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Observations have revealed that nearly all galaxies contain supermassive black holes (SMBHs)
at their centers. When galaxies merge, these SMBHs form SMBH binaries (SMBHBs) that emit
low-frequency gravitational waves (GWs). The incoherent superposition of these sources produce
a stochastic GW background (GWB) that can be observed by pulsar timing arrays (PTAs). The
optimal statistic is a frequentist estimator of the amplitude of the GWB that specifically looks for the
spatial correlations between pulsars induced by the GWB. In this paper, we introduce an improved
method for computing the optimal statistic that marginalizes over the red noise in individual pulsars.
We use simulations to demonstrate that this method more accurately determines the strength of the
GWB, and we use the noise-marginalized optimal statistic to compare the significance of monopole,
dipole, and Hellings-Downs (HD) spatial correlations and perform sky scrambles.

I. INTRODUCTION

Long-wavelength gravitational waves (GWs) with fre-
quencies of 10−9 − 10−7 Hz can be observed with pulsar
timing arrays (PTAs) composed of millisecond pulsars
(MSPs) [1, 2]. The dominant astrophysical source in this
frequency range is the isotropic stochastic gravitational
wave background (GWB) made up of the incoherent su-
perposition of GWs from inspiraling supermassive black
hole binaries (SMBHBs) [3–5]. By monitoring the peri-
odic emission from these pulsars using radio telescopes,
we can probe the dynamics of the spacetime through
which the pulses travel. This is done by searching for
correlations in the pulsar timing residuals, which measure
the differences between the expected and observed pulse
times of arrival. Current upper limits on the stochas-
tic background from PTAs are approaching theoretical
predictions for the GWB [6–8]

PTAs primarily use Bayesian data analysis to compare
the inferred probabilities of various models for the resid-
uals, including one where they contain the GWB [9, 10].
Bayesian inference is a powerful tool because it prop-
erly accounts for degeneracies between parameters and
incorporates all sources of uncertainty into the analysis.
However, running a full Bayesian analysis is computa-
tionally intensive, particularly when searching for evi-
dence of Hellings-Downs (HD) spatial correlations – the
“smoking gun” of the GWB.

The significance of the GWB can also be assessed us-
ing the optimal statistic, a frequentist estimator for the
GWB amplitude [11–13]. Not only does it provide an
independent detection procedure, complementing a more

robust Bayesian analysis, but it requires significantly less
time to compute. In particular, the optimal statistic
produces results for a given spatial correlation function
within seconds; a full Bayesian analysis including corre-
lations has to run for many weeks on a supercomputing
cluster.

However, when pulsars have significant red noise the
optimal statistic gives biased results due to the strong
covariance between the individual red noise parameters
and the GWB amplitude. Many individual pulsars show
evidence for red noise [14, 15], and uncertainty in the
position of the Solar System barycenter (SSB) leads to a
common red process in all pulsars [8]. Here we present
a technique for improving the accuracy of the optimal
statistic by including an additional step: marginalizing
over the individual pulsars’ red noise parameters using
the posterior distributions from a full Bayesian analy-
sis of all the pulsars. This hybrid approach produces a
more precise estimate of the GWB amplitude Agw and
its uncertainty, while requiring only a few minutes more
than the more traditional method of computation. Fur-
thermore, the same Bayesian analysis drawn upon by the
noise marginalization can be used to compute the opti-
mal statistic for any choice of spatial correlations simply
by changing the overlap-reduction function (ORF). For
example, clock errors lead to a common red signal with
monopole spatial correlations [16], while uncertainty in
the SSB produces dipole spatial correlations [17]. This
technique is used to perform the frequentist searches for
common red signals with HD, monopole, and dipole spa-
tial correlations in the NANOGrav 11-year data set [8].

This paper is organized as follows. In Sec. II we lay
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out the procedure for computing the noise-marginalized
optimal statistic. We use simulations to compare the
noise-marginalized optimal statistic to the optimal statis-
tic computed with fixed noise. In Sec. III we determine
how well the noise-marginalized optimal statistic can dif-
ferentiate between monopole, dipole, and HD spatial cor-
relations. In Sec. IV we use the noise-marginalized opti-
mal statistic to perform sky scrambles, which assess the
significance of HD spatial correlations by scrambling the
pulsars’ sky positions [18, 19]. We summarize our results
in Sec. V as well as discuss future applications of the
noise-marginalized optimal statistic.

II. NOISE-MARGINALIZED OPTIMAL
STATISTIC

The optimal statistic is a frequentist estimator for the
amplitude of an isotropic stochastic GWB, and can be
derived by analytically maximizing the PTA likelihood
function in the weak-signal regime [11, 13]. It is con-
structed from the timing residuals δt, which can be writ-
ten as

δt = Mε+ Fa + U j + n . (1)

The term Mε describes the contributions to the residuals
from perturbations to the timing model. The term U j de-
scribes noise that is correlated for observations made at
the same time at different frequencies and uncorrelated
over different observing epochs (ECORR), while n de-
scribes uncorrelated white noise from TOA measurement
uncertainties. The term Fa describes red noise, includ-
ing both red noise intrinsic to the pulsar and a common
red noise signal common to all pulsars (such as a GW
signal). We model the red noise as a Fourier series,

Fa =

N∑
j=1

[
aj sin

(
2πjt

T

)
+ bj cos

(
2πjt

T

)]
, (2)

where N is the number of Fourier modes used (typically
N = 30) and T is the span of the observations.

The optimal statistic is constructed from the autoco-
variance and cross-covariance matrices Ca and Sab,

Ca =
〈
δtaδt

T
a

〉
, (3)

Sab =
〈
δtaδt

T
b

〉∣∣
a6=b , (4)

where δta is a vector of the residuals of the ath pulsar
in the PTA. For the GWB with power spectral density
(PSD) Pgw(f) and overlap reduction function (ORF) Γab,
the cross-covariance matrices are

Sab = Fa φ
gw
ab F

T
b , (5)

where

φgwab = Γab Pgw(f) . (6)

The ORF is the HD curve [1],

Γab =
1

2

[
1− 1

2

(
1− cos θab

2

)
+3

(
1− cos θab

2

)
ln

(
1− cos θab

2

)]
, (7)

where θab is the angle between the pulsars. We model
the PSD of the GWB as a power law:

Pgw(f) =
A2

gw

12π2

(
f

fyr

)−γ
, (8)

where γ = 13/3 assuming SMBHBs evolve solely due to
GW emission and fyr ≡ 1/(1 yr). The optimal statistic

Â2 is given by

Â2 =

∑
ab δt

T
aC
−1
a S̃abC

−1
b δtb∑

ab tr
(
C−1a S̃abC

−1
b S̃ba

) , (9)

where S̃ab is the amplitude-independent cross-correlation
matrix,

A2
gwS̃ab = Sab . (10)

This definition of the optimal statistic ensures that
〈Â2〉 = A2

gw. If Agw = 0, the variance of the optimal
statistic is

σ0 =

[∑
ab

tr
(
C−1a S̃abC

−1
b S̃ba

)]−1/2
. (11)

For a measured value of Â2, the significance of Â2 6= 0 is
given by the signal-to-noise ratio (SNR)

ρ =

∑
ab δt

T
aC
−1
a S̃abC

−1
b δtb[∑

ab tr
(
C−1a S̃abC

−1
b S̃ba

)]1/2 . (12)

When constructing the residuals δta, we typically fix
the red noise parameters to the values that maximize the
single-pulsar likelihood. However, this leads to a bias in
the optimal statistic because the individual red noise and
common red noise parameters are highly covariant, with
the optimal statistic computed using fixed red noise pa-
rameters systematically lower than the true value of A2

gw.
In this section, we compare three techniques for comput-
ing the optimal statistic. First, we fix the individual
pulsars’ red noise parameters to the maximum-likelihood
values from individual Bayesian pulsar noise analyses.
Second, we fix the pulsars’ red noise parameters to the
values that jointly maximize the likelihood for a Bayesian
analysis of all of the pulsars in our PTA that searches over
the pulsars’ red noise parameters and a common red pro-
cess. For the noise-marginalized method, we draw values
of the pulsars’ red noise parameters from the posteriors
generated by the common Bayesian analysis.
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TABLE I. Pulsar parameters used in simulated PTA data
sets.

Pulsar Tobs (yrs) σw (µs) Ared γred

J0030+0451 11.0 0.339 -13.93 3.56

J0613−0200 11.0 0.281 -13.14 1.22

J1012+5307 11.0 0.320 -12.79 1.51

J1024−0719 6.0 0.421 − −
J1455−3330 11.0 0.773 − −
J1600−3053 8.0 0.146 − −
J1614−2230 7.0 0.261 − −
J1640+2224 11.0 0.202 − −
J1713+0747 11.0 0.093 -14.14 1.58

J1741+1351 6.0 0.106 − −
J1744−1134 11.0 0.096 − −
B1855+09 11.0 0.218 -13.75 3.54

J1853+1303 7.0 0.215 − −
J1909−3744 11.0 0.034 -13.84 1.74

J1918−0642 11.0 0.342 − −
J2010−1323 7.0 0.413 − −
J2145−0750 11.0 0.281 -12.69 1.30

J2317+1439 11.0 0.160 − −

We use these methods to compute the optimal statistic
for simulated “NANOGrav-like” data sets consisting of
18 MSPs with observation times, sky positions, and noise
properties matching the 18 longest-observed pulsars in
the NANOGrav 11-year data set [15]. We include white
noise for all pulsars, plus red noise parametrized as a
power law,

Pa(f) =
A2

red

12π2

(
f

fyr

)−γ
, (13)

for those pulsars that show evidence of red noise (see
Table I for more details). We use the PTA data analy-
sis package PAL2 [20] to perform the noise analyses and
compute the optimal statistic.

Figure 1 shows the fixed-noise and noise-marginalized
optimal statistic for a simulation with a GWB with
Agw = 5 × 10−15. For this particular realization of the
GWB, the fixed-noise analysis using the individual noise
results gives Â2 = 6.6 × 10−30 with SNR = 2.4, and
the fixed-noise analysis using the common noise results
gives Â2 = 2.6 × 10−29 with SNR = 6.0. The noise-
marginalized analysis gives Â2 = (2.5±0.1)×10−29 with

SNR = 4.8 ± 0.8. The value of Â2 from the fixed-noise
analysis using the individual noise results is significantly
lower than the injected level of the GWB, while the val-
ues of Â2 from the fixed-noise analysis using the common
noise results and the noise-marginalized analysis are in
good agreement with each other and the injected value.
The fixed-noise analysis using the individual noise results
also gives a significantly lower SNR than the other two.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Â2 ×10−29

0

1

2

3

4

×1029

Fixed noise, individual
Fixed noise, common
Injected value
Noise marginalized,
common

0 2 4 6 8
SNR

0.0

0.1

0.2

0.3

0.4

0.5 Fixed noise, individual
Fixed noise, common
Noise marginalized,
common

FIG. 1. Optimal statistic for a simulated PTA data set con-
taining a GWB with Agw = 5 × 10−15. The fixed-noise anal-
ysis using the individual noise values (dashed blue lines) sys-

tematically underestimates Â2, while the fixed-noise analy-
sis using the common noise values (solid orange lines) and
the noise-marginalized analysis (green histograms) more ac-
curately recover Agw.

In Fig. 2 we show the optimal statistic for 300 dif-
ferent realizations of a GWB with Agw = 5 × 10−15

computed using the three techniques described above.
For the noise-marginalized analysis, we plot the mean
values of Â2 and ρ. Using the noise values from indi-
vidual noise analyses systematically underestimates the
strength of the GWB, while using the noise values from
a common noise analysis more accurately recovers the
injected value. The fixed-noise analysis using the indi-
vidual noise results finds Â2 = (7.9 ± 6.8) × 10−30 and
ρ = 2.3 ± 1.5, averaging over realizations of the GWB.
The fixed-noise and noise-marginalized analyses using the
common noise results both give Â2 = (2.4± 1.2)× 10−29

and ρ = 4.1± 1.7.

The fixed-noise and noise-marginalized analyses using
the common noise results give the same results for Agw =
5 × 10−15, but there are differences between them when
analyzing data sets containing smaller injected values of
Agw. In Fig. 3 we show a P–P plot of the cumulative
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FIG. 2. Optimal statistic and SNR for 300 simulated data
sets containing a GWB with Agw = 5 × 10−15. The fixed-
noise analysis using the individual noise values (blue) system-

atically underestimates Â2, while both the fixed-noise anal-
ysis using the common noise values (orange) and the noise-
marginalized analysis (green) accurately recover Agw.

fraction of simulations for which the injected A2
gw lies

within a given confidence interval of the measured Â2.
The confidence interval of Â2 is determined assuming Â2

follows a Gaussian distribution, with mean and variance
σ2
Â2

taken from the distribution for Â2 found from our

300 realizations of the GWB (i.e., the top panel of Fig. 2).

If Â2 has a Gaussian distribution centered around A2
gw,

the curves should lie along a straight line with slope equal
to unity (the dotted, diagonal lines in Fig. 3).

We compare the three methods for computing the op-
timal statistic for simulations with Agw = 5 × 10−15,
Agw = 10−15, and Agw = 5 × 10−16. The fixed-noise
optimal statistic using the individual noise results sys-
tematically underestimates Â2 (Fig. 3, left panel). The
fixed-noise optimal statistic using the common noise re-
sults recovers Â2 well for large values of Agw, but for

small values it also underestimates Â2 (Fig. 3, middle
panel). The noise-marginalized optimal statistic provides

the most accurate estimate of Â2 over the range of Agw

considered here (Fig. 3, right panel).

III. MONOPOLE AND DIPOLE SPATIAL
CORRELATIONS

The optimal statistic is particularly well-suited to com-
pare multiple spatial correlation relations because using
a different spatial correlation only requires changing the
ORF in Eq. (6). Tiburzi et al. [21] demonstrated how
the optimal statistic can be altered to fit for multiple
spatial correlations at once in order to mitigate common
noise sources such as clock error and ephemeris error.
Here we take a different approach – rather than simul-
taneously fitting for signals with different spatial corre-
lations, we look at how well we can distinguish between
different spatial correlations by computing the optimal
statistic with monopole and dipole spatial correlations
for the same simulated data sets as in the previous sec-
tion. For a monopole signal, the ORF becomes simply
Γab = 1, while for a dipole signal, the ORF becomes
Γab = cos θab.

Our ability to distinguish between different spatial cor-
relations depends on the strength of the GWB and the
angular separations between pulsar pairs, θab. We can
determine the overlap between ORFs corresponding to
different spatial correlations by computing the “match
statistic” [18],

M̄ =

∑
a,b6=a ΓabΓ

′
ab√(∑

a,b6=a ΓabΓab

)(∑
a,b6=a Γ′abΓ

′
ab

) , (14)

where Γ and Γ′ are two different ORFs. For the 18
pulsars used in these simulations, the match statistic
for monopole and HD correlations is M̄ = 0.264, and
the match statistic for dipole and HD correlations is
M̄ = 0.337. These match statistics describe a fundamen-
tal limit on our ability to identify the spatial correlations
of a common red signal as HD rather than monopole or
dipole that depends only on the number of pulsars in our
PTA and their sky positions.

Figure 4 shows the noise-marginalized mean value of
Â2 and the mean SNR computed assuming monopole,
dipole, and HD spatial correlations for 300 simulated
data sets. Using a monopole or dipole ORF gives a lower
value for the mean optimal statistic and mean SNR com-
pared to the HD ORF. Using HD spatial correlations
gives Â2 = (2.4 ± 1.2) × 10−29, while using monopole

spatial correlations gives Â2 = (2.5 ± 3.1) × 10−30, and

dipole spatial correlations gives Â2 = (5.3±4.2)×10−30.
We find a noise-marginalized mean SNR above 1.0 in 97%
of our simulated data sets using the HD ORF, and in 50%
and 68% of our simulated data sets using the monopole
and dipole ORFs, respectively. The mean SNR using the
HD ORF, averaged over realizations of the GWB, is 4.1,
and we find an SNR greater than this using the monopole
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FIG. 3. P–P plot showing the cumulative fraction of simulations for which A2
gw lies within a given confidence interval of the

measured Â2. The probability distribution of Â2 is assumed to be a Gaussian with variance σ2
Â2 . The fixed-noise optimal

statistic using the individual and common noise results both give biased values of Â2, particularly for small values of Agw,

while the noise-marginalized optimal statistic gives more accurate values of Â2 over a large range of injected values of Agw.

and dipole ORFs in just 3% and 3.5% of our simulations,
respectively.

This overlap between the monopole, dipole, and HD
ORFs also means that a common red process that does
not have HD correlations may be confused for a GWB.
Figure 5 shows the results of 300 simulations containing
a stochastic signal with dipole spatial correlations. Al-
though a dipole signal has been injected, the HD ORF
gives a mean SNR greater than 5 in 82% of the simula-
tions. However, both the monopole and HD ORFs give
smaller values of the mean Â2 and mean SNR compared
to the dipole ORF. Furthermore, there are no simulations
for which the mean SNR with HD ORF is greater than
the mean SNR with dipole ORF. This demonstrates the
importance of comparing the SNR from different spatial
correlations when determining the type of spatial corre-
lations present.

IV. SKY SCRAMBLES

The significance of spatial correlations can also be
tested with “sky scrambles,” where the ORF is altered in
order to simulate changing the pulsars’ positions [18, 19].
The scrambled ORFs are required to have small values of
M̄ with the true ORF and each other so that they form a
nearly-orthogonal set. This ensures that the distribution
of Â2 computed using the scrambled ORFs forms the null
hypothesis distribution. Taylor et al. [19] showed how
sky scrambles affect the Bayes’ factor for simulated data
sets. We performed a similar analysis using frequentist
methods.

We generated 725 scrambled ORFs using a Monte
Carlo algorithm. We required the scrambled ORFs to

have M̄ < 0.2 with respect to the true ORF and each
other. This threshold was chosen to be comparable to
the match statistics between the HD ORF with monopole
and dipole ORFs given in Sec. III. We did not chose a
smaller threshold because significantly more time would
have been needed to generate 725 scrambled ORFs. For
each simulation, we computed the noise-marginalized
mean optimal statistic and mean SNR for each scram-
bled ORF, and compared them to the values found using
the true ORF.

Figure 6 shows the results of a sky scramble analysis for
a sample data set with Agw = 5× 10−15. For this partic-
ular realization of the GWB, none of the 725 scrambled
ORFs resulted in a mean SNR greater than the mean
SNR using the true ORF (p < 0.0014). In Fig. 7, we
plot the distribution of p-values of the 725 sky scram-
bles for 300 realizations of the GWB. For a GWB with
Agw = 5× 10−15, 95% of the simulations have p ≤ 0.05,
and 74% of the simulations have p ≤ 0.003. For a GWB
with Agw = 10−15, 76% of the simulations have p ≤ 0.05,
and 39% have p ≤ 0.003. This shows that for smaller
values of Agw, there is a greater chance that noise fluctu-
ations will appear to have the spatial correlations of the
GWB.

V. CONCLUSION

The definitive signature of a GWB in PTA data is
spatial correlations described by the HD curve. Search-
ing for these using a full Bayesian approach is compu-
tationally expensive, requiring many weeks on a super-
computing cluster. In contrast, the optimal statistic can
be computed in seconds. In this paper, we introduce
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FIG. 4. Noise-marginalized mean optimal statistic and mean
SNR for 300 simulated data sets containing an injected GWB
with Agw = 5 × 10−15. We compare the values of the mean
optimal statistic and the SNR found using monopole (blue),
dipole (orange), and HD (green) spatial correlations. The

dashed vertical line indicates the injected value, Â2 = 2.5 ×
10−29.

an improved method for computing the optimal statis-
tic, which uses the output from a Bayesian analysis for
individual and common red signals to marginalize the op-
timal statistic over the individual pulsars’ red noises. As
shown in Sec. II, the noise-marginalized optimal statistic
more accurately recovers the GWB amplitude than the
fixed-noise optimal statistic, which underestimates the
GWB amplitude when significant red noise is present in
some pulsars.

Although the noise-marginalized optimal statistic re-
quires computing the optimal statistic thousands of
times, it is still many orders of magnitude faster than a
Bayesian search. Furthermore, the results from a single
Bayesian analysis, which are needed to marginalize over
the red noise parameters, can be used to compute the op-
timal statistic for many different spatial correlations. In
Sec. III we use the noise-marginalized optimal statistic to
compare the strength of monopole, dipole, and HD cor-
relations in simulated PTA data with a GWB. In Sec. IV
we use the noise-marginalized optimal statistic to per-

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Â2 ×10−28

0

1

2

3

4

5

×1028

Injected value
Monopole
Dipole
Hellings-Downs

0 5 10 15 20 25
SNR

0.00

0.05

0.10

0.15

0.20 Monopole
Dipole
Hellings-Downs

FIG. 5. Noise-marginalized mean optimal statistic and mean
SNR for 300 simulated data sets containing an injected
stochastic signal with dipole spatial correlations and A =
5 × 10−15. We compare the values of the optimal statistic
and mean SNR found using monopole (blue), dipole (orange),
and HD (green) spatial correlations. The dashed vertical line

indicates the injected value, Â2 = 2.5 × 10−29.

form sky scramble analyses, where we compare the mean
SNR computed using the true ORF to the mean SNR
computed using scrambled ORFs and measure the sig-
nificance of HD spatial correlations through the p-value.

The primary strength of the optimal statistic is how
quickly it can be computed. This is useful for analyses
where the significance of many spatial correlations are
compared, as with the sky scrambles. An upcoming pa-
per will use the noise-marginalized optimal statistic to
determine how well the spatial correlations correspond-
ing to alternate GW polarizations can be measured. It
also makes the optimal statistic a valuable tool for ana-
lyzing simulations where many realizations of the GWB
are compared. The noise marginalization technique de-
scribed in this paper is key to being able to accurately
measure the GWB with the optimal statistic for real
PTAs and realistic PTA simulations, for which red noise
is significant.
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FIG. 6. Comparison between the noise-marginalized mean
optimal statistic and mean SNR with and without sky scram-
bles for a simulated data set containing a GWB with Agw =
5×10−15. None of the 725 scrambled ORFs gave a mean SNR
as large as the mean SNR using the true ORF (p < 0.0014).
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