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Although transcriptomes have recently been used to perform epistasis analyses, they are not
yet used to study intragenic function/structure relationships. We developed a theoretical
framework to study allelic series using transcriptomic phenotypes. As a proof-of-concept, we
apply our methods to an allelic series of dpy-22 , a highly pleiotropic Caenorhabditis elegans
gene orthologous to the human gene MED12 , which is a subunit of the Mediator complex.
Our methods identify functional regions within dpy-22 that modulate Mediator activity upon
various genetic modules.

Introduction1

Mutations of a gene can yield a series of alleles with2

different phenotypes that reveal multiple functions3

encoded by that gene, regardless of the alleles’ molec-4

ular nature. Homozygous alleles can be ordered by5

their phenotypic severity; then, phenotypes of trans-6

heterozygotes carrying two alleles can reveal which7

alleles are dominant for each phenotype. Together,8

the severity and dominance hierarchies show intra-9

genic functional regions. In Caenorhabditis elegans,10

these series have helped characterize genes such as11

let-23/EGFR, lin-3/EGF and lin-12/NOTCH 1,2,3.12

Biology has moved from expression measurements13

of single genes towards genome-wide measurements.14

Expression profiling via RNA-seq4 enables simulta-15

neous measurement of transcript levels for all genes16

in a genome, yielding a transcriptome. These mea-17

surements can be made on whole organisms, isolated18

tissues, or single cells5,6. Transcriptomes have been19

successfully used to identify new cell or organismal20

states7,8. For mutant genes, transcriptomic states21

can be used for epistasis analysis9,10, but have not22

been used to characterize allelic series.23

We have devised methods for characterizing al-24

lelic series with RNA-seq. To test these methods,25

we selected three alleles11,12 of a C. elegans Medi-26

ator complex subunit gene, dpy-22 . Mediator is a27

macromolecular complex with ∼ 25 subunits13 that28

globally regulates RNA polymerase II (Pol II)14,15.29

The Mediator complex has at least four biochemically30

distinct modules: the Head, Middle and Tail mod-31

ules and a CDK-8-associated Kinase Module (CKM).32

The CKM associates reversibly with other modules, 33

and appears to inhibit transcription16,17. In C. el- 34

egans development, the CKM promotes both male 35

tail formation11 (through interactions with the Wnt 36

pathway), and vulval formation18 (through inhibi- 37

tion of the Ras pathway). Homozygotes of allele 38

dpy-22(bx93), which encodes a premature stop codon 39

Q2549Amber11, appear grossly wild-type. In con- 40

trast, animals homozygous for a more severe al- 41

lele, dpy-22(sy622) encoding another premature stop 42

codon, Q1698Amber12, are dumpy (Dpy), have egg- 43

laying defects (Egl), and have multiple vulvae (Muv). 44

(see Fig. 1A). In spite of its causative role in a num- 45

ber of neurodevelopmental disorders19, the structural 46

and functional features of this gene are poorly un- 47

derstood. In humans, MED12 is known to have a 48

proline-, glutamine- and leucine-rich domain that in- 49

teracts with the WNT pathway20. However, many 50

disease-causing variants fall outside of this domain21. 51

To study these variants and how they interfere with 52

the functionality of MED12 , quantitative and effi- 53

cient methods are necessary. 54

RNA-seq phenotypes have the potential to reveal 55

functional regions within genes, but their phenotypic 56

complexity makes this difficult. We developed a 57

method for determining allelic series from transcrip- 58

tomic phenotypes and used the C. elegans dpy-22 59

gene as a test case. Our analysis revealed functional 60

regions that act to modulate Mediator activity at 61

thousands of genetic loci. 62

1

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/210724doi: bioRxiv preprint first posted online Oct. 29, 2017; brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216290472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1101/210724
http://creativecommons.org/licenses/by/4.0/


Results and Discussion63

We adapted the allelic series method, previously used64

for individual phenotypes, for use with expression65

profiles as multidimensional phenotypes (see Fig. 1).66

As a proof of principle, we carried out RNA-seq67

on biological triplicates of mRNA extracted from68

dpy-22(sy622) homozygotes, dpy-22(bx93) homozy-69

gotes and wild type controls, along with quadrupli-70

cates from trans-heterozygotes of both alleles. Se-71

quencing was performed at a depth of 20 million72

reads per sample. Reads were pseudoaligned using73

Kallisto22. We performed a differential expression74

using a general linear model specified using Sleuth23
75

(see Methods). Differential expression with respect to76

the wild type control for each transcript i in a geno-77

type g is measured via a coefficient βg,i, which can78

be loosely interpreted as the natural logarithm of the79

fold-change. Transcripts were considered to have dif-80

ferential expression between wild-type and a mutant81

if the false discovery rate, q, was less than or equal to82

10%. Supplementary File 1 contains all the beta val-83

ues associated with this project. We have also gener-84

ated a website containing complete details of all the85

analyses available at the following URL: https://86

wormlabcaltech.github.io/med-cafe/analysis.87

By these criteria, we found 481 genes dif-88

ferentially expressed in dpy-22(bx93) homozy-89

gotes, and 2,863 differentially expressed genes in90

dpy-22(sy622) homozygotes (see Basic Statistics91

Notebook). Trans-heterozygotes with the genotype92

dpy-6(e14) dpy-22(bx93)/+ dpy-22(sy622) had 2,21493

differentially expressed genes with respect to the94

wild type.95

We used a false hit analysis to identify four non-96

overlapping phenotypic classes. We use the term97

genotype-specific to refer to groups of transcripts98

that were perturbed in one mutant. We use the99

term genotype-associated to refer to those groups of100

transcripts whose expression was significantly altered101

in two or more mutants with respect to the wild102

type control. The dpy-22(sy622)-associated phe-103

notypic class consisted of 720 genes differentially ex-104

pressed in dpy-22(sy622) homozygotes and in trans-105

heterozygotes, but which had wild-type expression106

in dpy-22(bx93) homozygotes. The dpy-22(bx93)-107

associated phenotypic class contains 403 genes dif-108

ferentially expressed in all genotypes. We also iden-109

tified a dpy-22(sy622)-specific phenotypic class110

(1,841 genes) and a trans-heterozygote-specific111

phenotypic class (1,226 genes; see the Phenotypic112

Classes Notebook). All genotype-associated pheno-113

types had Spearman rank correlations > 0.8, indicat-114

ing that transcripts within these classes changed in115

Phenotypic Class Dominance
dpy-22(sy622)-specific 1.00± 0.00
dpy-22(sy622)-associated 0.51± 0.01
dpy-22(bx93)-associated 0.81± 0.01

Table 1. Dominance analysis for the
dpy-22/MDT12 allelic series. Dominance values
closer to 1 indicate dpy-22(bx93) is dominant over
dpy-22(sy622), whereas 0 indicates dpy-22(sy622) is
dominant over dpy-22(bx93).

the same direction amongst the genotypes studied. 116

We measured allelic dominance for each class using 117

a dominance coefficient (see Methods). The dom- 118

inance coefficient is a measure of the contribution 119

of each allele to the total expression level in trans- 120

heterozygotes. By definition, the dpy-22(sy622) 121

allele is completely recessive to dpy-22(bx93) for 122

the dpy-22(sy622)-specific phenotypic class. The 123

dpy-22(sy622) and dpy-22(bx93) alleles are semidom- 124

inant (dbx93 = 0.51) to each other for the 125

dpy-22(sy622)-associated phenotypic class. The 126

dpy-22(bx93) allele is largely dominant over the 127

dpy-22(sy622) allele (dbx93 = 0.81; see Table 1) for 128

the dpy-22(bx93)-associated phenotypic class. 129

Because the mutations we used are truncations, 130

our results suggest the existence of various func- 131

tional regions in dpy-22/MDT12 (see Fig. 2). The 132

dpy-22(sy622)-specific phenotypic class is likely con- 133

trolled by a single functional region, functional region 134

1 (FC1), and the dpy-22(sy622)-associated pheno- 135

typic class is likely controlled by a second functional 136

region, functional region 2 (FC2). It is unlikely that 137

these regions are identical because their dominance 138

behaviors are very different. The dpy-22(bx93) allele 139

was largely dominant over the dpy-22(sy622) allele for 140

the dpy-22(bx93)-associated class, but gene expres- 141

sion in this class was perturbed in both homozygotes. 142

The perturbations were greater for dpy-22(sy622) 143

homozygotes than for dpy-22(bx93) homozygotes. 144

This behavior can be explained if the dpy-22(bx93)- 145

associated class is controlled jointly by two distinct 146

effectors, functional regions 3 and 4 (FC3, FR4, 147

see Fig. 2). A rigorous examination of this model 148

will require studying alleles that mutate the region 149

between Q1689 and Q2549 using homozygotes and 150

trans-heterozygotes. 151

We also found a class of transcripts that had per- 152

turbed levels in trans-heterozygotes only; its bio- 153

logical significance is unclear. Phenotypes unique 154

to trans-heterozygotes are often the result of physi- 155

cal interactions such as homodimerization, or dosage 156

reduction of a toxic product24. In the case of 157
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Figure 1. A Protein sequence of dpy-22 . The positions of the nonsense mutations used are shown. B
Flowchart for an analysis of arbitrary allelic series. A set of alleles is selected, and the corresponding
genotypes are sequenced. Independent phenotypic classes are then identified. For each phenotypic class, the
alleles are ordered in a dominance/complementation hierarchy, which can then be used to infer functional
regions within the genes in question.
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FR3 FR4

bx93
Q2549

sy622
Q1698

dpy-22(sy622)-specific trans-heterozygote-specific

1,226

dpy-22(bx93)-associated

403

dpy-22(sy622)-associated

FR1
720

FR2
1,841

FR3/4

DPY-22

Figure 2. The functional regions associated with
each phenotypic class can be mapped intragenically.
The number of genes associated with each class is
shown. The dpy-22(bx93)-associated class may be
controlled by two functional regions. FR2 and FR3
could be redundant if FR4 is a modifier of FR2 func-
tionality at dpy-22(bx93)-associated loci. Note that
the dpy-22(bx93)-associated phenotypic class is ac-
tually three classes merged together. Two of these
classes are DE in dpy-22(bx93) homozygotes and one
other genotype. Our analyses suggested that these
two classes are likely the result of false negative hits
and genes in these classes should be differentially ex-
pressed in all three genotypes, so they we merged all
classes together (see Methods).

dpy-22/MDT12 orthologs, how either mechanism 158

could operate is not obvious, since DPY-22 is ex- 159

pected to assemble in a monomeric manner into the 160

CKM. Massive single-cell RNA-seq of C. elegans has 161

recently been reported25. When this technique be- 162

comes cost-efficient, single-cell profiling of these geno- 163

types may provide information that complements the 164

whole-organism expression phenotypes, perhaps ex- 165

plaining the origin of this phenotype. 166

Intragenic mapping of functional regions associated 167

with phenotypic classes is important, but their bio- 168

logical meaning remains unclear. To assign biologi- 169

cal functionality to phenotypic classes, we extracted 170

transcriptomic signatures associated with a Dumpy 171

(Dpy) phenotype using transcriptomes from dpy-7 172

and dpy-10 mutants (DAA, CPR and PWS unpub- 173

lished), and a hif-1 -dependent hypoxia response from 174

a previously published analysis10 and asked whether 175

any phenotypic class was enriched in either response. 176

The sy622 -specific and -associated classes were en- 177

riched in genes that are transcriptionally associated 178

with a Dpy phenotype (fold-change enrichment = 3, 179

p = 2 · 10−40, 167 genes observed; fold-change = 1.9, 180

p = 9 ·10−9, 82 genes observed). The bx93 -associated 181

class also showed significant enrichment (fold-change 182

= 2.2, p = 4 · 10−10, 68 genes observed). The class 183

that showed the most extreme deviation from ran- 184

dom was the sy622 -specific class. dpy-22(sy622) ho- 185

mozygotes are severely Dpy, whereas dpy-22(bx93) 186

homozygotes and trans-heterozygotes have a slight 187

Dpy phenotype. Plotting the changes in gene ex- 188

pression for sy622 homozygotes versus the changes 189

in expression in dpy-7 mutants revealed that 75% of 190

the transcripts were strongly correlated in both geno- 191

types (see Figure 3). Therefore, the sy622 -specific 192

phenotypic class contains a transcriptional signature 193

associated with morphological Dpy phenotype (see 194

the Enrichment Notebook). 195

dpy-22 is not known to be upstream of the hif-1 - 196

dependent hypoxia response in C. elegans. Enrich- 197

ment tests revealed that the hypoxia response was 198

significantly enriched in the bx93 -associated (fold- 199

change = 2.1, p = 10−8, 63 genes observed), the 200

sy622 -associated (fold-change = 1.9, p = 4 · 10−8, 78 201

genes observed) and the sy622 -specific classes (fold- 202

change = 2.4, p = 9 · 10−55, 186 genes observed). 203

However, there was no correlation between the ex- 204

pression levels of these genes in dpy-22 genotypes and 205

the expression levels expected from the hypoxia re- 206

sponse. Although the hypoxia gene battery can be 207

found in dpy-22 mutants, these genes are not used to 208

deploy a hif-1 -dependent hypoxia phenotype. Taken 209

together, our results suggest that transcriptomic sig- 210

natures can be used to understand the biological func- 211
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tionality of phenotypic classes, and they may be use-212

ful in associating phenotypic classes with other phe-213

notypes. This highlights the importance of gener-214

ating an index set of mutants that can be used to215

derive a gold standard of transcriptional signatures216

with which to test future results.217

Transcriptomic phenotypes generate large amounts218

of differential gene expression data, so false positive219

and false negative rates can lead to spurious phe-220

notypic classes whose putative biological significance221

is badly misleading. Such artifacts are particularly222

likely for small phenotypic classes, which should be223

viewed with skepticism. Notably, errors of interpreta-224

tion cannot be avoided by setting a more stringent q-225

value cut-off: doing so will decrease the false positive226

rate, but increase the false negative rate, which will227

in turn produce smaller phenotypic classes than ex-228

pected. Our method avoids this pitfall by using total229

error rate estimates to assess the plausibility of each230

class. These conclusions are of broad significance to231

research where highly multiplexed measurements are232

compared to identify similarities and differences in233

the genome-wide behavior of a single variable under234

multiple conditions.235

We have shown that transcriptomes can be used236

to study allelic series in the context of a large,237

pleiotropic gene. We identified separable phenotypic238

classes that would otherwise be obscured by other239

methods, correlated each class to a functional region,240

and identified sequence requirements for each region.241

Given the importance of allelic series for character-242

izing gene function and their roles in specific genetic243

pathways, we are optimistic that this method will be244

a useful addition to the geneticist’s arsenal.245

Methods246

Strains used247

Strains used were N2 wild-type (Bristol), PS4087248

dpy-22(sy622), PS4187 dpy-22(bx93), and PS4176249

dpy-6(e14) dpy-22(bx93)/ + dpy-22(sy622). Lines250

were grown on standard nematode growth media251

(NGM) Petri plates seeded with OP50 E. coli at252

20◦C26.253

Strain synchronization, harvesting and254

RNA sequencing255

Strains were synchronized by bleaching P0’s into vir-256

gin S. basal (no cholesterol or ethanol added) for 8–257

12 hours. Arrested L1 larvae were placed in NGM258

plates seeded with OP50 at 20◦C and grown to259
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Figure 3. sy622 homozygotes show a transcrip-
tional response associated with the Dpy phenotype.
A We obtained a set of transcripts associated with
the Dpy phenotype from dpy-7 and dpy-10 mutants.
We identified the transcripts that were differentially
expressed in sy622 homozygotes. We ranked the β
values of each transcript in sy622 homozygotes and
plotted them against the ranked β values in dpy-
7 mutants. A significant portion of the genes are
correlated between the two genotypes, showing that
the signature is largely intact. 25% of the genes are
anti-correlated. B We performed the same analysis
using a set of transcripts associated with the hif-1 -
dependent hypoxia response as a negative control.
Although sy622 is enriched for the transcripts that
make up this response, there is no correlation be-
tween the β values in sy622 homozygotes and the β
values in egl-9 homozygotes.
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the young adult stage (assessed by vulval morphol-260

ogy and lack of embryos). RNA extraction and se-261

quencing was performed as previously described by262

Angeles-Albores et al 10,7.263

Read pseudo-alignment and differential264

expression265

Reads were pseudo-aligned to the C. elegans genome266

(WBcel235) using Kallisto22, using 200 bootstraps267

and with the sequence bias (--seqBias) flag. The268

fragment size for all libraries was set to 200 and269

the standard deviation to 40. Quality control was270

performed on a subset of the reads using FastQC,271

RNAseQC, BowTie and MultiQC27,28,29,30.272

Differential expression analysis was performed us-273

ing Sleuth23. We used a general linear model to iden-274

tify genes that were differentially expressed between275

wild-type and mutant libraries. To increase our sta-276

tistical power, we pooled young adult wild-type repli-277

cates from other published10,7 and unpublished anal-278

yses adjusting for batch effects.279

False hit analysis280

To accurately count phenotypes, we developed a false281

hit algorithm (Algorithm 1). We implemented this282

algorithm for three-way comparisons in Python. Al-283

though experimentally restricted, a three-way com-284

parison can result in > 5, 000 possible sets (ignoring285

size). This large number of models necessitates an286

algorithmic approach that can at least restrict the287

possible number of models. Our algorithm uses a288

noise function that assumes false hit events are non-289

overlapping (i.e. the same gene cannot be the result290

of two false positive events in two or more genotypes)291

to determine the average noise flux between pheno-292

typic classes. These assumptions break down rapidly293

if false-positive or negative rates exceed 20%.294

To benchmark our algorithm, we generated one295

thousand Venn diagrams at random. For each Venn296

diagram, we calculated the average false positive and297

false negative flux matrices. Then, we added noise298

to each phenotypic class in the Venn diagram, as-299

suming that fluxes were normally distributed with300

mean and standard deviation equal to the flux co-301

efficient calculated. We input the noised Venn dia-302

gram into our false hit analysis and collected clas-303

sification statistics. For a given signal-to-noise cut-304

off, λ, classification accuracy varied significantly with305

changes in the total error rate. In the absence of306

false negative hits, false hit analysis can accurately307

identify non-empty genotype-associated phenotypic308

classes, but identifying genotype-specific classes be-309

comes difficult if the experimental false positive rate 310

is high. On the other hand, even moderate false 311

negative rates (> 10%) rapidly degrade signal from 312

genotype-associated classes. For classes that are as- 313

sociated with three genotypes, an experimental false 314

negative rate of 30% is enough on average to prevents 315

this class from being observed. 316

We selected λ = 3 because classification using this 317

threshold was high across a range of false positive and 318

false negative combinations. A challenge to applying 319

this algorithm to our data is the fact that the false 320

negative rate for our experiment is unknown. Al- 321

though there has been significant progress in control- 322

ling and estimating false positive rates, we know of no 323

such attempts for false negative rates. It is unlikely 324

that the false negative rate for our study is lower than 325

the false positive rate, because all genotypes except 326

the controls are likely underpowered. We used false 327

negative rates between 10–20% for false hit analy- 328

sis. When the false negative rate was set at 15% 329

or higher, the algorithm converged on the same five 330

classes shown above. For false negative rates between 331

10–15%, the algorithm output the same five classes, 332

but also accepted the (dpy-22(sy622),dpy-22(bx93))- 333

associated class. We selected the model correspond- 334

ing to false negative rates of 15–20% because this 335

model had lower χ2 values than the model selected 336

with a false negative rate of 10–15% (4,212 versus 337

100,650). 338

We asked whether re-classification of some classes 339

into others could improve model fit. We manually 340

re-classified the (dpy-22(sy622),dpy-22(bx93))- 341

associated and the (dpy-22(bx93), trans- 342

heterozygote)-associated classes into the bx93 - 343

associated class (which is associated with all 344

genotypes), and we compared χ2 statistics between 345

a re-classified reduced model and a reduced model. 346

The re-classified model had a lower χ2 (181). Thus, 347

we concluded that the re-classified reduced model is 348
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the most likely model to give rise to our data.349

Data: Mobs = {Nl}, an observed set of classes,
where each class is labelled by l ∈ L and
is of size Nl. fp, fn, the false positive and
negative rates respectively. α, the
signal-to-noise threshold for acceptance
of a class.

Result: Mreduced, a reduced model that fits the
data.

begin
Define a minimal set to initialize the reduced
model

K = {minl∈L Nl}
Refine the model until the model converges or
iterations max out
i← 0
Kprev ← ∅
while (i < imax) | (Kprev 6= K) do

Kprev ← K
Define a noise function to estimate error
flows in K

F← noise(K, fp, fn)
for l ∈ L do

Calculate signal to noise for each
labelled class

False negatives can result in λ < 0
λl ←Mobs,l/Fl

if (λ > α) | (λ < 0) then
Kl ←Mobs,l

end
end
i+ +

end
end
Return the reduced model
Mreduced = K
return Mreduced

Algorithm 1: False Hit Algorithm. Briefly, the al-
gorithm initializes a reduced model with the pheno-
typic class or classes labelled by the largest number
of genotypes. This reduced model is used to esti-
mate noise fluxes, which in turn can be used to esti-
mate a signal-to-noise metric between observed and
modelled classes. Classes that exhibit a high signal-
to-noise are incorporated into the reduced model.

350

Dominance analysis351

We modeled allelic dominance as a weighted average
of allelic activity:

βa/b,i,Pred(da) = da · βa/a,i + (1− da) · βb/b,i, (1)

where βk/k,i refers to the β value of the ith isoform in 352

a genotype k/k, and da is the dominance coefficient 353

for allele a. 354

To find the parameters da that maximized the
probability of observing the data, we found the pa-
rameter, da, that maximized the equation:

P (da|D,H, I) ∝
∏
i∈S

exp−
(βa/b,i,Obs − βa/b,i,Pred(da))2

2σ2
i

(2)
where βa/b,i,Obs was the coefficient associated with 355

the ith isoform in the trans-het a/b and σi was 356

the standard error of the ith isoform in the trans- 357

heterozygote samples as output by Kallisto. S is the 358

set of isoforms that participate in the regression (see 359

main text). This equation describes a linear regres- 360

sion which was solved numerically. 361

Code 362

Code was written in Jupyter notebooks31 using the 363

Python programming language. The Numpy, pandas 364

and scipy libraries were used for computation32,33,34
365

and the matplotlib and seaborn libraries were used 366

for data visualization35,36. Enrichment analyses were 367

performed using the WormBase Enrichment Suite37. 368

For all enrichment analyses, a q-value of less than 369

10−3 was considered statistically significant. For gene 370

ontology enrichment analysis, terms were considered 371

statistically significant only if they also showed an 372

enrichment fold-change greater than 2. 373

Data Availability 374

Raw and processed reads were deposited in the 375

Gene Expression Omnibus. Scripts for the en- 376

tire analysis can be found with version control 377

in our Github repository, https://github.com/ 378

WormLabCaltech/med-cafe. A user-friendly, com- 379

mented website containing the complete analyses can 380

be found at https://wormlabcaltech.github.io/ 381

med-cafe/. Raw reads and quantified abundances 382

for each sample were deposited at the NCBI Gene Ex- 383

pression Omnibus (GEO)38 under the accession code 384

GSE107523 (https://www.ncbi.nlm.nih.gov/geo/ 385

query/acc.cgi?acc=GSE107523). 386
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