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As the materials science community seeks to capitalize on recent advancements in computer science, the sparsity of well-labelled experimental 

data and limited throughput by which it can be generated have inhibited deployment of machine learning algorithms to date. Several successful 

examples in computational chemistry have inspired further adoption of machine learning algorithms, and in the present work we present 

autoencoding algorithms for measured optical properties of metal oxides, which can serve as an exemplar for the breadth and depth of data 

required for modern algorithms to learn the underlying structure of experimental materials science data. Our set of 180,902 distinct materials 

samples spans 78 distinct composition spaces, includes 45 elements, and contains more than 80,000 unique quinary oxide and 67,000 unique 

quaternary oxide compositions, making it the largest and most diverse experimental materials set utilized in machine learning studies. The 

extensive dataset enabled training and validation of 3 distinct models for mapping between sample images and absorption spectra, including a 

conditional variational autoencoder that generates images of hypothetical materials with tailored absorption properties. The absorption patterns 

auto-generated from sample images capture the salient features of ground truth spectra, and direct band gap energies extracted from these 

auto-generated patterns are quite accurate with a mean absolute error of 240 meV, which is the approximate uncertainty from traditional 

extraction of the band gap energy from measurements of the full transmission and reflection spectra. Optical properties of materials are not only 

ubiquitous in materials applications but also emblematic of the confluence of underlying physical phenomena that yield the type of complex data 

relationships that merit and benefit from neural network-type modelling. 

 

Introduction 

Recent advances in computer science1-4 enable materials scientists to identify new descriptors, predict new properties,2 

generate entirely new materials,5 and identify reaction pathways.6 Illustrative examples of predictive models in materials science 

include the prediction of optical and electrical properties based on representations of crystal structures as fragments7,8 and the 

prediction of materials with complex electronic structures such as thermoelectrics9 or organic light emitting diodes.10 These 

successful implementations of modern machine learning algorithms are mostly limited to theoretical (i.e. 

computational) data, leaving an open question as to whether such algorithms can be impactful in materials science 

experiments.  A primary hurdle to applying machine learning in experiments is the general lack of datasets that contain 

the appropriate diversity of materials and accompanying breath of metadata for training machine learning models. 

High-throughput materials science11-16 can help address these data scarcity issues, as demonstrated by Zakutayev et 

al.17 with their utilization of high throughput experiment data to train a random forest model that predicts electrical 

resistivity from material composition. 

The common use of random forest models is understandable given their predictive power, but the lack of interpretability of this and 

other machine learning models limit their ability to generate new materials knowledge. Design of materials with tailored properties is 

central to materials research, and the machine learning-based acceleration of materials design was demonstrated by Gomez-

Bombarelli et al.5 through development of a conditional variational autoencoders (cVAE) that predicts new organic molecules 

based on user-specified properties. Variational autoencoders (VAE)18 and cVAEs19 utilize neural networks, whose 

deployment in materials science can enable new modes of scientific discovery through exploration of the latent space, 

which can reveal new and previously unknown relationships.20  Our quest to develop models that learn the underlying 

structure of experimental materials data has resulted in the development of a VAE and cVAE to predict optical 

absorption spectra from images of materials, and images from user-tailored absorption spectra. 

Our focus on optical characterization data is motivated by the importance of optical properties for a broad span of 

technologies, from computer displays to solar energy utilization.21 The training and validation of models is enabled by 

extracting a large optical measurement dataset from the Joint Center for Artificial Photosynthesis database, in particular 

a set of measurements where synthesis and characterization were performed using the same set of instruments.22,23 

Optical characterizations utilizing inexpensive commercial sensors are particularly amenable to high throughput 



experimentation, making optical characterization of new materials more expedient by experiment than by computation, 

particularly due to the high computational expense for predicting optical properties like band gap energy at reasonable 

accuracy; state of the art hybrid functionals require several CPU hours per material to achieve a bandgap prediction 

RMSE of 0.74 eV for metal oxide materials.24 The recently reported machine learning model by Oses et al.7 achieves an 

RMSE of 0.51 eV for computationally-predicted band gaps, which accelerates band gap prediction but not band gap 

measurement. Recently published algorithms have automated the extraction of band gap energy from an ultraviolet-

visible (UV-Vis) optical absorption spectrum,25,26 leaving spectrum acquisition as the rate limiting step of band gap 

measurement. As a result, the prediction of absorption spectra from a higher throughput experimental technique would 

be quite impactful, and we demonstrate machine learning automation of this task by combining a VAE with a deep 

neural network, requiring only an image of the material as input. We also exploit machine learning of the relationships 

between image and absorption spectrum to create a predictive model for the image of a material with tailored optical 

absorption properties, which is the first generative model5,19 trained exclusively from experimental materials data. 

Results and Discussion 

Design and Training of Machine Learning Models 

At a high level, imaging a material with a standard sensor, such as a red-green-blue (RGB) complementary metal oxide 

semiconductor (CMOS) sensor, is a spatially resolved measurement of an optical property averaged over some spectral 

range, including some spectral overlap of the 3 color filters.27 The optical property being measured is an unknown 

combination of reflection, absorption and transmission properties, which is complementary to a spectral optical 

absorption measurement that averages over a sample region (lower spatial resolution) but uses spectrometers to attain 

high energy resolution. The spectral absorption technique also employs distinct transmission and reflection 

measurements from which the spectral absorption can be modelled. The inability to derive a first-principles 

transformation between these types of data arises from the unknown relationship between the RGB image and 

absorption, and unknown mapping from the broad spectral response of each CMOS channel to the high energy 

resolution of an absorption spectrum, which in the present case is 220 energies between 1.31 and 3.1 eV. Deriving such 

a mapping would be facilitated by a low-parameter functional form for how absorption varies with energy in metal 

oxide materials, but such a model is not forthcoming due to the various types of absorption phenomena and the mixing 

of absorption signals from multiple phases in the typically mixed-phase metal oxide samples. Consequently, machine 

learning of the underlying data relationships is the only viable option. Predicting absorption spectra from images is thus 

only possible if a machine learning algorithm can exploit “hidden” information in the high spatial-resolution images, i.e. 

data structure unbeknownst to expert materials scientists. Our exploration of the ability of machine learning to model 

complex relationships in materials data proceeds through the development of 3 models (Figure 1) with training and 

validation data extracted from a set of 181,129 images and spectra, including 1,908 “blank” samples (nothing deposited 

on the substrate) and 179,221 metal oxide samples synthesized via inkjet printing of mixed elemental precursors 

followed by thermal processing in an O2-containing atmosphere. The metal oxides samples contain various 

combinations of 1 to 4 cation elements along with various inkjet printing and thermal processing parameters, which are 

not used in the models describe herein. 

 

Model 1 - Variational Autoencoder 

To establish the appropriate methods for encoding images of metal oxides, we commence with the design and training 

of model 1, an autoencoder for flatbed scanner images of materials synthesized by the inkjet printing technique. In 

addition to assessing models according to their cross-entropy loss in reconstruction of the test set, we also made 

qualitative evaluations of the behavior of encoding methods based on visual inspection. For example, we found that 

models employing convolutional layers19 excel at reconstructing sample morphology but often failed to recover the 

human-perceived color of the material. The better color-preservation performance of models with fully connected 

layers led to our focus on the development of a variational autoencoder with fully connected layers. 
Model 2 - Prediction of UV-Vis spectra 

The Absorption Spectra Prediction model (ASPM) builds upon the VAE of model 1 to predict a UV-Vis absorption 

spectrum (220 entries) from a coordinate in the 100-dimensional latent space of the VAE. Under the assumption that 

the image encoder captures various image properties such as the color, color variation, morphology, etc., we exploit 

the high information density of the latent space (100 dimensions compared to the 12,288 dimensions of the 64×64 RGB 



image) for the construction of absorption spectra, in this case using a deep neural network model that is trained 

independently from model 1. 

Model 3 - Conditional Variational Autoencoder 

The conditional Variational Autoencoder (cVAE) follows the structure of the VAE with modified inputs for both the 

encoding and decoding algorithms. The encoder input is the concatenation of the flattened image and absorption 

spectrum, and the decoder input is the concatenation of the latent space coordinate and the conditional absorption 

spectrum so that the resulting image represents the latent space coordinate under the condition that the material 

exhibits the specified conditional absorption spectrum. During training, the same absorption spectrum is used in the 

encoder and decoder inputs as noted in Figure 1, and during application of the model the conditional absorption 

spectrum is user-specified.  

 

Image autoencoding and spectral prediction 

The VAE of model 1 converges within 18 epochs as shown in Figure S3. Using  t-distributed stochastic neighbor 

embedding (t-SNE)28, the 100-dimensional latent space of the can be visualized as shown in Figure 2a) for the 54,270 

images of test set, where each sample point is plotted using its representative color (see figure caption). Even though 

the VAE was not supplied any spectral information, it inherently exploits spectral features during autoencoding as is 

evident from the black-brown to blue-purple color gradient from left to right. The apparent clustering of samples, 

particularly those with a similar representative color, reveals aspects of the latent space structure, with the empty 

spaces between sample clusters indicating some structure of latent space coordinates. 

 

Example raw (𝐼𝑖) and VAE-reconstructed (𝐼𝑖̃) images are shown in Figure 3, demonstrating that the general appearance 

and especially the perceived color of the materials is well reconstructed. Any spatially-resolved variation in the raw 

image, such as color distribution within a printed blob, is not apparent in the reconstructed image due to blurring that 

occurs in image autoencoding with dimensionality of the latent space well below that of the images.18,19 Since an 

absorption spectrum is measured with illumination of the entire sample, yielding the spatially “averaged” absorption 

signal, this blurriness of the reconstructed images is not important for the present purposes, but it is worth noting that 

the presence of a so-called coffee ring in 𝐼𝑖  typically results in a darker edge of the sample blob in 𝐼𝑖̃. The VAE 

preservation of perceived color (Figure 3) and color-based clustering in the latent space (Figure 2a) indicate that the 

VAE successfully encodes spectral features even though the model was not supplied any spectral information, 

motivating the use of this model for predicting spectral absorption.  
 

Absorption Spectrum Prediction 

The Absorption Spectra Prediction Model (ASPM) is trained validated using the VAE latent space coordinates, with the 

same train-test split used in model 1. The weights of the VAE are no longer trainable at this stage. Overall, there is good 

convergence for the ASPM across the energy range of the absorption spectra as shown in Figure 4. The residual density 

plot constitutes only small deviation between the predicted and ground truth signal, demonstrating the excellent 

absorption spectrum prediction from the VAE encoding of a material’s image.  

 

Detailed analysis of the absorption spectrum prediction for a span of representative samples is shown in Figure 5 that 

compares ground truth absorption spectra (green) from the test set and their prediction (black) from model 2. The 

figure includes a row of plots from each loss decile, with ten randomly selected samples in each row. For up to the 80th 

loss percentile, the predicted spectra appear in good agreement with the ground truth spectra. Impressively, the model 

reconstructs fine features of the absorption spectra such as local maxima that result from sub-band gap absorption or 

thin-film interference, even when these features occur over a spectral ranges much smaller than the sensitivity range 

of the original RGB sensor. Even an expert materials scientist cannot identify the presence of such features from 

inspection of an image, demonstrating the super-human analysis capabilities of the machine learning models.  

 

The quality of the predicted UV-vis spectra allows their utilization for estimating band gap energy, which is typically a 

manual human analysis exercise but has recently been automated to identify a representative band gap energy for a 

given absorption spectrum.25,26 As most of the herein studied materials are multiphase materials (due to their high 

computational order) it should be noted that the MARS algorithm employed here returns only a single representative 



band gap energy without a measure of uncertainty. For sample 𝑖, the performance of the model 2 for band gap 

estimation is thus evaluated by comparing the MARS-identified direct band gap energy from the ground truth spectra 

𝑆𝑖  to that from the predicted spectra 𝑆𝑖̃, as shown in Figure 6 for the test set. The mean band gap error is 74 meV 

(median 100 meV), mean squared error 96 meV2 (RMSE 309 meV), and mean absolute error is 240 meV. The prediction 

of band gaps based on the latent space representation of images therefore outperforms the ab-initio calculations noted 

above by extracting knowledge from the coarse optical characterization data in the flatbed scanner images. 

 

 

Conditional Variational Autoencoder 

A complementary demonstration of the ability of machine learning models to encode materials properties is the 

development of a generative model that makes predictions of materials data from user-specified properties. For this 

purpose, the cVAE of model 3 is designed to predict how a printed sample should look like given a target absorption 

spectrum. From visual inspection of reconstructed images in Figure 3, the autoencoding of the cVAE is superior to the 

VAE of model 1, especially in terms of reconstructing the image color, which is primarily due to the use of the absorption 

spectrum both in the encoder input and as a condition in the latent space input to the decoder. Using the cVAE, coffee 

rings are more pronounced in the reconstruction, and the color of some samples appear more vibrant (e.g. the blue 

reconstructed image).  

 

To generate conditional images, we arbitrarily chose a sample from the test set and identified its latent space coordinate 

𝑧𝑖̃. From this fixed point in the cVAE latent space, various tailored absorption spectra were applied as the conditional 

input to the decoder, resulting in cVAE-generated images of hypothetical materials as shown in Figure 7. To ascertain 

the sensitivity of the generated image to the starting latent space coordinate, Figure S3 shows a series of images using 

the conditional spectra from Figure 7 b) and 200 𝑧𝑖̃ values from randomly chosen samples. As expected, latent space 

coordinate impacts the apparent morphology of the material in the generated image but not its apparent color, which 

is primarily determined by the conditional absorption spectrum. 

 

The series of sigmoidal absorption spectra shown in Figure 7a) spans a broad range of shapes by decreasing the 

inflection point energy (from top to bottom) and the slope (from left to right). This corresponds to a change in apparent 

band gap from about 1.36 to 2.9 eV according to the MARS model. To model different material thickness or maximum 

absorption coefficient, the sigmoid shapes are scaled to values of 0.84, 0.42, and 0.21 for image generation in Figures 

7b, 7c, and 7d, respectively. The highest absorption factor measured in the test set was 0.75, making the generated 

images in Figure 7b an extension beyond the span of absorption spectra in the train set. Figure 7b) is commensurate 

with the general observation in materials science that a material with a high band gap should be yellowish-transparent 

(e.g. BiVO4 with 2.5 eV band gap), a material with an intermediate band gap is red-brown (e.g. Fe2O3 with 2.2 eV band 

gap), and a materials with very low band gap appear blue-grey (e.g. Si with 1.2 eV band gap). The apparent transparency 

and saturation of the generated images is also quite intuitive as high absorption values and low sigmoid slopes that 

correspond to absorption of a broad spectral range lead to high opacity and low color saturation. With lower maximum 

absorption the center part of each image tends to become grayer, which is assumed to be the model’s simulation of 

transparency given the gray appearance of the substrate/background in the flatbed scanner images. An interesting 

feature of image generator is that the blob size in images with a very high conditional absorption slope tend to be 

minimally bigger than those with a lower one. This is likely due to the network trying to match the condition by making 

the absorbing part of the image larger, an unintended but interesting mechanism by which the conditional spectrum 

impacts shapes in the generated image. 

 

The ability to generate simulated data for a “coarse” measurement based on a desired fundamental property may 

enable rapid screening for desired materials, but more foundationally the cVAE of model demonstrates the successful 

training of a generative model using only experimental data. To provide an estimate of the data size required to train 

these types of models, models 1 and 2 were trained with 0.1%, 1%, 10%, and 50% of the train images and evaluated 

using a static test set, yielding RMSE values for bandgap prediction of 437, 400, 403, and 389 meV, respectfully (100% 

train set yielded 309 meV), corresponding to approximately 50 meV improvement in RMSE for every 10-fold increase in 

training set size (see SI for additional details). Given that the full training set produces an RMSE value comparable to the 

uncertainty in the band gap extraction algorithm, further enlarging the dataset would likely not be impactful, but the 

need for hundreds of thousands of samples to push this limit highlights the challenges of applying machine learning 



techniques in materials science. Building more experimental materials databases of this size requires a revolution in 

data and metadata management.  To date, computational materials datasets have been more amenable to machine 

learning due to relative ease in integration of data across research groups, whereas variations in experimental 

instruments and the lack of a framework to encode differences between instruments and experimental techniques 

limits assembly of large experimental databases. Consequently, the machine learning demonstrations in experimental 

materials science, namely the work by Zakutayev et al.17 and the present work, utilize specific types of data acquired 

within a single research organization, and we believe these demonstrations lay the foundation for future generation of 

more broadly-applicable machine learning models3,29,30 in experimental materials science.   

Conclusion 

Empowered by an unprecedented dataset of optical characterizations of metal oxide materials, we train a series of 

machine learning models employing convolutional and deep neural networks. A materials image autoencoder was 

developed by training a VAE using images of thin film materials acquired with a commercial flatbed scanner.  The VAE, 

even though not trained with spectral information, encodes spectral characteristics in its information-rich latent space, 

enabling the development of a DNN model for predicting the full UV-Vis absorption spectrum of a material from only 

its image. Band gap energies extracted from the predicted spectra match the uncertainty from the extraction algorithm 

and supersedes common ab-initio methods for phase-pure materials.  An additional model predicts the image of a 

hypothetical material based on its user-specified absorption pattern, providing the first example of a cVAE model 

trained exclusively of experimental materials data. This study has been enabled by the construction of a database of 

over 105 materials, demonstrating the utility of high throughput experiments with rigorous data management for 

further adoption of machine learning in experimental materials science. 

 
Methods 

 Samples were synthesized using ink-jet printing of precursors salts, typically metal nitrates, that are subsequently 

annealed to form metal oxides.31 Optical absorption spectra were recorded using an on-the-fly scanning UV-Vis dual-

sphere spectrometer as described elsewhere.22 Sample images were acquired using a commercially available flatbed 

scanner (EPSON Perfection V600) in reflection configuration as described elsewhere.23 The scanner acquired 1200 dpi 

images are a rate of 2.0 cm2 s-1, corresponding to 0.019 s per sample with our library design of approximately 1 mm2 

samples on a square grid with 2 mm pitch.  

All calculations were performed on an Alienware Aurora R7 workstation equipped with an Intel i7-8700K@3.70 GHz 

CPU, 32 GB RAM, a Nvidia GTX1080Ti GPU with 12 GB dedicated GPU memory. Software used was Python version 3.6.4, 

Keras version 2.1.5, and TensorFlow version 1.1.0. The test-train split was 30% test, 70% train. 

Machine Learning model descriptions 

Model 1: The input images Ii were flattened, batch normalized and passed to a dense layer with 2048 output dimensions 

and tanh activation. The output of this layer is again batch normalized and passed to two layers 𝛍 and σ with 100 output 

dimensions (length of latent space embedding) and linear activation. The output of these was passed to a sampling layer 

z that samples the latent space via: 

𝑧 = 𝜇 + 𝑎 ∗ 𝜖 ∗ 𝑒𝜎/2 

where 𝜖 is a random normal tensor of the same shape as 𝛍 with zero mean and unit variance. During training the 

constant a is set to one, otherwise zero. The model until here is the Encoder EVAE as shown in Figure 1. The output of 

this layer is fed to a Dense layer with 12288 output dimensions with sigmoid activation. The output of this layer is 

reshaped to match the dimensions of the input/output image with 64x64x3 pixels (12288 values). This transformation 

from latent space coordinate to sample image is the decoder, DVAE. The model is trained using the Adam optimizer with 

early stopping monitoring the validation loss improvement over 3 epochs. The Loss is the sum of the Kullback-Leibler 

divergence and the binary cross entropy which is multiplied by the number of pixels in the output image (12288). The 

scaling of the binary cross entropy ensures good convergence of both the KL-loss and the image reconstruction as both 

are equally weighted during training. When the reconstruction loss was not weighted correctly the KL-loss converges 

but images are not reconstructed well. The model converges after 18 epochs. The complete VAE model has about 26 

million trainable parameters of which 25 million are in the first dense layer that encodes the flattened images. 

Model 2: The input to the first layer was batch normalized. The first layer was a fully-connected layer with 512 output 

dimensions, tanh activation, and 25% dropout. The first layer output is batch normalized an passed its output to a 

second fully-connected layer sequence identical to the first. The output of the second dense layer was again batch 



normalized then passed to a dense layer with 220 output dimensions and sigmoid activation to predict the optical 

absorption spectra. The ASPM is trained using the Adam optimizer and MSE loss with early stopping monitoring the 

validation loss improvement over 50 epochs. Training of the ASPM is done after training the VAE, hence the VAE has 

not seen any spectral information. 

Model 3: The conditional Variational Autoencoder (cVAE) followed the structure of the VAE except for the 

concatenation of the flattened image and absorption spectrum before the first dense layer and the concatenation of 

the output of the sampling layer z and the absorption spectrum. The spectra were not scaled or transformed.  
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