorem are presented in [399] and [398]. In particular, we
mention the spectral theory proof, the analog of the proof of Favard’s theorem that
we gave in Section 1.3. Of course, for that we need an analog of Jacobi matrices.
The proper analog, the CMV matrix, will be discussed in Section 2.11. It is due to
Cantero, Moral, and Velázquez [70] but essentially was discovered earlier by Amar,
Gragg, Reichel, and Watson (see [403]) as a tool in numerical matrix analysis. See
Chapter 4 of [399] and [403] for further discussions. Before [399, 400] introduced
“Verblunsky coefficient,” the αn’s had a wide variety of names: reflection coeffi-
cient, Schur parameter, Szegő parameter, and Geronimus coefficient.

In [453], Verblunsky proved Theorem 1.8.6. In particular, he had the sum rule
(1.8.18) and he had a proof that allowed a singular part of the measure. Much of the
literature since has attributed this singular-part-allowed result to Kolmogorov and
Krein, whose work was later and which only proved

∑|αn|2=∞ ⇔ ∫
log(w(θ)) dθ2π= −∞ with a singular part allowed. Others attributed the general result to Geron-

imus or Szegő—again based on later work.
It is also true that KdV sum rules should be viewed as analogs of Verblunsky’s

sum rule, but the connection was not realized until many years later. Indeed, the
Killip–Simon sum rules discussed in Section 1.10 were discovered in a chain going
back to KdV sum rules without knowing of Verblunsky’s work. It was in tracking
down the history of (1.8.18) that we uncovered [452, 453].

One of the consequences of Corollary 1.8.7 is the existence of mixed spectrum
consistent with �2 decay: Given any measure dρs with

∫
dρs < 1, there is a measure

with a.c. support all of ∂D, that dρs, and with
∑∞

j=0|αj |2 < ∞. Not knowing of
this, the existence of analogous mixed spectral results for Schrödinger operators
was regarded as a significant problem around 2000.

1.9 BACK TO OPRL: SZEGŐ MAPPING AND THE

SHOHAT–NEVAI THEOREM

We can translate the gem for OPUC to a result for OPRL using an interesting con-
nection that Szegő found in 1922 [431, 434]. It is connected to the natural confor-
mal bijection of D→ C ∪ {∞} \ [−2, 2] by

z → E = z + z−1 (1.9.1)

This maps ∂D two-one to [−2, 2] by

eiθ
Q−→ 2 cos θ (1.9.2)

We can use this to map C([−2, 2]), the continuous functions on [−2, 2], to
C(∂D):

(Q�f )(e
iθ ) = f (Q(eiθ )) = f (2 cos θ) (1.9.3)

Notice Ran(Q�) is exactly the set of all functions invariant under eiθ → e−iθ . Dual-
ity then induces a mapQ∗

� :M+1,1(∂D) →M+,1([−2, 2]) between the probability
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measures by ∫
f (x)[Q∗

� (dµ)](x) =
∫
(Q�f )(e

iθ ) dµ(θ) (1.9.4)

Q∗
� is ontoM+,1([−2, 2]), but it is not one-one. For example, if f is any non-

negative L1 function with f (θ) + f (2π − θ) = 1 and
∫
f (θ) dθ2π = 1, then

Q�(f
dθ
2π ) = Q�(

dθ
2π ) = π−1(4−x2)−1/2 dx. However, restricted to measures invari-

ant under θ → −θ , Q� is one-one, and we denote its restriction to even measures
by Sz for Szegő mapping. Thus, dρ = Sz(dµ) if and only if dµ(θ) = dµ(−θ) and∫

f (θ) dµ(θ) =
∫
f

(
arccos

(
x

2

))
dρ(x) (1.9.5)

for any f obeying f (−θ) = f (θ). Sz is a bijection between nontrivial even proba-
bility measures on ∂D and nontrivial probability measures on [−2, 2].

Because of the impact of symmetry on Szegő recursion, we see

dµ even ⇔ �n(z) = �n(z̄) ⇔ αn ∈ R for all n (1.9.6)

Szegő [431, 434] proved the following:

Theorem 1.9.1. Let dρ = Sz(dµ) for nontrivial probability measures on [−2, 2]
and ∂D. Let Pn, pn be the monic and orthonormal OPRL for dρ and �n, ϕn the
monic and orthonormal OPUC for dµ. Then

Pn

(
z + 1

z

)
= [1 − α2n−1(dµ)]−1z−n[�2n(z)+�∗

2n(z)] (1.9.7)

‖Pn‖2
L2(dρ)

= 2(1 − α2n−1)
−1‖�2n‖∗

L2(dµ)
(1.9.8)

pn

(
z + 1

z

)
= [2(1 − α2n−1)]−1/2z−n(ϕ2n(z)+ ϕ∗

2n(z)) (1.9.9)

Sketch. (For details, see Theorem 13.1.5 of [400].) The right side of (1.9.7) is a
Laurent polynomial of the form

∑n
j=−n cj zj invariant under z → 1

z
on account

of (1.9.6). Every such Laurent polynomial has the form Qn(z + 1
z
) for Qn(·) of

degree n.
Since�2n(0) = −ᾱ2n−1,�∗

2n(z) = −α2n−1z
2n+· · · , soQn is monic. Moreover,

by (1.9.5) for � < n,∫
Qn(x)Q�(x) dρ(x) =

∫
�2n +�∗

2n (z) z
n−�(�2� +�∗

2�) dµ(z) (1.9.10)

= 0

since�2n ⊥ {z, . . . , z2n−1} and�∗
2n ⊥ {z, . . . , z2n−1}. Thus, theQn’s are the monic

OPRL for dρ, that is, we have proven (1.9.7).
(1.9.8) follows from (1.9.7) and

〈�2n,�
∗
2n〉 = 〈�2n,�

∗
2n−1 − α2n−1z�2n−1〉

= −α2n−1〈�2n,�2n + ᾱ2n−1�
∗
2n−1〉

= −α2n−1‖�2n‖2 (1.9.11)
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by using Szegő recursion and orthogonality. (1.9.9) is immediate from (1.9.7) and
(1.9.8).

There are several other relations we want to note because we will need them in
Section 3.11. First, (1.9.9) can be written

pn

(
z + 1

z

)
= [2(1 − α2n−1)]−1/2

(
z−nϕ2n(z)+ znϕ2n

(
1

z

))
(1.9.12)

By the same method, one can see

pn

(
z+ 1

z

)
= [2(1 +α2n−1)]−1/2

(
z−(n−1)ϕ2n−1(z)+ z(n−1)ϕ2n−1

(
1

z

))
(1.9.13)

Besides dρ = Sz(dµ), there is a second (nonprobability) measure one can asso-
ciate to dµ, namely,

dρ1(x) ≡ Sz1(dµ)(x) = 1
4 (4 − x2) dρ(x) (1.9.14)

Its orthonormal polynomials are denoted by qn(x). As with the derivation of (1.9.9),
one finds

1
2qn−1

(
z + 1

z

)
= [2(1 + α2n−1)]−1/2

(
z−nϕ2n(z)− znϕ2n(

1
z
)

z − z−1

)
(1.9.15)

= [2(1 − α2n−1)]−1/2

(
z−(n−1)ϕ2n−1(z)− z(n−1)ϕ2n−1(

1
z
)

z − z−1

)
(1.9.16)

This leads to

z−nϕ2n(z) = [ 1
2 (1 − α2n−1)

]1/2
pn

(
z + 1

z

)
+ [ 1

2 (1 + α2n−1)
]1/2 (z − z−1

2

)
qn−1

(
z + 1

z

)
(1.9.17)

z−(n−1)ϕ2n−1(z) = [ 1
2 (1 + α2n−1)

]1/2
pn

(
z + 1

z

)
+ [ 1

2 (1 − α2n−1)
]1/2 (z − z−1

2

)
qn−1

(
z + 1

z

)
(1.9.18)

When z = eiθ , pn(2 cos θ) and qn−1(2 cos θ) are real, but (z − z−1)/2 = i sin θ
is pure imaginary, so the absolute value square has no cross-term. Thus, we find the
formula we will need in Section 3.11

|ϕ2n(e
iθ )|2 + |ϕ2n−1(e

iθ )|2 = |pn(2 cos θ)|2 + sin2 θ |qn−1(2 cos θ)|2 (1.9.19)

where we used ([ 1
2 (1 + α2n−1)]1/2)2 + ([ 1

2 (1 − α2n−1)]1/2)2 = 1 to miraculously
have α2n−1 drop out!
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From Theorem 1.9.1, we get the formula relating an, bn and αn:

Theorem 1.9.2 (Direct Geronimus Relations). Let dρ = Sz(dµ) for nontrivial
probability measures on [−2, 2] and ∂D. Let {an, bn}∞n=1 be the Jacobi parameters
for dρ and {αn}∞n=0 the Verblunsky coefficients for dµ. Then

(i) (a1 . . . an)
2 = 2(1 + α2n−1)

2n−2∏
j=0

(1 − α2
j ) (1.9.20)

(ii) a2
n+1 = (1 + α2n+1)(1 − α2

2n)(1 − α2n−1) (1.9.21)

(iii) bn+1 = (1 − α2n−1)α2n − (1 + α2n−1)α2n−2 (1.9.22)

Remark. (i) holds for n ≥ 1 and (ii)/(iii) for n ≥ 0. For n = 1, (1.9.20) says
a2

1 = 2(1 + α1)(1 − α2
0), so (1.9.21) holds for n = 1 if we define

α−1 = −1 (1.9.23)

While α−2 enters in (1.9.22) for n = 0, it is multiplied by (1 + α−1) = 0, so only
the “boundary condition” (1.9.23) is needed.

Sketch. (For details, see Theorems 13.1.7 and 13.1.12 of [400].)
(i) Since

1 − α2
2n−1

1 − α2n−1
= 1 + α2n−1 (1.9.24)

this is a rewriting of (1.9.8) using (1.8.11) and (1.2.13).
(ii) This follows from dividing (i) for n+ 1 by (i) for n using (1.9.24).
(iii) This comes from (1.9.7) looking at theO(zn−1) terms. By a simple induction

from (1.2.8),

Pn(x) = xn −
 n∑

j=1

bj

 xn−1 +O(xn−2) (1.9.25)

From (1.8.5) and (1.8.6), we get that if

�n(z) = zn + Cnz
n−1 +O(zn−2) (1.9.26)

�∗
n(z) = −αn−1z

n +Dnz
n−1 +O(zn−2) (1.9.27)

then, by induction,

Cn =
n−1∑
j=0

ᾱjαj−1 (1.9.28)

(where, as usual, α−1 = −1) and

Dn = −αn−2 − αn−1Cn−1 (1.9.29)
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These formulae and (1.9.7) imply that

−
n∑
j=1

bj = C2n−1 − αn−2 (1.9.30)

and this yields (1.9.22).

This lets us “translate” Corollary 1.8.7 to OPRL:

Theorem 1.9.3 (Shohat–Nevai Theorem). Let

dρ(x) = f (x) dx + dρs(x)

be supported on [−2, 2]. Then∫ 2

−2
(4 − x2)−1/2 log(f (x)) dx > −∞ (1.9.31)

if and only if

lim sup a1 . . . an > 0 (1.9.32)

If these conditions hold, then

lim a1 . . . an (1.9.33)

exists in (0,∞) and
∞∑
n=1

(an − 1)2 + b2
n < ∞ (1.9.34)

and
N∑
n=1

(an − 1) and
N∑
n=1

bn (1.9.35)

have limits in (−∞,∞).

Remarks. 1. We emphasize (1.9.32) is lim sup, that is, it allows lim inf to be 0 so
long as some subsequence stays away from 0.

2. This can be rephrased as saying a1 . . . an always has a limit when supp(dρ) ⊂
[−2, 2] since the negation of (1.9.32) is lim a1 . . . an = 0. This is discussed further
in Section 3.6.

Proof. Let µ be defined by Sz(dµ) = dρ. By (1.9.30),

(a1 . . . an)
2 ≤ 4

2n−2∏
j=0

(1 − α2
j )

so (1.9.32) implies lim
∏∞
j=0(1 − α2

j ) (the limit always exists) is strictly positive
and thus,

∑∞
j=0 α

2
j < ∞. Conversely, if

∑
j α

2
j < ∞, then αj → 0 and so, by

(1.9.20), lim a1 . . . an exists in (0,∞). We have thus proven that

(1.9.32) ⇒
∞∑
j=0

α2
j < ∞ ⇒ lim a1 . . . an exists in (0,∞) (1.9.36)
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On the other hand, if

dµ = w(θ)
dθ

2π
+ dµs (1.9.37)

then, by (1.9.5),

w(θ) = 2π |sin θ |f (2 cos θ) (1.9.38)

It follows that (changing variables, using x = 2 cos θ ⇒ dx = 2 sin θ dθ or dθ =
(4 − x2)−1/2 dx)∫

log(w(θ))
dθ

2π
> −∞ ⇔

∫
log(f (x))(4 − x2)−1/2 dx > −∞ (1.9.39)

Thus, (1.8.19), (1.9.36), and (1.9.39) imply

lim sup(a1 . . . an) > 0 ⇔ (1.9.31)

and if this holds, then (1.9.33) has a limit.
Since bn+1 and a2

n+1 − 1 are functions of α2n+j (j = −2,−1, 0, 1), we see that
if
∑∞

j=0 α
2
j < ∞, then

∑
b2
n < ∞ and

∑
(a2
n − 1)2 < ∞. Since (an + 1) ≥ 1,

(an − 1)2 = (a2
n − 1)2/(an + 1)2 ≤ (a2

n − 1)2, so (1.9.34) holds.
Finally, when

∑∞
j=0 α

2
j < ∞, a2

n+1 − 1 and bn+1 are the sum of an L1 sequence
and a telescoping sequence, so a2

n+1 − 1 and bn+1 are summable. Since (a2
j − 1)−

2(aj − 1) = (aj − 1)2 is summable, we see that so is an+1 − 1.

We want to emphasize that while Corollary 1.8.7, on which Theorem 1.9.3 is
based, is a gem (equivalence of purely spectral condition to purely sufficient con-
dition), Theorem 1.9.3 is not. For it makes the a priori condition that supp(dρ) ⊂
[−2, 2], that is, it is the equivalence of

(1.9.31) + supp(dρ) ⊂ [−2, 2] (1.9.40)

to

(1.9.32) + supp(dρ) ⊂ [−2, 2] (1.9.41)

(1.9.40) is purely spectral, but (1.9.41) is not a condition only about the
Jacobi parameters. Indeed, supp(dρ) ⊂ [−2, 2] is a very strong restriction if
lim sup(a1 . . . an) > 0. Indeed, it implies strong conditions on the bn’s
(
∑∞

n=1 b
2
n < ∞ and

∑N
n=1 bn conditionally convergent).

Remarks and Historical Notes. The Szegő mapping was introduced by Szegő in
[431] and further discussed by him in [434]. Its purpose was to carry over asymp-
totics of OPUC when the Szegő condition holds to asymptotics of OPRL when the
OPRL Szegő condition holds (see Section 3.7).
dµ and dρ = Sz(dµ) can be related via their natural transforms

F(z) =
∫
eiθ + z

eiθ − z
dµ(θ) m(z) =

∫
dρ(x)

x − z
(1.9.42)

namely,

F(z) = 2(z − z−1)m(z + z−1) (1.9.43)
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This formula is from Geronimus [159]; see also the proof of Theorem 13.1.2 in
[400].

The map z → E = z + z−1 may seem miraculous, but it is canonical and
uniquely determined. By the Riemann mapping theorem, there is an analytic bijec-
tion, g, of D to C ∪ {∞} \ [−2, 2] and it is uniquely determined by g(0) = ∞ and
limz→0 zg(z) > 0. This unique map, abstractly guaranteed, is g(z) = z + z−1. This
will become a major theme in Chapter 9.

Geronimus [159, 160] found the relations (1.9.21)/(1.9.22). Other proofs can be
found in Damanik–Killip [96], Killip–Nenciu [223], and Faybusovich–Gekhtman
[129]. The latter two proofs are discussed in Section 13.2 of [400] and in Sec-
tion 13.3 of the expected second edition of [400], which is posted online at
http://www.math.caltech.edu/opuc/newsection13-3.pdf.

Szegő found a second natural map on nontrivial symmetric probability measures
on ∂D to a large subset of measures on [−2, 2], the map we called Sz1 in (1.9.14).
There are, in fact, four natural maps discussed in Section 13.2 of [400] and ref-
erences therein. We note that all the original papers prior to 2000 use [−1, 1] not
[−2, 2], and z → 1

2 (z + z−1). [400] discusses normalized measures (one needs
to multiply dρ1 by 2[(1 − |α0|2)(1 − α1)]−1 to normalize). For our purposes in
Section 3.11, the unnormalized measure that leads to (1.9.19) is more convenient.

Szegő’s book [434] includes (1.9.12)–(1.9.15) (in Section 11.5) and he noted
their inverses (in Section 6 of his appendix). The compact consequence in (1.9.19)
is from Máté–Nevai–Totik [302].

It is interesting to check these formulae in case dµ = dθ
2π . Then

Sz(dµ)(x) = 1

π

1√
4 − x2

dx (1.9.44)

= 1

π
d

(
arccos

(
x

2

))
(1.9.45)

and (Chebyshev polynomials of the first and second kinds)

pn(2 cos θ) = √
2 cos(nθ) (1.9.46)

qn(2 cos θ) = √
2

sin((n+ 1)θ)

sin θ
(1.9.47)

α2n−1 = 0 and, for example, (1.9.18) says

e−inθ e2niθ = 1√
2

√
2 cos(nθ)+ 1√

2
i sin θ

√
2

sin(nθ)

sin θ
(1.9.48)

Theorem 1.9.3 first appeared in Nevai [320] using in part ideas in Shohat [384].
We will eventually see (Theorem 3.6.1) that Theorem 1.9.3 can be extended to

situations where there is some point spectrum outside [−2, 2], namely, we will need
σess(dµ) = [−2, 2] and ∑

E∈supp(dµ)
E/∈[−2,2]

dist(E, σess(dµ))
1/2 < ∞ (1.9.49)

Copyrighted Material



chapter01 June 24, 2010

GEMS OF SPECTRAL THEORY 37

1.10 THE KILLIP–SIMON THEOREM

As we noted, Theorem 1.9.3 is a spectral result about OPRL related to Szegő’s
theorem, but not a gem as we defined it. Here is an OPRL gem that is related to
Szegő’s theorem.

It will involve the free Jacobi matrix, J0, whose Jacobi parameters are

an ≡ 1 bn ≡ 0 (1.10.1)

The OPs for this case are (as is easy to check obey the recursion relations on account
of trigonometric addition formulae; these are essentially the Chebyshev polynomi-
als of the second kind; see (1.2.35))

Pn(2 cos θ) = sin(n+ 1)θ

sin θ
(1.10.2)

The spectral measure is

dρ0(x) = 1

2π
(4 − x2)1/2 dx (1.10.3)

so that

σ(J0) = σess(J0) = σac(J0) = [−2, 2] (1.10.4)

Theorem 1.10.1 (Killip–Simon Theorem). Let {an, bn}∞n=1 be the Jacobi parame-
ters of a Jacobi matrix, J . Then

∞∑
n=1

(an − 1)2 + b2
n < ∞ (1.10.5)

if and only if
(a)

σess(J ) = σess(J0) (Blumenthal–Weyl) (1.10.6)

(b) The eigenvalues En /∈ σess(J0) obey
∞∑
n=1

dist(En, σess(J0))
3/2 < ∞ (Lieb–Thirring) (1.10.7)

(c) The function f of (1.4.3) obeys∫
σ(J0)

dist(x,R \ σ(J0))
1/2 log(f (x)) dx > −∞ (Quasi-Szegő) (1.10.8)

Remarks. 1. (1.10.5) is equivalent to J − J0 being a Hilbert–Schmidt operator (see
[170, 381]).

2. (1.10.8) is called “quasi-Szegő ” because it looks like the Szegő condition
(1.9.30) except − 1

2 has become 1
2 , allowing a larger class of f ’s. Similarly, (1.10.7)

looks like (1.9.49) except that 1
2 has become 3

2 .
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The proof of Theorem 1.10.1 will be the main topic of Chapter 3, but to set the
stage we want to say something about it. As with Szegő’s theorem, the key is a
sum rule. It will involve two somewhat complicated-looking functions, F defined
on R \ [−2, 2] and G on (0,∞):

F(β + β−1) = 1
4 [β2 − β−2 − log(β4)] β ∈ R \ [−1, 1] (1.10.9)

G(a) = a2 − 1 − log(a2) (1.10.10)

Notice that β �→ β + β−1 is a bijection of R \ [−1, 1] to R \ [−2, 2] so (1.10.9)
defines F .

We will eventually show that (Lemma 3.5.3)

F(E) = 1
2

∫ |E|

2
(E2 − 4)1/2 dE (1.10.11)

which implies

F(E) > 0 on R \ [−2, 2] (1.10.12)

and

F(E) = 2
3 (|E| − 2)3/2 +O((|E| − 2)5/2) (1.10.13)

We also see that (Lemma 3.5.2)

G(a) > 0 on (0,∞) \ {1} (1.10.14)

G(a) = 2(a − 1)2 +O((a − 1)3) (1.10.15)

We also need to define

Q(ρ) = 1

4π

∫ 2

−2
log

(√
4 − x2

2πf (x)

)√
4 − x2 dx (1.10.16)

which, given (1.10.3), can be rewritten

Q(ρ) = − 1
2

∫
log

[(
dρ

dρ0

)−1]
dρ0 (1.10.17)

whose integral is a relative entropy (see (2.2.1)). As we will show (Theorem 2.2.3),
using Jensen’s inequality, Q(ρ) ≥ 0. The sum rule is

Theorem 1.10.2. Let dρ be a nontrivial probability measure with associated
Jacobi parameters {an, bn}∞n=1 and σess(dρ) = [−2, 2]. Then

Q(ρ)+
∑

F(En) =
∞∑
n=1

[ 1
4 b

2
n + 1

2 G(an)] (1.10.18)

This is called the P2 sum rule. Notice that all terms on both sides are positive
so the sums always make sense, but they may be infinite. Moreover, σess(dρ) =
[−2, 2] and the left-hand side of (1.10.18) < ∞ if and only if (a)–(c) of
Theorem 1.10.1 holds, on account of (1.10.13) and (1.10.16). On the other hand,
using Theorem 1.4.1 and (1.10.15), σess(dρ) = [−2, 2] and the right-hand side
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of (1.10.18) < ∞ if and only if (1.10.5) holds. Thus, Theorem 1.10.2 implies
Theorem 1.10.1.

Where will complicated objects like F and G come from? The sum rule of
Verblunsky (1.8.18) is a form of Jensen’s equality for analytic functions, hence the
logs. In this case, the function is nonvanishing. The sum rule (1.10.18) will come
from a Jensen–Poisson equality and involves two Taylor coefficients: the zeroth,
which has logs, and the second without logs. There are terms from the zeros in this
case, hence the logs in the sum involving F . These details will unfold in Chapter 3.

Remarks and Historical Notes. Theorems 1.10.1 and 1.10.2 are from Killip–
Simon [225]. For historical context and the name “P2,” see the Notes to Sections 3.1
and 3.4.

1.11 PERTURBATIONS OF THE PERIODIC CASE

The material in Chapters 5, 6, and 8 is all connected with analyzing Szegő-like
theorems for OPRL (and some related OPUC) where the [−2, 2] of Theorem 1.10.1
is replaced by a union of a finite number of closed bounded intervals, especially the
case of perturbations of periodic OPRL. Chapters 5 and 6 discuss periodic OPRL
themselves, that is, Jacobi matrices, J0, where

a
(0)
n+p = a(0)n b

(0)
n+p = b(0)n (1.11.1)

for some p ≥ 2 and all n = 1, 2, . . . . (In Section 5.14, we also discuss OPUC when
α
(0)
n+p = α(0)n , mainly with p even.) Rather than studying an, bn, which approach
an ≡ 1, bn ≡ 0 in some sense, we want to discuss approach to J0. J0 is obviously
parametrized by R2p = {(a(0)n , b(0)n )pn=1}.

We begin the discussion by describing σ(J0), the spectrum of J0 (see
Sections 5.2, 5.3, and 5.4):

Theorem 1.11.1. σess(J0) is the disjoint union of k + 1 ≤ p distinct bounded
intervals

σess(J0) =
k+1⋃
j=1

[cj , dj ] (1.11.2)

where

c1 < d1 < c2 < · · · < ck+1 < dk+1

Each of the k gaps (dj , cj+1), j = 1, . . . , k, has zero or one point mass.

Generically, k = p − 1. Indeed, {(a(0)n , b(0)n ) | k < p − 1} is a variety of codi-
mension 2 in R2p. If k = p − 1, we say “all gaps are open.”

While we will not say a lot about the proof now, we do want to mention one of
the key tools. There is a natural polynomial in x, �(x; {a(0)n , b(0)n }pn=1) = �(x; J0)

of exact degree p, so

σess(J0) = �−1([−2, 2]) (1.11.3)
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We are interested in the analog Theorem 1.10.1 when J0 is a periodic Jacobi
matrix. The conjectured analog of the spectral side is obvious: (1.10.6)–(1.10.8)
were carefully stated in terms of σess(J0) rather than [−2, 2] precisely because they
will be one side of the proper periodic theorem.

There is an obvious guess for an analog of (1.10.5), namely,
∞∑
n=1

(an − a(0)n )
2 + (bn − b(0)n )

2 < ∞ (1.11.4)

This cannot be right for the following reason. The map

J1 = {(a(1)n , b(1)n ) | a(1)n+p = a(1)n , b
(1)
n+p = b(1)n } → �(x, J1) (1.11.5)

is a map of R2p to Rp+1, since � has p + 1 coefficients. As one would expect,
generic inverse images of a fixed � are of dimension 2p − (p + 1) = p − 1. In
fact, we will show (see Section 5.13):

Theorem 1.11.2. For fixed periodic J0, {J1 | �(x, J1) = �(x, J0)} is a torus of
dimension k where

k + 1 = # of components of σess(J0) (1.11.6)

This set is called the isospectral torus of J0, which we denote TJ0 . By (1.11.3),
if J1 ∈ TJ0 , σess(J1) = σess(J0), and so J1 also obeys (1.10.6)–(1.10.8), but J1 does
not obey (1.11.4). What we need is not �2 approach to a fixed J0 but rather to TJ0 .
We define

dm((an, bn)
∞
n=1, (a

′
n, b

′
n)

∞
n=1) =

∞∑
j=m

e−|j−m|[|aj − a′
j | + |bj − b′

j |] (1.11.7)

which measures the distances of the tails from each other. We also define

dm((an, bn)
∞
n=1, TJ0) = min

(a′
n,b

′
n)∈TJ0

dm((a, b), (a
′, b′)) (1.11.8)

It can happen that the minimizing (a′, b′) is m-dependent and that
dm((a, b), TJ0) → 0 as m → ∞ without dm((a, b), J1) → 0 for any J1 (although,
by compactness of TJ0 , there will be J1 and a subsequence for which
dm�((a, b), J1) → 0 as � → ∞).

Damanik–Killip–Simon [97] have proven:

Theorem 1.11.3 (DKS [97]). Let J0 be a fixed periodic Jacobi matrix of period p
with all gaps open (i.e., k = p − 1). Let J be another bounded Jacobi matrix with
Jacobi parameters (an, bn)∞n=1. Then the following are equivalent:
(a) (1.10.6), (1.10.7), and (1.10.8) hold.
(b)

∞∑
m=1

dm((a, b), TJ0)
2 < ∞ (1.11.9)

The proof of this theorem is the main goal of Chapter 8. A key tool will be the
study of the matrix �(J ; J0), that is, the matrix obtained by placing J for x in

Copyrighted Material



chapter01 June 24, 2010

GEMS OF SPECTRAL THEORY 41

the polynomial �(x; J0). Since � has degree p, �(J ) will be a matrix of band
width 2p + 1, that is, p diagonals strictly above, p strictly below, and on the main
diagonal. Such a matrix can be thought of as “tridiagonal” if we replace a’s and
b’s by p × p blocks. We will prove a Killip–Simon theorem for such block Jacobi
matrices in Chapter 4, and that will be a main tool in proving Theorem 1.11.3.

In the periodic case, σess(J0) is a disjoint union, (1.11.2). But not every such
union is σess(J0) for some periodic J0. Basically, there is a natural map (harmonic
measure),

M : {c1 < d1 < c2 < · · · < dk+1} →
(θj )k+1

j=1

∣∣∣∣ θj > 0;
k+1∑
j=1

θj = 1


which is continuous and onto. The allowed σess(J0) for periodic J0’s with all gaps
open isM((c, d)) = ( 1

p
, . . . , 1

p
), and if we drop the demand that all gaps are open,

then the range is the set of rational θ ’s.
For other finite band sets, σess(J0) can be that set if we allow certain almost

periodic J0’s. There is no Killip–Simon-type theorem known in this case, but one-
half of a Shohat–Nevai-type theorem is known due to work of Akhiezer, Widom,
Aptekarev, and Peherstorfer–Yuditskii. It will be the subject of Chapter 9.
Chapter 10 will discuss Killip–Simon-like theorems for perturbations of the graph
Laplacian on a Bethe–Cayley tree.

Remarks and Historical Notes. As noted, Theorem 1.11.3 is from Damanik–
Killip–Simon [97]. Prior results and historical context are discussed in the Notes to
Section 8.1. The history of results mentioned in the last paragraph are in the Notes
to Section 9.13.

1.12 OTHER GEMS IN THE SPECTRAL THEORY OF OPUC

While gems are the leitmotif of this chapter, our choice of topics is motivated by
looking at relatives of Szegő’s theorem. We will see that in this section by mention-
ing some other gems for OPUC (the Notes discuss OPRL) that will not be discussed
further. Here are three theorems in particular:

Theorem 1.12.1 (Baxter’s Theorem). Let µ be a probability measure on ∂D of the
form (1.6.3) and let {αn}∞n=1 be its Verblunsky coefficients. Then the following are
equivalent:

(i)
∞∑
n=0

|αn| < ∞ (1.12.1)

(ii) dµs = 0,

inf w(θ) > 0 (1.12.2)
∞∑

n=−∞
|ŵn| < ∞ (1.12.3)
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where

ŵn =
∫
e−inθw(θ)

dθ

2π
(1.12.4)

Remark. (1.12.3) implies w is continuous, so the inf in (1.12.2) is a min.

Theorem 1.12.2 (Ibragimov’s Form of the Strong Szegő Theorem). Let µ be a
probability measure on ∂D of the form (1.6.3) and let {αn}∞n=1 be its Verblunsky
coefficients. Then the following are equivalent:

(i)
∞∑
n=0

n|αn|2 < ∞ (1.12.5)

(ii) dµs = 0, the Szegő condition (1.8.19) holds, and
∞∑
n=1

n|L̂n|2 < ∞ (1.12.6)

where

L̂n =
∫
e−inθ log(w(θ))

dθ

2π
(1.12.7)

Theorem 1.12.3 (Nevai–Totik Theorem). Let µ be a probability measure on ∂D of
the form (1.6.3) and let {αn}∞n=1 be its Verblunsky coefficients. Let R > 1. Then the
following are equivalent:

(i) lim sup|αn|1/n ≤ R−1

(ii) µs = 0 and the Szegő function D, defined by (2.9.14), has D−1(z) analytic in
{z | |z| < R}.

There are two distinctions between these results and Szegő’s theorem. These only
involve µ’s with µs = 0 and with more rapid decay than just �2. If αn ∼ Cn−s ;
Szegő requires s > 1

2 , but these require s > 1 (and exponential decay in the case
of the Nevai–Totik theorem).

Remarks and Historical Notes. Baxter’s theorem is from Baxter [32] and is dis-
cussed in [399, Chapter 5]. Ibragimov’s form is from Ibragimov [203] and related
to Szegő’s work on the second term in Toeplitz determinant asymptotics discussed
in the Notes to Section 1.6 where references appear. The Nevai–Totik theorem is
from Nevai–Totik [323] and discussed in [399, Chapter 7].

For analogs of Theorems 1.12.1 and 1.12.2 for OPRL, see Ryckman [375, 376].
For an OPRL analog of Theorem 1.12.3, see Damanik–Simon [100].
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