
S1 

 

 

 

 

 

Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with 

Mn–OH2/OH Motifs Relevant to H2O Activation by the Oxygen Evolving 

Complex in Photosystem II 
 

Christopher J. Reed, and Theodor Agapie* 

 

 

 

Division of Chemistry and Chemical Engineering, California Institute of Technology 

Pasadena, California 91125, United States, Email: agapie@caltech.edu 

 

 

 

Supporting Information 

  



S2 

 

Table of Contents 

 

Experimental Procedures ........................................................................................................... S5 

Figure S1. 1H NMR spectra (300 MHz) of [LFe3O(Pz)3Mn][OTf] (1-[OTf]) and 

[LFe3O(Pz)3Mn][BArF
4] (1-[BArF

4]) ......................................................................................... S12 

Figure S2. 19F NMR spectra (300 MHz) of [LFe3O(Pz)3Mn][OTf] (1-[OTf]) and 

[LFe3O(Pz)3Mn][BArF
4] (1-[BArF

4]) ......................................................................................... S12 

Figure S3. 1H NMR spectra (300 MHz) of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]) and 

[LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]) ........................................................................................ S13 

Figure S4. 19F NMR spectra (300 MHz) of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]) and 

[LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]) ........................................................................................ S13 

Figure S5. 1H NMR spectra (300/500 MHz) of [LFe3O(Pz)3Mn][OTf]3 (3-[OTf]) and 

[LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]) ........................................................................................ S14 

Figure S6. 19F NMR spectra (300 MHz) of [LFe3O(Pz)3Mn][OTf]3 (3-[OTf]) and 

[LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]) ........................................................................................ S14 

Figure S7. 1H NMR spectra (500 MHz) of 1-[BArF
4] with various equivalents of H2O .......... S15 

Figure S8. 1H NMR spectra (500 MHz) of 2-[BArF
4] with various equivalents of H2O .......... S15 

Figure S9. 1H NMR spectra (500 MHz) of 3-[BArF
4] with various equivalents of H2O ........... S16 

Figure S10. 1H NMR spectra (500 MHz) of [LFe3O(Pz)3Mn(OH)] (5) .................................... S16 

Figure S11. 1H NMR spectra (300/500 MHz) of [LFe3O(Pz)3Mn(OH)][OTf] (6-[OTf]) and  

[LFe3O(Pz)3Mn(OH)][BArF
4] (6- [BArF

4]) ................................................................................ S17 

Figure S12. 1H NMR spectra (500 MHz) of [LFe3O(Pz)3Mn(OH)][BArF
4]2 (7-[BArF

4]) ........ S17 

Figure S13. 1H NMR spectra (500 MHz) of 3-[BArF
4] with various equivalents of 2,6-dimethyl-

pyridine ....................................................................................................................................... S18 

Table S1. pKa titration of 3-[BArF
4] with 2,6-dimethyl-pyridine .............................................. S18 

Figure S14. 1H NMR spectra (500 MHz) of products of 1-[BArF
4] with 1 equivalent TEMPO 

and 2,4,6-tri-tert-butylphenoxy radical ....................................................................................... S19 

Figure S15. 1H NMR spectra (500 MHz) of products of 2-[BArF
4] with 1 equivalent TEMPO 

and 2,4,6-tri-tert-butylphenoxy radical ....................................................................................... S19 

Figure S16. 1H NMR spectra (500 MHz) of products of 3-[BArF
4] with 1 equivalent TEMPO 

and 2,4,6-tri-tert-butylphenoxy radical ....................................................................................... S20 

Figure S17. 1H NMR spectra (500 MHz) of products of 7-[BArF
4] with 1 equivalent various 

bases with and without 5 equivalents trimethylphosphine ......................................................... S21 

Figure S18. 31P NMR spectra (120 MHz) of products of 7-[BArF
4] with 1 equivalent various 

bases with and without 5 equivalents trimethylphosphine ......................................................... S21 

Figure S19. UV-Vis absorbance spectra of 1-[OTf].................................................................. S22 

Figure S20. UV-Vis absorbance spectra of 2-[OTf] and 2-[BArF
4] ......................................... S22 

Figure S21. UV-Vis absorbance spectra of 3-[OTf] and 3-[BArF
4] ......................................... S23 

Figure S22. UV-Vis absorbance spectra of 6-[BArF
4] .............................................................. S23 

Figure S23. UV-Vis absorbance spectra of 7-[BArF
4] .............................................................. S24 

Figure S24. UV-Vis absorbance spectra of 2-[BArF
4] with various equivalents 1,1,3,3-

tetramethyl-2-phenylguanidine and pKa determination .............................................................. S24 

Figure S25. Cyclic voltammogram of 2-[OTf] in MeCN .......................................................... S25 

Figure S26. Cyclic voltammogram of 2-[OTf] in MeCN at various scan rates ........................ S25 

Figure S27. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] ................................ S26 

Figure S28. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] at various scan rates S26 



S3 

 

Figure S29. Cyclic voltammogram of 6-[BArF
4] in THF [250 mM H2O] ................................ S27 

Figure S30. Cyclic voltammogram of 6-[BArF
4] in THF [250 mM H2O] at various scan rates S27 

Table S2. Peak-to-peak separation and peak area ratio for CVs 2-[OTf], 2-[BArF
4], and 6-

[BArF
4] ........................................................................................................................................ S28 

Electrochemistry Data for Construction the Potential – pKa Diagram of 

[LFe3O(Pz)3Mn(OHx)] Clusters ............................................................................................... S29 

Table S3. Summary of observed E½ potentials with organic bases of various pKa values ........ S29 

Figure S31. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 2-methyl-

aniline .......................................................................................................................................... S30 

Figure S32. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 2-methyl-

pyridine ....................................................................................................................................... S30 

Figure S33. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 2,6-dimethyl-

pyridine ....................................................................................................................................... S31 

Figure S34. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 2,4,6-trimethyl-

pyridine ....................................................................................................................................... S31 

Figure S35. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with triethylamine .. S32 

Figure S36. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 2-phenyl-1,1,3,3-

tetramethylgaunidine................................................................................................................... S32 

Figure S37. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 1,1,3,3-

tetramethylguanidine................................................................................................................... S33 

Figure S38. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 1,8-

diazabicyclo[5.4.0]undec-7-ene .................................................................................................. S33 

Figure S39. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 7-methyl-1,5,7-

triazabicyclo[4.4.0]dec-5-ene ..................................................................................................... S34 

Figure S40. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 1,5,7-

triazabicyclo[4.4.0]dec-5-ene ..................................................................................................... S34 

Figure S41. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with tert-butylimino-

tri(pyrrolidino)phosphorane ........................................................................................................ S35 

Figure S42. Cyclic voltammogram of 2-[BArF
4] in THF [250 mM H2O] with 1-ethyl-2,2,4,4,4-

pentakis(dimethylamino) 2λ5,4λ5-catenadi(phosphazene) .......................................................... S35 

Figure S43. Cyclic voltammogram of 6-[BArF
4] in THF [250 mM H2O] with tert-butylimino-

tri(pyrrolidino)phosphorane ........................................................................................................ S36 

Figure S44. Cyclic voltammogram of 6-[BArF
4] in THF [250 mM H2O] with 1-ethyl-2,2,4,4,4-

pentakis(dimethylamino) 2λ5,4λ5-catenadi(phosphazene) .......................................................... S36 

Mössbauer simulation details................................................................................................... S37 

Simulation details for 1-[OTf].................................................................................................. S37 

Figure S46. Zero applied field Mössbauer spectrum of 1-[OTf] ............................................... S38 

Simulation details for 2-[OTf].................................................................................................. S38 

Figure S48. Zero applied field Mössbauer spectrum of 2-[OTf] ............................................... S39 

Simulation details for 3-[OTf].................................................................................................. S39 

Figure S49. Zero applied field Mössbauer spectrum of 3-[OTf] ............................................... S40 

Simulation details for 1-[BArF
4] .............................................................................................. S40 

Figure S51. Zero applied field Mössbauer spectrum of 1-[BArF
4] ........................................... S40 

Simulation details for 2-[BArF
4] .............................................................................................. S41 

Figure S53. Zero applied field Mössbauer spectrum of 2-[BArF
4] ........................................... S41 

Simulation details for 3-[BArF
4] .............................................................................................. S42 



S4 

 

Figure S54. Zero applied field Mössbauer spectrum of 3-[BArF
4] ........................................... S42 

Simulation details for 5 ............................................................................................................. S42 

Figure S56. Zero applied field Mössbauer spectrum of 5 .......................................................... S43 

Simulation details for 6-[BArF
4] .............................................................................................. S44 

Figure S58. Zero applied field Mössbauer spectrum of 6-[BArF
4] ........................................... S44 

Simulation details for 7-[BArF
4] .............................................................................................. S45 

Figure S60. Zero applied field Mössbauer spectrum of 7-[BArF
4] ........................................... S45 

Figure S61. Crystal structure and special refinement details of [LFe3O(Pz)3Mn][OTf] (1-

[OTf]) ......................................................................................................................................... S46 

Figure S62. Crystal structure and special refinement details of [LFe3O(Pz)3Mn][OTf]2 (2-

[OTf]) ......................................................................................................................................... S47 

Figure S63. Crystal structure and special refinement details of [LFe3O(Pz)3Mn][OTf]3 (3-

[OTf]) ......................................................................................................................................... S48 

Figure S64. Crystal structure and special refinement details of [LFe3O(Pz)3Mn(OH2)][OTf]2 (2-

[OTf] (H2O)) .............................................................................................................................. S49 

Figure S65. Crystal structure and special refinement details of [LFe3O(Pz)3Mn(OH)][OTf] (6-

[OTf]) ......................................................................................................................................... S50 

Table S4. Crystal and refinement data for complexes 1-[OTf] – 3-[OTf], 2-[OTf] (H2O) and 6-

[OTf] ........................................................................................................................................... S51 

References .................................................................................................................................. S52 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



S5 

 

Experimental Procedures 

 

General Considerations 

All reactions were performed at room temperature in an N2-filled M. Braun glovebox or using 

standard Schlenk techniques unless otherwise specified; reactions of compounds in THF/H2O 

mixtures were performed in an N2-filled VAC wetbox. Glassware was oven dried at 140 ºC for at 

least 2 h prior to use, and allowed to cool under vacuum. [LFe3(OAc)(OTf)][OTf]1, Mn(OTf)2 • 

2 MeCN2
, benzyl potassium3, iodosobenzene4, silver tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate bis-acetonitrile (Ag[BArF
4] • 2 MeCN)5, 2,4,6-tri-tert-

butylphenoxy radical (2,4,6-TBPR)6, and tetrapropylammnoium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate ([nPr4N][BArF
4])

7  were prepared according to literature 

procedures. All organic solvents were dried by sparging with nitrogen for at least 15 minutes, then 

passing through a column of activated A2 alumina under positive N2 pressure. 1H and 19F NMR 

spectra were recorded on a Varian 300 MHz spectrometer. 1H NMR spectra in THF/C6D6 were 

recorded on a Varian 500 MHz spectrometer using solvent suppression protocols. CD3CN, CD2Cl2, 

and C6D6 were purchased from Cambridge Isotope Laboratories, dried over calcium hydride, 

degassed by three freeze-pump-thaw cycles, and vacuum transferred prior to use.  

 

Physical Methods 

Mössbauer measurements. Zero field 57Fe Mossbauer spectra were recorded at 80 K in constant 

acceleration mode on a spectrometer from See Co (Edina, MN) equipped with an SVT-400 cryostat 

(Janis, Wilmington, WA). The isomer shifts are relative to the centroid of an α-Fe foil signal at 

room temperature. Samples were prepared by mixing polycrystalline material (20 mg) with boron 
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nitride in a cup fitted with screw cap or freezing a concentrated solution in MeCN or THF. The 

data were fit to Lorentzian lineshapes using WMOSS (www.wmoss.org). 

Electrochemical measurements. CVs and SWVs were recorded with a Pine Instrument Company 

AFCBP1 biopotentiostat with the AfterMath software package. All measurements were performed 

in a three electrode cell, which consisted of glassy carbon (working; ø = 3.0 mm), silver wire 

(counter) and bare platinum wire (reference), in a N2 filled M. Braun glovebox at RT. Either the 

ferrocene/ferrocinium (Fc/Fc+) or decamethylferrocene/decamethylferrocinium (Fc*/Fc*+; -0.524 

V vs Fc/Fc+ in THF/250 mM H2O, under our experimental conditions) redox waves were used as 

an internal standard for all measurements. 

X-ray crystallography. X-ray diffraction data was collected at 100 K on a Bruker PHOTON100 

CMOS based diffractometer (microfocus sealed X-ray tube, Mo Kα (λ) = 0.71073 Å or Cu Kα (λ) 

= 1.54178 Å). All manipulations, including data collection, integration, and scaling, were carried 

out using the Bruker APEXII software. Absorption corrections were applied using SADABS. 

Structures were solved by direct methods using XS (incorporated into SHELXTL) and refined by 

using ShelXL least squares on Olex2-1.2.7 to convergence. All non-hydrogen atoms were refined 

using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions 

and were refined using a riding model. Due to the size of the compounds most crystals included 

solvent-accessible voids that contained disordered solvent. In most cases the solvent could be 

modeled satisfactorily.  
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Experimental Procedures 

Potassium pyrazolate (KPz). 1.09 g (16.0 mmol) pyrazole was dissolved in 2 mL THF. To this 

stirring solution, a 10 mL THF solution of benzyl potassium, 2.03 g (15.6 mmol), was added 

dropwise; an off-white precipitate formed. After stirring for 20 minutes, the reaction was 

concentrated to 10 mL; the solids were collected on a glass frit and washed with 2 mL THF. The 

white solid was dried completely under vacuum to obtain 1.37 g (83% yield) potassium pyrazolate. 

Anal. calcd. (%) for C3H3KN2: C. 33.94; H, 2.85; N, 26.39. Found: C, 34.12; H, 2.89; N, 25.38. 

[LFe3O(Pz)3Mn][OTf]2 (2-[OTf]). A suspension of 387 mg (0.28 mmol) 

[LFe3(OAc)(OTf)][OTf] in 7 mL THF was stirred with 98.4 mg (0.29 mmol) Ca(OTf)2 for an 

hour before being frozen with LN2. To this mixture, 93.2 mg (0.88 mmol) KPz was added in 

thawing THF (4 mL) and stirred for 20 minutes at room temperature to obtain a dark red-orange 

solution. Iodosylbenzene, 63.6 mg (0.29 mmol), was added with 1 mL THF and the reaction was 

stirred for 90 minutes. 160 mg (0.37 mmol) Mn(OTf)2 • 2 MeCN solution in 2 mL THF was then 

added to the reaction. After 18 hours, the reaction was concentrated to 10 mL and filtered over a 

bed of celite; the precipitate was dried under vacuum, extracted with 8 mL DCM, and recrystallized 

via vapor diffusion of Et2O into the filtrate. Dark green crystals of 2-[OTf] were collected on a 

glass frit and dried (147 mg, 33% yield). Another 69 mg of 2-[OTf] can be obtained by drying the 

crude reaction filtrate, extracting with 6 mL DCM and recrystallizing via Et2O vapor diffusion 

(46% overall yield). X-ray diffraction quality crystals were obtained via oxidation of 

[LFe3O(Pz)3Mn][OTf] (1-[OTf]) with 1 equivalent of AgBPh4; Et2O vapor diffusion into a 

DCM/THF solution of the resulting [LFe3O(Pz)3Mn][OTf][BPh4] produced crystals of suitable 

quality. 1H NMR (300 MHz, CD3CN): δ 120.8 (br), 80.8 (br), 71.0, 70.1, 52.9, 52.3, 42.2, 28.0 

(br), 15.5, 13.0, 10.4, 8.1 (br), 4.38, 3.01, -2.51 (br). UV-Vis (MeCN) [ε (M-1 cm-1)] 241 nm 
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(6.53 104), 368 nm (6.49  103). Anal. calcd. (%) for C68H48F6Fe3MnN12O10S2: C. 51.25; H, 

3.04; N, 10.55. Found: C, 50.81; H, 3.12; N, 10.18. 

[LFe3O(Pz)3Mn][OTf] (1-[OTf]). A suspension of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]; 91.5 mg, 

0.057 mmol) in 2 mL THF was stirred as a THF solution of 10.9 mg CoCp2 (0.058 mmol) was 

added. After 1 hour, the reaction was dried under vacuum. 4 mL DME was added to the purple 

solid and stirred for 12 hours. The resulting purple precipitate was collected on a bed of celite, 

washed with 2 mL DME, dried, and eluted with 2:1 THF/MeCN; crystals of [LFe3O(Pz)3Mn][OTf] 

(1-[OTf]) were obtained by vapor diffusion of Et2O into this solution (46.3 mg, 56% yield). 1H 

NMR (300 MHz, CD3CN): δ 96.4 (br), 57.8, 55.5, 37.8 (br), 36.4, 34.3, 34.0, 25.2, 13.4, 13.0, 

12.0, 11.4, 3.4, 2.6, -6.4 (br). UV-Vis (MeCN) [ε (M-1 cm-1)] 250 nm (6.08  104), 517 nm (3.72 

 103). Anal. calcd. (%) for C67H48F3Fe3MnN12O7S: C, 55.70; H, 3.35; N, 11.63. Found: C, 55.36; 

H, 3.58; N, 11.20. 

[LFe3O(Pz)3Mn][OTf]3 (3-[OTf]). 9.2 mg (0.036 mmol) of AgOTf in THF was added to a stirring 

suspension of 56.8 mg (0.036 mmol) [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]) in THF. The resulting 

brown suspension was pumped down after 30 minutes. The reaction was filtered over a celite pad 

using DCM and the solvent was removed under reduced pressure. Crystals of 

[LFe3O(Pz)3Mn][OTf]3 were obtained via vapor diffusion of Et2O into a concentrated 

DCM/MeCN solution of the crude product, 57.4 mg (92% yield). 1H NMR (300 MHz, CD2Cl2): δ 

162.2 (br), 118.9 (br), 81.2, 76.9, 74.4, 73.1, 45.7, 18.8 (br), 16.3, 9.5, 3.34, 1., -6.5 (br). UV-Vis 

(MeCN) [ε (M-1 cm-1)] 241 nm (7.84  104), 411 nm (9.22  103). Anal. calcd. (%) for 

C69H48F9Fe3MnN12O13S3: C, 47.55; H, 2.78; N, 9.64. Found: C, 47.57; H, 3.07; N, 9.21. 

[LFe3O(Pz)3Mn] (4). 4.1 mg (0.18 mmol) sodium metal was mixed ~6 g elemental mercury with 

a pre-reduced stirbar. After 12 hours, a 5 mL THF suspension of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]; 
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114 mg, 0.07 mmol) was added to the Na/Hg amalgam. Over 4 hours, a blue precipitate formed; 

this resulting suspension was decanted from the amalgam and filtered over a fine porosity glass 

frit. The solids were washed with 5 mL THF and dried under vacuum. The resulting blue material, 

[LFe3O(Pz)3Mn] (78.1 mg; 84% yield), is insoluble or unstable in most typical organic solvents. 

Anal. calcd. (%) for C66H48Fe3MnN12O4: C. 61.18; H, 3.73; N, 12.94. Found: C, 60.44; H, 3.82; 

N, 12.87 

[LFe3O(Pz)3Mn][BArF
4] (1-[BArF

4]). 14.0 mg (0.013 mmol) Ag[BArF
4] • 2 MeCN in 2 mL Et2O 

was added to a stirring suspension of [LFe3O(Pz)3Mn] (4; 17.2 mg, 0.013 mmol); the blue 

suspension changed to a purple solution. After 15 minutes, the solvent was removed under reduced 

pressure. 3 mL Et2O was added to the purple residue and filtered over a pad of celite. The filtrate 

was dried to afford [LFe3O(Pz)3Mn][BArF
4] as a purple solid, 26.5 mg (92% yield). 1H NMR (300 

MHz, CD3CN) is identical to [LFe3O(Pz)3Mn][OTf] (1-[OTf]). Anal. calcd. (%) for 

C98H60BF24Fe3MnN12O4: C. 54.52; H, 2.80; N, 7.79. Found: C, 54.06; H, 2.84; N, 7.33. 

[LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]). 45.0 mg (0.043 mmol) Ag[BArF
4] • 2 MeCN in 2 mL Et2O 

was added to a stirring suspension of [LFe3O(Pz)3Mn] (4; 27.6 mg, 0.021 mmol); the blue 

suspension changed to a brown-green solution. After 15 minutes, the solvent was removed under 

reduced pressure. 3 mL Et2O was added to the brown residue and filtered over a pad of celite. 6 

mL benzene was added to the filtrate to produce an oily precipitate; after 30 minutes, the 

supernatant was removed and the remaining brown-green residue was dried under reduced 

pressure. 36.6 mg (57% yield) of the brown-green solid, 2-[BArF
4], was obtained; the 1H NMR 

(300 MHz, CD3CN) is identical to [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]). UV-Vis (THF/250 mM 

H2O) [ε (M-1 cm-1)] 368 nm (5.11 103). Anal. calcd. (%) for C130H72B2F48Fe3MnN12O4: C. 51.67; 

H, 2.40; N, 5.56. Found: C, 51.38; H, 2.56; N, 5.46. 
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[LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]). 6.4 mg (0.006 mmol) [AcFc][BArF
4] in 0.5 mL THF was 

added to [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]; 18.6 mg, 0.006 mmol). After 10 minutes, 5 mL 

benzene was added to the solution to produce an oily brown precipitate; after 30 minutes, the 

yellow supernatant was removed and the remaining brown residue was dried under reduced 

pressure. 18.4 mg of a brown solid was obtained (77% yield). 1H NMR (500 MHz, THF/C6D6 

[250mM H2O]): δ 83.8, 78.2, 75.9, 50.2, 24.9 (br), 16.6, 9.8 (br), 0.1. UV-Vis (THF/250 mM H2O) 

[ε (M-1 cm-1)] 405 nm (7.64 103). Anal. calcd. (%) for C162H84B3F72Fe3MnN12O4: C. 50.08; H, 

2.18; N, 4.33. Found: C, 50.34; H, 2.38; N, 4.29. 

[LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]). Addition of 100 µL of a 50 mM solution of DBU in 

THF/250 mM H2O to 2 mL 2 mM solution of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]) in THF/250 

mM H2O leads to a color change of the solution from green to red. Crystals for X-ray diffraction 

(6-[OTf]) were obtained by conducting the analogous reaction with [LFe3O(Pz)3Mn][OTf]2 (2-

[OTf]) and DBU in 95:5 MeCN/H2O and crystalizing via vapor diffusion of Et2O into this solution; 

considerable decomposition occurs on the timescale of crystallization, making crystallization 

unsuitable for preparing analytically pure solid samples of [LFe3O(Pz)3Mn(OH)][OTf]. Solutions 

of [LFe3O(Pz)3Mn(OH)][BArF
4] were prepared for electrochemistry experiments by stirring 4 mL 

of 2.5 mM [LFe3O(Pz)3Mn][[BArF4]]2 (2-[BArF
4]) and 0.1 M [nPr4N][BArF

4] solution in 

THF/250 mM H2O with ~2 mg of solid KOH pellet for 1 hour; the resulting red solution was 

decanted off the remaining KOH before electrochemical measurements were conducted. 1H NMR 

(500 MHz, THF/C6D6 [250mM H2O]): δ 153.1 (br), 102.7 (br), 85.9, 80.0, 64.8, 60.8, 58.1, 57.3, 

23.0, 15.7. 12.5, 10.9 (br). UV-Vis (THF/250 mM H2O) [ε (M-1 cm-1)] 467 nm (3.29  103). 

[LFe3O(Pz)3Mn(OH)] (5). Addition of 11 mg (0.03 mmol) decamethylcobaltocene in THF/250 

mM H2O to 4 mL 7 mM solution of [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]; 0.03 mmol) in 
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THF/250 mM H2O leads to a color change of the solution from red to blue. The reaction was 

pumped down after 30 minutes. 1H NMR (500 MHz, THF/C6D6 [250mM H2O]): δ 126.0 (br), 76.1 

(br), 59.6, 49.0, 46.9, 42.7, 37.0, 23.9 (br), 17.2, 15.6, 12.8, -14.9.  

[LFe3O(Pz)3Mn(OH)][BArF
4]2 (7-[BArF

4]). Method A. Addition of 160 µL of a 50 mM solution 

of Et3N in THF/250 mM H2O to 2 mL 2 mM solution of [LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]) in 

THF/250 mM H2O leads to a color change of the solution from brown to brown-green. 1H NMR 

spectroscopy confirms complete conversion to [LFe3O(Pz)3Mn(OH)][BArF
4]2. 

Method B. Addition of 200 μL of 6 mM solution of Ag[BArF4] • 2 MeCN in THF/250 mM H2O 

to 400 μL of a 3mM solution of [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]) in THF/250 mM H2O 

leads to formation of a grey precipitate. Filtration of this solution yields a brown-green solution 

with an identical 1H NMR obtained from Method A. 1H NMR (500 MHz, THF/C6D6 [250 mM 

H2O]: δ 110.2 (br), 89.1, 85.1, 70.0, 67.2, 62.0, 19.1 (br), 15.7, 13.1, 9.8 (br), 8.6 (br), 6.2 (br), 

1.1, 0.7, 0. UV-Vis (THF/250 mM H2O) [ε (M-1 cm-1)] 389 nm (5.29  103). 
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Figure S1. 1H NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn][OTf] (1-[OTf]) (top) and 

[LFe3O(Pz)3Mn][[BArF4]] (1-[BArF
4]; bottom) in CD3CN. 

 

 

 
Figure S2. 19F NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn][OTf] (1-[OTf]; top) and 

[LFe3O(Pz)3Mn][BArF
4] (1-[BArF

4]; bottom) in CD3CN. 

  

1-[OTf] 

1-[BArF
4] 

1-[OTf] 

1-[BArF
4] 
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Figure S3. 1H NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]; top) and 

[LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]; bottom) in CD3CN. 

 

 
 

Figure S4. 19F NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]; top) and 

[LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]; bottom) in CD3CN. 
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Figure S5. 1H NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn][OTf]3 in CD2Cl2 (3-[OTf]; top), 

[LFe3O(Pz)3Mn][BArF
4]3 in THF/C6D6 with three equivalents tetrabutylammonium 

trifluoromethanesulfonate (500 MHz, middle), and [LFe3O(Pz)3Mn][BArF
4]3 in THF/C6D6 (500 

MHz) (3-[BArF
4]; bottom).  

 

 
 

Figure S6. 19F NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn][OTf]3 (3-[OTf]) in CD2Cl2 (top) 

and [LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]; bottom) in THF/C6D6 (500 MHz). 
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3-[OTf] 

3-[BArF
4] 



S15 

 

 
 

Figure S7. 1H NMR spectra (500 MHz) of 2mM [LFe3O(Pz)3Mn][BArF
4] (1-[BArF

4]) in 

THF/C6D6 with various equivalents of H2O. Splitting of the peak at ~35 ppm was used to judge 

the amount of H2O coordination, which appeared complete at > 20 equivalents H2O. Addition of 

excess 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) leads to no significant change in the 1H NMR 

spectrum. 

 

 
 

Figure S8. 1H NMR spectra (500 MHz) of 2mM [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]) in 

THF/C6D6 with various equivalents of H2O. Coalescence of the two peaks at ~45 ppm was used 

to judge the amount of H2O coordination, which appeared complete at > 20 equivalents H2O.  
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5 equiv. H2O 

20 equiv. H2O 

100 equiv. H2O 

300 equiv. H2O 
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0 equiv. H2O 
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20 equiv. H2O 

100 equiv. H2O 

300 equiv. H2O 

1000 equiv. H2O 

500 equiv. H2O + ca. 150 equiv. DBU 
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Figure S9. 1H NMR spectra (500 MHz) of [LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]) in THF/C6D6 

with various equivalents of H2O. The upfield shift of the peak at ~50 ppm was used to judge the 

amount of H2O coordination, which appeared complete at > 20 equivalents H2O. 

 

 

 

 

 

 

 

 
 

Figure S10. 1H NMR spectra (500 MHz) of [LFe3O(Pz)3Mn(OH)] (5) in THF/C6D6 [250 mM 

H2O].  
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Figure S11. 1H NMR spectrum (300 MHz) of [LFe3O(Pz)3Mn(OH)][OTf] (6-[OTf]; top) and 

[LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]; middle) in CD3CN. 1H NMR spectrum (500 MHz) of 

[LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]; bottom) in THF/C6D6 [250 mM H2O]. 

 

 

 
Figure S12. 1H NMR spectrum (500 MHz) of [LFe3O(Pz)3Mn(OH)][BArF

4]2 (7-[BArF
4]) in 

THF/C6D6 [250 mM H2O]. 
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Figure S13. 1H NMR spectrum (500 MHz) of [LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]) with 

various equivalents of 2,6-dimethyl-pyridine in THF/C6D6 [250 mM H2O]. 

 
1H NMR δ (ppm) Χ3-[BArF4] K 

3-[BArF
4] 11.12 -  

3-[BArF
4] + 0.5 2,6-Me2-Py 10.90 0.632 1.625 

3-[BArF
4] + 1 2,6-Me2-Py 10.72 0.343 3.661 

3-[BArF
4] + 2 2,6-Me2-Py 10.70 0.319 1.100 

3-[BArF
4] + 3 2,6-Me2-Py 10.69 0.296 0.730 

7-[BArF
4] 10.51 -  

  Average K 1.779 (±0.654) 

 

Table S1. pKa titration of 3-[BArF
4] via 1H NMR spectroscopy with 2,6-dimethyl-pyridine. A 

sharp resonance ~ 11 ppm was selected to measure the mole fraction of 3-[BArF
4] (Χ3-[BArF4]), as 

3-[BArF
4] and 7-[BArF

4] undergo fast exchange on the NMR time-scale. The concentrations of 

3-[BArF
4], 2,6-Me2-Py, and [2,6-Me2-PyH][BArF

4] were determined from Χ3-[BArF4] via mass 

balance. These values were used to calculate the proton transfer equilibrium constant, K, 

according to the equation below: 

 

𝐾 =  
[𝟕– [𝐁𝑨𝒓𝟒

𝑭]][(2,6– Me2– PyH)([B𝐴𝑟4
𝐹])]

[𝟑– [𝐁𝑨𝒓𝟒
𝑭]][2,6– Me2– Py]

 

 

This value, along with the reported pKa of [2,6-Me2-Py]+, 9.5,8 was used to obtain the pKa value 

of 9.2 for 3-[BArF
4]. 

  

7-[BArF
4] 

3-[BArF
4] 

3-[BArF
4]+ 0.5 2,6-Me2-pyridine  

3-[BArF
4]+ 1 2,6-Me2-pyridine  

3-[BArF
4]+ 2 2,6-Me2-pyridine  

3-[BArF
4]+ 3 2,6-Me2-pyridine  



S19 

 

 
 

Figure S14. 1H NMR spectrum (500 MHz) of 2mM [LFe3O(Pz)3Mn][BArF
4] (1-[BArF

4]) in 

THF/C6D6 [250 mM H2O] in the presence of 1 equivalent TEMPO (top) and 2,4,6-tri-tert-

butylphenoxy radical (bottom). The major species of both NMRs matches the NMR of the 

[LFe3O(Pz)3Mn(OH)][BArF
4] cluster (6-[BArF

4]).  

 

 
 

Figure S15. 1H NMR spectrum (500 MHz) of 2mM [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]) in 

THF/C6D6 [250 mM H2O] in the presence of 1 equivalent TEMPO (top) and 2,4,6-tri-tert-

butylphenoxy radical (bottom). The the top NMR corresponds to starting material, 2-[BArF
4], 

while the bottom NMR corresponds to the [LFe3O(Pz)3Mn(OH)][BArF
4]2 cluster (7-[BArF

4]).  

1 equiv. TEMPO 

1 equiv. 2,4,6-TBPR 

1 equiv. TEMPO 

1 equiv. 2,4,6-TBPR 
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Figure S16. 1H NMR spectrum (500 MHz) of 2mM [LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]) in 

THF/C6D6 [250 mM H2O] in the presence of 1 equivalent TEMPO (top) and 2,4,6-tri-tert-

butylphenoxy radical (bottom). The major species of both NMRs corresponds to starting material 

(3-[BArF
4]).  

1 equiv. TEMPO 

1 equiv. 2,4,6-TBPR 
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Figure S17. 1H NMR spectra (500 MHz) of 2mM [LFe3O(Pz)3Mn(OH)][BArF
4]2 (7-[BArF

4]) in 

THF/C6D6 [250 mM H2O] in the presence of 1 equivalent various bases or with 5 equivalents 

trimethylphosphine and ‘tBuP1(pyrr)’ base. Addition of each base produces, in varying amounts, 

a spectrum that matches the NMR of the one electron reduced cluster, 

[LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]). 

 
 

Figure S18. 31P NMR spectra (120 MHz) of 2mM [LFe3O(Pz)3Mn(OH)][BArF
4]2 (7-[BArF

4]) in 

THF/C6D6 [250 mM H2O] in the presence of 5 equivalents trimethylphosphine with and without 

‘tBuP1(pyrr)’ base.   

7-[BArF
4] 

7-[BArF
4] + DBU 

7-[BArF
4] + TBD 

 

7-[BArF
4] + tBuP1(pyrr) 

 

7-[BArF
4] + EtP2(dma) 

 

7-[BArF
4] + 5 PMe3 

 

7-[BArF
4] + 5 PMe3 + tBuP1(pyrr) 

 
 

7-[BArF
4] + 5 PMe3 

 

7-[BArF
4] + 5 PMe3 + tBuP1(pyrr) 

 
 



S22 

 

 
 

Figure S19. UV-Vis absorbance spectra of [LFe3O(Pz)3Mn][OTf] (1-[OTf]; 1 cm cuvette; 200, 

100, 50, 25, 20, 10, 5, and 2.5 μM) in MeCN. [ε (M-1 cm-1)] 250 nm (6.08  104), 517 nm (3.72 

 103). 

 

   
 

Figure S20. (Left) UV-Vis absorbance spectra of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]; 1 cm 

cuvette; 100, 50, 25, 15, 10, 5, and 2.5 μM) in MeCN. [ε (M-1 cm-1)] 241 nm (6.53 104), 368 

nm (6.49  103). (Right) UV-Vis absorbance spectra of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]; 1 

cm cuvette; 100, 75, 50, and 20 μM) in THF/250 mM H2O. [ε (M-1 cm-1)] 368 nm (5.11 103). 
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Figure S21. (Left) UV-Vis absorbance spectra of [LFe3O(Pz)3Mn][OTf]3 (3-[OTf]; 1 cm 

cuvette; 200, 100, 50, 25, 15, 5, and 2.5 μM) in MeCN. [ε (M-1 cm-1)] 241 nm (7.84  104), 411 

nm (9.22  103). (Right) UV-Vis absorbance spectra of [LFe3O(Pz)3Mn][BArF
4]3 (3-[BArF

4]; 1 

cm cuvette; 100, 50, 25, and 12.5 μM) in THF/250 mM H2O. [ε (M-1 cm-1)] 405 nm (7.64 103). 

 

 
 

Figure S22. UV-Vis absorbance spectra of [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]; 1 cm 

cuvette; 100, 75, 50, 25, and 10 μM) in THF/250 mM H2O. [ε (M-1 cm-1)] 467 nm (3.29  103). 
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Figure S23. UV-Vis absorbance spectra of [LFe3O(Pz)3Mn(OH)][BArF
4]2 (7-[BArF

4]; 1 cm 

cuvette; 100, 50, 25, and 12.5 μM) in THF/250 mM H2O. [ε (M-1 cm-1)] 389 nm (5.29  103). 

 

A)         B) 

  
 

Figure S24. (A) UV-Vis absorbance spectra of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]; 1 cm 

cuvette; 100μM) in THF [250 mM H2O] after addition of various equivalents of 1,1,3,3-

tetramethyl-2-phenylguanidine (PhTMG; pKa(THF) = 16.5).8 (B) Titration plot for deprotonation 

of [LFe3O(Pz)3Mn][BArF
4]2  (2-[BArF

4]) to [LFe3O(Pz)3Mn(OH)][BArF
4]  (6-[BArF

4]) based on 

multiple titrations; the slope of the line represents an equilibrium constant value of K = 0.09, 

where: 

𝐾 =  
[𝟔– [𝐁𝐀𝐫𝟒

𝐅]][(PhTMGH)([BAr4
F])]

[𝟐– [𝐁𝐀𝐫𝟒
𝐅]][PhTMG]
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Figure S25. Cyclic voltammogram (green trace) of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf], 2.8 mM) 

in MeCN and 100 mM [Bu4N][PF6] at a scan rate of 200 mV/s with glassy carbon, Pt-wire, and 

Ag-wire as working, counter, and reference electrode, respectively. The open circuit potential 

was -0.5 V. (Red trace) Partial CV of 2-[OTf] of the reversible electrochemical features. 

 

 
Figure S26. Cyclic voltammograms of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf], 2.8 mM) in MeCN and 

100 mM [Bu4N][PF6] at various scan rates with glassy carbon, Pt-wire, and Ag-wire as working, 

counter, and reference electrode, respectively. 
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Figure S27. Cyclic voltammogram (red trace) of [LFe3O(Pz)3Mn(OH2)][BArF

4]2 (2-[BArF
4], 2.1 

mM) in THF [250 mM H2O] and 100 mM [nPr4N][BArF
4] at a scan rate of 50 mV/s with glassy 

carbon, Pt-wire, and Ag-wire as working, counter, and reference electrode, respectively. The open 

circuit potential was -0.2 V. 

  

 
 

Figure S28. Cyclic voltammograms of [LFe3O(Pz)3Mn(OH2)][BArF
4]2 (2-[BArF

4], 2.1 mM) in 

THF [250 mM H2O] and 100 mM [nPr4N][BArF
4] at various scan rates with glassy carbon, Pt-wire, 

and Ag-wire as working, counter, and reference electrode, respectively.  
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Figure S29. Cyclic voltammogram (red trace) of [LFe3O(Pz)3Mn(OH)][BArF

4] (6-[BArF
4], 2 

mM) in THF [250 mM H2O] and 100 mM [nPr4N][BArF
4] at a scan rate of 50 mV/s with glassy 

carbon, Pt-wire, and Ag-wire as working, counter, and reference electrode, respectively. The 

open circuit potential was -1.0 V.  

 

 
 

Figure S30. Cyclic voltammograms of [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4], 2 mM) in THF 

[250 mM H2O] and 100 mM [nPr4N][BArF
4] at various scan rates with glassy carbon, Pt-wire, and 

Ag-wire as working, counter, and reference electrode, respectively. 
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Redox Couple Assignment Epa (mV) Epc(mV) ΔEp(mV) Aa (μW) Ac (μW) Aa/Ap 

2-[OTf] 

[FeII
2FeIIIMnII]→ [FeIIFeIII

2MnII] -882 -799 83 22.0 18.5 1.2 

[FeIIFeIII
2MnII]→ [FeIII

3MnII] -154 -66 88 11.4 12.2 0.9 

2-[BArF
4] 

[FeII
2FeIIIMnII]→ [FeIIFeIII

2MnII] -958 -831 127 7.9 2.8 2.8 

[FeIIFeIII
2MnII]→ [FeIII

3MnII] -93 44 137 2.6 2.5 1.0 

6-[BArF
4] 

[FeII
3MnIII] → [FeII

2FeIIIMnIII] -1,406 -1,274 132 6.6 2.6 2.5 

[FeII
2FeIIIMnIII] → [FeIIFeIII

2MnIII] -548 -426 122 4.2 3.6 1.2 

[FeIIFeIII
2MnIII] → [FeIII

3MnIII] 172 354 182 1.6 3.0 0.5 

 

Table S2. Peak-to-peak separation (ΔEp; mV) and peak area ratio (Aa/c) for the redox couples in 

2-[OTf], 2-[BArF
4], and 6-[BArF

4].  
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Electrochemistry Data for Constructing the Potential – pKa Diagram of 

[LFe3O(Pz)3Mn(OHx)] Clusters. Cyclic voltammetry was performed on ~2 mM solutions of 

[LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4]), or [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4]) with glassy 

carbon working, Pt wire counter, and Ag wire reference electrodes in THF [250 mM H2O] and 

ca. 100 mM [nPr4N][BArF
4]. After collecting a blank CV, and CV of the cluster, one equivalent 

of a base was added by injecting a concentrated solution of it to the cluster solution and mixing 

via pipette. It was observed that quasi-reversible waves corresponding to PCET could be 

observed best at slow scan rates (< 200 mV/s) for all bases tested; faster scan rates led to loss of 

a return wave for the PCET. We postulate that proton transfer in these experiments is slow 

relative to the time scale of electrochemistry. With some bases, redox events for the PCET and 

fully protonated/deprotonated cluster could be observed simultaneously; we propose that this is 

due to a lower local concentration of base at the electrode surface, or slow proton transfer 

kinetics. For all measurements reported, it is assumed that half an equivalent of available base is 

consumed at the electrode at the PCET E½ potential; making the observed potential based only 

on the redox potential of the Mn–OHx cluster, and the pKa of the added base.9 All THF pKa 

values used here were obtained from a report by Rosés and co-workers.8 

 

Base with 2-[BArF
4] 

pKa 

(THF) E½(1) (V) E½(2) (V) E½(3) (V) 

2-methyl-aniline 7.5 -0.885 
-0.002 

 (-0.266) 
 

2-methyl-pyridine 8.6 -0.891  -0.028 0.327 

2,6-dimethyl-pyridine 9.5 -0.894  -0.082  

2,4,6-trimethyl-pyridine 10.4 -0.907  -0.390  

triethylamine 14.9 -0.900  -0.373  

2-phenyl-1,1,3,3-tetramethylguanidine 16.5 -0.956  -0.468  

1,1,3,3-tetramethylguanidine 17.8 -1.034  -0.454  

1,8-diazabicyclo[5.4.0]undec-7-ene 19.1 -1.066  -0.468  

7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene 20.5 -1.148 -0.460  

1,5,7-triazabicyclo[4.4.0]dec-5-ene 22.0 -1.180 -0.451  

tert-butylimino-tri(pyrrolidino)phosphorane 22.8 -1.271 -0.461  

1-ethyl-2,2,4,4,4-pentakis(dimethylamino)2-

λ5,4λ5-catenadi(phosphazene) 
28.1 

-1.317 -0.453  

Base with 6-[BArF
4] 

tert-butylimino-tri(pyrrolidino)phosphorane 22.8 -1.307 -0.517 0.245 

1-ethyl-2,2,4,4,4-pentakis(dimethylamino)2-

λ5,4λ5-catenadi(phosphazene) 

28.1 -1.333 -0.449 0.403 

 

Table S3. Summary of observed E½ potentials with organic bases of various pKa values. All 

reported potentials referenced to Fc/Fc+.  
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Figure S31. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 2-methyl-aniline (pKa(THF) 

= 7.5) at a scan rate of 50 mV/s. Asterisk (*) denotes redox couple of the decamethylferrocene 

internal standard. The open circuit potential was -0.4 V. 

 

 
 

Figure S32. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 2-methyl-pyridine 

(pKa(THF) = 8.6) at a scan rate of 50 mV/s. An independent scan in the presence of a 

decamethylferrocene internal standard was used as a reference. The open circuit potential was -0.3 

V. 
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Figure S33. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 2,6-dimethyl-pyridine 

(pKa(THF) = 9.5) at a scan rate of 50 mV/s. An independent scan in the presence of a 

decamethylferrocene internal standard was used as a reference. The open circuit potential was -0.3 

V. 

 

 
 

Figure S34. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 2,4,6-trimethyl-pyridine 

(pKa(THF) = 10.4) at a scan rate of 50 mV/s. An independent scan in the presence of a 

decamethylferrocene internal standard was used as a reference. The open circuit potential was -

0.3 V. The E½ of middle peak was determined via square wave voltammetry since its return wave 

was low in current, and overlapping with another peak.     
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Figure S35. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent triethylamine (pKa(THF) = 

14.9) at a scan rate of 200 mV/s. An independent scan in the presence of a ferrocene internal 

standard was used as a reference. The open circuit potential was -0.6 V.  

 

 
Figure S36. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF

4]2 (2-[BArF
4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 2-phenyl-1,1,3,3-

tetramethylguanidine (pKa(THF) = 16.5) at a scan rate of 50 mV/s. An independent scan in the 

presence of a ferrocene internal standard was used as a reference. The open circuit potential was 

-0.7 V.  

  

-60

-40

-20

0

20

40

60

-2 -1.5 -1 -0.5 0 0.5 1 1.5

C
u
rr

en
t 

(µ
A

)

Potential (V, vs. Fc/Fc+)

1 equiv. Et3N

-25

-15

-5

5

15

25

-2 -1.5 -1 -0.5 0 0.5 1 1.5

C
u
rr

en
t 

(µ
A

)

Potential (V, vs. Fc/Fc+)

1 equiv. PhTMG



S33 

 

 
 

Figure S37. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 1,1,3,3-

tetramethylguanidine (pKa(THF) = 17.8) at a scan rate of 50 mV/s. An independent scan in the 

presence of a ferrocene internal standard was used as a reference. The open circuit potential was 

-0.5 V. 

 

 
 

Figure S38. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 1,8-

diazabicyclo[5.4.0]undec-7-ene (pKa(THF) = 19.1) at a scan rate of 50 mV/s. An independent 

scan in the presence of a ferrocene internal standard was used as a reference. The open circuit 

potential was -0.7 V.  
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Figure S39. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 7-methyl-1,5,7-

triazabicyclo[4.4.0]dec-5-ene (pKa(THF) = 20.5) at a scan rate of 50 mV/s. An independent scan 

in the presence of a ferrocene internal standard was used as a reference. The open circuit 

potential was -0.7 V.  

 

 
 

Figure S40. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (pKa(THF) = 22.0) at a scan rate of 50 mV/s. An independent scan 

in the presence of a ferrocene internal standard was used as a reference. The open circuit 

potential was -0.7 V. 

  

-30

-20

-10

0

10

20

30

-2 -1.5 -1 -0.5 0 0.5 1 1.5

C
u
rr

en
t 

(µ
A

)

Potential (V, vs. Fc/Fc+)

1 equiv. MTBD

-20

-10

0

10

20

-2 -1.5 -1 -0.5 0 0.5 1 1.5

C
u
rr

en
t 

(µ
A

)

Potential (V, vs. Fc/Fc+)

1 equiv. TBD



S35 

 

 
 

Figure S41. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent tert-butylimino-

tri(pyrrolidino)phosphorane (pKa(THF) = 22.8) at a scan rate of 50 mV/s. An independent scan 

in the presence of a ferrocene internal standard was used as a reference. The open circuit 

potential was -0.7 V. 

 

 
 

Figure S42. Cyclic voltammogram of [LFe3O(Pz)3Mn][BArF
4]2 (2-[BArF

4], 2 mM) in THF [250 

mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 1-ethyl-2,2,4,4,4-

pentakis(dimethylamino)2λ5,4λ5-catenadi(phosphazene) (pKa(THF) = 28.1) at a scan rate of 50 

mV/s. An independent scan in the presence of a ferrocene internal standard was used as a 

reference. The open circuit potential was -0.7 V. 
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Figure S43. Cyclic voltammogram of [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4], 2 mM) in THF 

[250 mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent tert-butylimino-

tri(pyrrolidino)phosphorane (pKa(THF) = 22.8) at a scan rate of 50 mV/s. An independent scan 

in the presence of a ferrocene internal standard was used as a reference. The open circuit 

potential was -1.3 V. 

 

 
 

Figure S44. Cyclic voltammogram of [LFe3O(Pz)3Mn(OH)][BArF
4] (6-[BArF

4], 2 mM) in THF 

[250 mM H2O] and 100 mM [nPr4N][BArF
4] upon addition of 1 equivalent 1-ethyl-2,2,4,4,4-

pentakis(dimethylamino)2λ5,4λ5-catenadi(phosphazene) (pKa(THF) = 28.1) at a scan rate of 50 

mV/s. An independent scan in the presence of a ferrocene internal standard was used as a 

reference. The open circuit potential was -1.3 V.  
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Mössbauer simulation details for all compounds. All spectra were simulated by three pairs of 

symmetric quadrupole doublets with equal populations and Lorentzian lineshapes. They were 

refined to a minimum via least squares optimization (13 fitting parameters per spectrum). Signals 

appearing above 2 mm/s were indicative with the presence of high-spin FeII centers and correspond 

to species with isomer shifts of ~ 1 mm/s. The Mössbauer data were fit to be consistent with our 

previously reported iron clusters.1, 10-12 The observed Mossbauer parameters are in agreement with 

related six-coordinate high-spin FeII/FeIII centers.13-16  

 

Simulation details for 1-[OTf]: The spectrum displays three discernable peaks corresponding to 

two quadrupole doublets in ~ 1:2 ratio (Figure S45). The parameters of the more intense peak are 

consistent with a high-spin Fe(II) assignment, while the smaller doublet displays parameters 

consistent with high-spin Fe(III). The final fit split the large doublet into two equal signals (Figure 

S46). 

 

 
Figure S45. Mössbauer spectrum of 1-[OTf] (black dots) fit with two doublets in a ~1:2 ratio 

(gray trace) with parameters δ = 0.543 mm/s; ΔEq = 1.366 mm/s (orange trace) and δ = 1.126 

mm/s; ΔEq = 3.294 mm/s (blue trace). 

  



S38 

 

 
 

Figure S46. Zero applied field Mössbauer spectrum of 1-[OTf] (black dots) fit with three 

quadrupole doublets. The blue traces are assigned to high-spin Fe(II) and the orange trace is 

assigned as high-spin Fe(III). 

 

 

 

Simulation details for 2-[OTf]: The spectrum displays four discernable peaks corresponding to 

two quadrupole doublets in ~ 1:2 ratio (Figure S47). The parameters of the more intense peak are 

consistent with a high-spin Fe(III) assignment, while the smaller doublet displays parameters 

consistent with high-spin Fe(II). The final fit split the large doublet into two equal signals (Figure 

S48). 

 
Figure S47. Mössbauer spectrum of 2-[OTf] (black dots) fit with two doublets in a ~1:2 ratio 

(gray trace) with parameters δ = 0.469 mm/s; ΔEq = 0.740 mm/s (orange trace) and δ = 1.124 

mm/s; ΔEq = 2.926 mm/s (blue trace). 

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.135 3.513 33 

 1.127 3.016 33 

 0.563 1.318 33 
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Figure S48. Zero applied field Mössbauer spectrum of 2-[OTf] (black dots) fit with three 

quadrupole doublets. The blue trace is assigned to high-spin Fe(II) and the orange traces are 

assigned to high-spin Fe(III). 

 

Simulation details for 3-[OTf]: The spectrum displays a single quadrupole doublet signal. 

Although three Fe(III) signals are expected, the best fit was obtained with only one set of 

parameters (Figure S49). 

 
Figure S49. Zero applied field Mössbauer spectrum of 3-[OTf] (black dots) fit to a single 

quadrupole doublet (orange trace); this signal is assigned to the high-spin Fe(III) centers in the 

cluster. 

  

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.119 2.931 33 

 0.468 0.578 33 

 0.423 0.913 33 

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 0.443 0.804 100 
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Simulation details for 1-[BArF
4]: The spectrum displays three discernable peaks corresponding 

to two quadrupole doublets in ~ 1:2 ratio (Figure S50). The parameters of the more intense peak 

are consistent with a high-spin Fe(II) assignment, while the smaller doublet displays parameters 

consistent with high-spin Fe(III). The final fit split the large doublet into two equal signals (Figure 

S51). 

 
 

Figure S50. Mössbauer spectrum of 1-[BArF
4] (black dots) fit with two doublets in a ~1:2 ratio 

(gray trace) with parameters δ = 0.556 mm/s; ΔEq = 1.267  mm/s (orange trace) and δ = 1.115 

mm/s; ΔEq = 3.153 mm/s (blue trace). 

 

 
 

Figure S51. Zero applied field Mössbauer spectrum of 1-[BArF
4] (THF solution [250 mM H2O]; 

black dots) fit with three quadrupole doublets. The blue traces are assigned to high-spin Fe(II) and 

the orange trace is assigned to high-spin Fe(III). 

  

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.119 3.460 33 

 1.099 2.860 33 

 0.570 1.266 33 
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Simulation details for 2-[BArF
4]: The spectrum displays four discernable peaks corresponding to 

two quadrupole doublets in ~ 1:2 ratio (Figure S52). The parameters of the more intense peak are 

consistent with a high-spin Fe(III) assignment, while the smaller doublet displays parameters 

consistent with high-spin Fe(II). The final fit split the large doublet into two equal signals (Figure 

S53). 

 

 
 

Figure S52. Mössbauer spectrum of 2-[BArF
4] (black dots) fit with two doublets in a ~1:2 ratio 

(gray trace) with parameters δ = 0.485 mm/s; ΔEq = 0.746  mm/s (orange trace) and δ = 1.132 

mm/s; ΔEq = 2.858 mm/s (blue trace). 

 

 
 

Figure S53. Zero applied field Mössbauer spectrum of 2-[BArF
4] (THF solution [250 mM H2O]; 

black dots) fit with three quadrupole doublets. The blue trace is assigned to high-spin Fe(II) and 

the orange traces are assigned to high-spin Fe(III).  

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.128 2.858 33 

 0.487 0.999 33 

 0.478 0.540 33 
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Simulation details for 3-[BArF
4]: The spectrum displays a single quadrupole doublet signal. 

Although three Fe(III) signals are expected, the best fit was obtained with only one set of 

parameters (Figure S54). 

 

 
 

Figure S54. Zero applied field Mössbauer spectrum of 3-[BArF
4] (THF solution [250 mM H2O]; 

black dots) fit with a single quadrupole doublet assigned to high-spin Fe(III) centers. 

 

Simulation details for 5: The spectrum displays an apparently asymmetric quadrupole doublet 

signal. The data could be fit to a single quadrupole doublet (Figure S55). The final fit split this 

signal into three equally abundant Fe(II) centers, to account for the asymmetry of the doublet 

(Figure S56). 

 

  
Figure S55. Mössbauer spectrum of 5 (black dots) fit with a single quadrupole doublet with 

parameters δ = 1.113 mm/s; ΔEq = 2.985  mm/s (blue trace).  

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 0.444 0.800 100 
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Figure S56. Zero applied field Mössbauer spectrum of 5 (black dots) fit with three quadrupole 

doublets. The blue traces are assigned to high-spin Fe(II).  

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.115 3.399 33 

 1.115 2.947 33 

 1.078 2.417 33 
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Simulation details for 6-[BArF
4]: The spectrum displays four discernable peaks corresponding to 

two quadrupole doublets in ~ 1:2 ratio (Figure S57). The parameters of the more intense peak are 

consistent with a high-spin Fe(II) assignment, while the smaller doublet displays parameters 

consistent with high-spin Fe(III). The final fit split the large doublet into two equal signals (Figure 

S58). 

 

 
 

Figure S57. Mössbauer spectrum of 6-[BArF
4] (black dots) fit with two doublets in a ~1:2 ratio 

(gray trace) with parameters δ = 0.525 mm/s; ΔEq = 0.769 mm/s (orange trace) and δ = 1.075 

mm/s; ΔEq = 2.893 mm/s (blue trace). 

 

 
 

Figure S58. Zero applied field Mössbauer spectrum of 6-[BArF
4] (THF solution [250 mM H2O]; 

black dots) fit with three quadrupole doublets. The blue traces are assigned to high-spin Fe(II) and 

the orange trace is assigned to high-spin Fe(III). 

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.093 3.091 33 

 1.083 2.576 33 

 0.534 0.756 33 
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Simulation details for 7-[BArF
4]: The spectrum displays three discernable peaks, with a shoulder 

on the lowest peak, corresponding to two quadrupole doublets in ~ 1:2 ratio (Figure S59). The 

parameters of the more intense peak are consistent with a high-spin Fe(III) assignment, while the 

smaller doublet displays parameters consistent with high-spin Fe(III). The final fit split the large 

doublet into two equal signals (Figure S60). 

 

 
 

Figure S59. Mössbauer spectrum of 7-[BArF
4] (black dots) fit with two doublets in a ~1:2 ratio 

(gray trace) with parameters δ = 0.447 mm/s; ΔEq = 0.790 mm/s (orange trace) and δ = 1.109 

mm/s; ΔEq = 3.018 mm/s (blue trace). 

 

 
 

Figure S60. Zero applied field Mössbauer spectrum of 7-[BArF
4] (THF solution [250 mM H2O]; 

black dots) fit with three quadrupole doublets. The blue trace is assigned to high-spin Fe(II) and 

the orange traces are assigned to high-spin Fe(III).  

 δ (mm/s) |ΔEq| (mm/s) Rel. % 

 1.096 3.033 33 

 0.434 0.547 33 

 0.462 1.019 33 
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Figure S61. Crystal structure of [LFe3O(Pz)3Mn][OTf] (1-[OTf]). Ellipsoids are shown at the 

50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 

 

Special refinement details for [LFe3O(Pz)3Mn][OTf]. The triflate counterion bound to Mn1 is 

disordered over two positions with refined occupancies of 12% (S200 through C200) and 88% 

(S201 through C201).  
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Figure S62. Crystal structure of [LFe3O(Pz)3Mn][OTf]2 (2-[OTf]). Ellipsoids are shown at the 

50% probability level. Hydrogen atoms, solvent molecules, and outersphere counterions are 

omitted for clarity. 

 

Special refinement details for [LFe3O(Pz)3Mn][OTf]2. The triflate counterion bound to Mn1 is 

disordered over two positions with refined occupancies of 51% (S200 through C200) and 49% 

(S201 through C201). A disordered THF molecule was modeled over two positions with 

occupancies of 81% (O102 through C107) and 19% (O101 through C111). A different THF 

molecule was modeled to be only partially occupied (56%; O103 through C115). A co-

crystallized solvent site was modeled to contain a mixture of three different molecules: a THF 

(27% O105 through C123), a DCM (22%; Cl10 through C124), and Et2O (64%; O104 through 

C119). 
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Figure S63. Crystal structure of [LFe3O(Pz)3Mn][OTf]3 (3-[OTf]). Ellipsoids are shown at the 

50% probability level. Hydrogen atoms, solvent molecules, and outersphere counterions are 

omitted for clarity. 

 

Special refinement details for [LFe3O(Pz)3Mn][OTf]3. The triflate counterion bound to Mn1 is 

disordered over two positions with refined occupancies of 30% (S200 through C200) and 70% 

(S201 through C201). An outersphere triflate was modeled in two different positions with 

occupancies of 38% (S203 through C203) and 62% (S204 through C204). For the S203 through 

C203 triflate, a nearby Et2O molecule was modeled as partially occupied at 62%. For the S204 

through C204, a nearby MeCN molecule was modeled as partially occupied at 38%.  
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Figure S64. Crystal structure of [LFe3O(Pz)3Mn(OH2)][OTf]2 (2-[OTf] (H2O)). Ellipsoids are 

shown at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for 

clarity. 
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Figure S65. Crystal structure of [LFe3O(Pz)3Mn(OH)][OTf] (6-[OTf] ). Ellipsoids are shown at 

the 50% probability level. Hydrogen atoms, solvent molecules, and outersphere counterions are 

omitted for clarity. 

 

Special refinement details for [LFe3O(Pz)3Mn(OH)][OTf]. The outersphere triflate is 

disordered over two positions, modeled at an occupancy of 50% each. Both triflates are on 

symmetry elements and positionally disordered. For the S200 through C200 triflate, this was 

modeled with EXYZ/EADP constraints. For the S201 throughC201 triflate, the C and S atoms 

were constrained with EXYZ/EACDP, and the O203 through F205 atoms were modeled in 

alternating positions, at 50% occupancy each. A void in the structure was a mixture of different 

solvent molecules that couldn’t be adequately modeled, and a solvent mask was used to account 

for this electron density. 
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 1-[OTf] 2-[OTf] 3-[OTf] 

CCDC Number 1848679 1848681 1848680 
Empirical 

formula 
C77H62F3Fe3MnN12O8S C105.2H81.2BCl0.5F3Fe3MnN12O10.5S C76H53.5F9Fe3MnN13.4O14.1S3 

Formula weight 

(g/mol) 
1594.9 2019.8 1869.7 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) CuKα (λ = 1.54178) 

a (Å) 12.2741(5) 14.2908(12) 44.125(2) 

b (Å) 19.4126(8) 15.9691(13) 14.3106(7) 

c (Å) 15.5112(6) 24.3709(17) 24.8034(10) 

α (°) 90 71.236(4) 90 

β (°) 108.397(2) 75.366(2) 90.402(3) 

γ (°) 90 70.262(4) 90 

V (Å3) 3507.0(2) 4891.6(7) 15661.9(13) 

Z 2 2 8 

Cryst. syst. monoclinic triclinic monoclinic 

Space group P21 P-1 C2/c 

ρcalcg (cm3) 1.510 1.371 1.586 

2 σ range (°) 5.028 to 56.648 5.076 to 60.444 6.492 to 145.272 

μ (mm-1) 0.899 0.668 7.226 

GOF 1.031 1.029 1.037 

R1, wR2 

 (I>2σ (I)) 0.0244, 0.0583 0.0635, 0.1712 0.0840, 0.2131 

 

 

 6-[OTf] 2-[OTf] (H2O)  

CCDC Number 1848678 1848677  
Empirical formula C67H49F3Fe3MnN12O8S C72H62F6Fe3MnN12O13S2  

Formula weight 

(g/mol) 
1461.7 1703.9  

Radiation CuKα (λ = 1.54178) CuKα (λ = 1.54178)  

a (Å) 14.7283(7) 12.2685(6)  

b (Å) 19.3808(10) 29.896(2)  

c (Å) 45.518(2) 19.6152(17)  

α (°) 90 90  

β (°) 92.474(3) 92.393(5)  

γ (°) 90 90  

V (Å3) 12980.9(11) 7188.2(9)  

Z 8 4  

Cryst. syst. monoclinic monoclinic  

Space group C2/c P21/c  

ρcalcg (cm3) 1.496 1.575  

2 σ range (°) 7.544 to 132.498 5.392 to 149.51  

μ (mm-1) 7.742 7.461  

GOF 1.160 1.140  

R1, wR2 (I>2σ (I)) 0.1305, 0.2771 0.1109, 0.2060  

 

Table S4. Crystal and refinement data for complexes 1-[OTf] – 3-[OTf], 2-[OTf] (H2O) and 6-

[OTf]. 
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