

Article Detection of Spatiotemporal Extreme Changes in Atmospheric CO₂ Concentration Based on Satellite Observations

Zhonghua He ^{1,2,3}, Liping Lei ^{1,*}, Lisa R. Welp ³, Zhao-Cheng Zeng ⁴, Nian Bie ^{1,2}, Shaoyuan Yang ^{1,2} and Liangyun Liu ¹

- ¹ Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; hezhh@radi.ac.cn (Z.H.); bienian@radi.ac.cn (N.B.); yangsy@radi.ac.cn (S.Y.); liuly@radi.ac.cn (L.L.)
- ² College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 3 Department of Forth, Atmospheric, and Plan stores Sciences, Brudes University, West Laforette,
- ³ Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907-2051, USA; lwelp@purdue.edu
- ⁴ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; zcz@gps.caltech.edu
- * Correspondence: leilp@radi.ac.cn; Tel.: +86-10-8217-8162

Figure S1. The relationship between predicted XCO₂ and observed XCO₂ values in cross-validation of global land mapping of XCO₂. The color grids represent the density of data distribution. The dotted line is derived from linear regression of predicted values of XCO₂ (Y) and the observed values of XCO₂ (X), which shows a significant linear relationship with R² equals 0.94 (p-value < 0.01) and good consistency of observed XCO₂ and predicted XCO₂ with mean absolute prediction error (MAPE) equal to 0.85. The solid line shows the one-to-one line.

Figure S2. Temporal variation comparison for the 13 Total Carbon Column Observing Network (TCCON) sites. As shown in these panels, the original ACOS-GOSAT XCO₂ retrievals within 500 km of the TCCON site are in gray dots. The TCCON data, smoothed by applying the ACOS-GOSAT averaging kernel, are indicated by blue dots. The data are chosen using coincidence criteria of within ±2 hours of GOSAT overpass time, and a 3-day (one time-unit) mean is calculated for the comparison. The predicted TCCON site XCO₂ time series using the

mapping approach are indicated by the red dots.

Table S1. Statistics of comparison between GM-XCO2 and TCCON data (smoothed by applying the
ACOS-GOSAT averaging kernel). Bias is calculated using GM-XCO2 minus TCCON XCO2 for each coincident
data pair and averaged for each site.

Sites	Location	Coincident	Averaged	Averaged Absolute	Standard
	(Latitude, longitude)	Data Pairs	Biases (ppm)	Bias (ppm)	Deviation (ppm)
Bialystok	(53.23, 23.02)	377	0.09	0.96	1.68
Bremen	(53.1, 8.85)	191	0.67	1.15	1.75
Karlsruhe	(49.1, 8.44)	346	0.64	1.29	2.09
Orleans	(47.97, 2.11)	411	-0.05	0.89	1.41
Garmisch	(47.48, 11.06)	478	0.90	1.19	1.37
Park Falls	(45.94, -90.27)	665	0.11	1.02	1.76
Lamont	(36.6, -97.49)	761	-0.57	0.92	1.02
Tsukuba	(36.05, 140.12)	412	0.60	1.66	3.61
Edwards	(34.96 -117.88)	297	1.07	1.10	0.45
PL/Caltech	(34.2, -118.18)	584	-0.20	0.86	1.14
Saga	(33.24, 130.29)	329	-0.71	0.96	1.01
Darwin	(-12.43, 130.89)	612	-0.25	1.02	1.46
Wollongong	(-34.41, 150.88)	609	-0.19	0.77	0.93
Overall		6072	0.16	1.06	1.51

(a) Mean biosphere CO₂ fluxes from SiB3 over July 1 to September 31 of 2009

(b) Mean GEOS-XCO₂ using original SiB3 over July 1 to September 31 of 2009

(c) Different ratio (25%; 32.5%; 50%; 62.5%;75%) of biospheric CO₂ fluxes as CO₂emission

(d) Different GEOS-CO₂ response to different ratio of CO₂ fluxes change in (c).

Figure S3. Different biospheric CO₂ fluxes influence on XCO₂ from GEOS-Chem model simulation. They are mean biospheric CO₂ fluxes and corresponding XCO₂ output shown in (a) and (b). Different enhancements of local biospheric CO₂ fluxes as emission input for simulating different carbon sources/sinks changes are shown in (c). Different XCO₂ output for different CO₂ flux change are shown in (d).

(a) Z score of GM-XCO₂

(b) Z score of original ACOS-XCO $_2$

Figure S4. Latitudinal-temporal Z score of XCO₂ fitting residuals from GM-XCO₂ (a) and original ACOS-XCO₂ (b). Red represents high posibility of extreme highly increased XCO₂.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).