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ABSTRACT 

Space-object identification from ground-based telescopes is challenging because of the degradation in 
resolution arising from atmospheric turbulence. Phase-diverse speckle is a novel post-detection correc
tion method that can be used to overcome turbulence-induced aberrations for telescopes with or without 
adaptive optics. We present a simulation study of phase-diverse speckle satellite reconstructions for the 
Air Force Maui Optical Station 1.6-meter telescope. For a given turbulence strength, satellite reconstruc
tion fidelity is evaluated as a function of quality and quantity of data. The credibility of this study is 
enhanced by reconstructions from actual compensated data collected with the 1.5-meter telescope at the 
Starfire Optical Range. Consistent details observed across a time series of reconstructions from a portion 
of a satellite pass enhance the authenticity of these features. We conclude that phase-diverse speckle can 
restore fine-resolution features not apparent in the raw aberrated images of space objects. 
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Figure 1: Phase-diverse speckle data-collection scheme. 

1. INTRODUCTION 

With its three optical platforms, including a 1.6-meter telescope, the Air Force Maui Optical Station 
(AMOS) serves as a source of fine-resolution ground-based space-object imagery. One of the goals of AMOS 
is to provide the highest quality imagery possible in a timely manner for further analysis, interpretation, 
and identification of these objects. The resolution achieved in space-object imaging is usually limited by 
turbulence-induced aberrations, which can severely limit the resolution in the images by an order of mag
nitude or more. Until recently, the 1.6-meter telescope relied upon an adaptive-optics system to eliminate 
in real time much of the phase aberrations introduced by atmospheric turbulence. However, this system 
was recently decommissioned, so post-collection methods for restoring the spatial resolution lost to the 
effects of turbulence are more important than ever. Even when an adaptive-optics system is available, the 
correction is never perfect. There are several sources of residual aberrations that degrade the imagery: 
imperfect wavefront sensing (particularly in low light-level situations), the time lag between sensing and 
correction (which allows for evolution of the atmosphere and is a particular problem when slewing to 
track an earth-orbiting space object), and deformable-mirror fitting errors. There are also scenarios in 
which adaptive-optics compensation is intermittent, degraded, or simply unavailable. A post-detection 
image-reconstruction capability also insures the continuing availability of fine-resolution images, even dur
ing adaptive-optics down time owing to routine maintenance or temporary system failure. Therefore, 
post-detection reconstruction methods provide an important complement to and backup for pre-detection 
correction. 

Having motivated the need for post-detection image restoration, we now introduce the collection and 
reconstruction technique investigated here. The value of short-exposure data was first recognized by 
Labeyrie [1], who noticed that short-exposure images contain spatial-frequency information out to the 
diffraction-limited cutoff frequency. There are a variety of methods that have been developed over the years 
that take advantage of this observation, including speckle imaging [1, 2] and deconvolution from wavefront 
sensing [3, 4]. Among the more recent approaches that utilize an estimation-theoretic framework is a novel 
data-collection and post-detection processing technique called Phase-Diverse Speckle (PDS) [5, 6, 7, 8]. A 
schematic of the PDS collection modality is shown in Figure 1. PDS blends the strengths of short-exposure 
speckle data and phase-diversity imaging. In phase-diversity imaging [9, 10, 11], two or more images are 
simultaneously collected - a conventional image that is degraded by unknown aberrations and a second 
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(diversity) image that is intentionally defocused by a known amount. PDS data are recorded when a 
pair of short-exposure images (conventional and diversity) are collected for each of multiple realizations 
of aberration. PDS has been demonstrated on solar astronomy data [7, 8, 12] and on adaptive-optics 
compensated images of binary stars [13] collected with the 1.5-meter telescope at the Air Force Phillips 
Laboratory Starfire Optical Range (SOR). 

The derivation of the PDS reconstruction algorithm will only be summarized here, and we refer the 
reader to the open literature cited above for the details of the estimation-theoretic framework employed. 
A detailed imaging model is constructed, and the noise characteristics of the collected data are used to 
establish the probability of measuring a set of images given a particular object and set of aberrations. This 
probability function is reinterpreted to express a complementary function of the object and aberrations 
that describes the likelihood that a given set of data were derived from these quantities. The restored 
object and the ensemble of unknown aberrations are obtained by maximizing the log of this function with 
respect to parameters describing the object and aberrations. A closed-form expression for the maximum 
of the log-likelihood function is not available, and so an iterative optimization procedure is required to 
search for the parameters that maximize the function. Closed-form expressions for the gradient enable us 
to use gradient-based techniques to optimize the log-likelihood function with respect to the large number of 
unknown parameters. Parameterization strategies include Zernike polynomials for describing aberrations 
associated with atmospheric turbulence [14] and the method of sieves for describing the object as the super
position of weighted resolution kernels [7, 15]. These strategies become more important for regularizing 
the estimates as the data from which they are derived become more corrupted by noise. 

We begin by discussing a simulation study of PDS satellite reconstructions for the AMOS 1.6-meter 
telescope. For a given turbulence strength, satellite reconstruction fidelity is evaluated as a function of 
noise in the data and the number of phase-diverse pairs utilized. The credibility of the results of this study 
is enhanced by the reconstructions from real data collected with adaptive-optics compensation using the 
1.5-meter telescope at the SOR. Excellent reconstructions are obtained using as few as 8 image pairs. In 
addition, consistent details observed across a time series of reconstructions from a portion of a satellite 
pass enhance the authenticity of the individual members of the sequence. The findings presented herein 
provide convincing evidence of the ability of PDS to restore fine-resolution details not found in aberrated 
images of space objects. 

2. AMOS SIMULATION STUDY 

A set of 64 random phase aberration realizations with Kolmogorov statistics and a satellite rendering 
were combined to form an ensemble of simulated, short-exposure, phase-diverse image pairs. The phase 
aberrations were used to make Nyquist-sampled point-spread functions (PSF's) at a wavelength of 0.7µm 
for both a conventional (in-focus) image channel and a diversity channel with 0.7 wave quadratic peak
to-valley defocus phase error. The phase aberrations were generated to match those encountered by the 
1.6-meter AMOS telescope, and are parameterized by Fried's seeing parameter, ro, which is typically 10 cm 
(at ,\ = 0.5µm) or less at the AMOS site. We present results for ro = 10 cm here. 

The PSF's were convolved with the satellite rendering to generate noiseless images. The noiseless im
agery must then be corrupted with signal-dependent noise and detector noise. The signal-dependent noise 
is a Poisson noise process that is independent of other detector noise sources. Visual magnitude, mv, is 
a common parameter for specifying the photon flux of astronomical objects at the surface of the earth 
[16]. Using a fractional optical bandwidth,!:::..\/.\, of 10% and an overall transmittance efficiency of 0.5 for 
whatever medium and/or optical system the light propagates through, a zero-magnitude object provides a 
photon flux of 0.3414 x 1010 photons/(m2sec) at the surface of the earth at a wavelength of 0.7µm. From 
these assumptions, the photon flux was calculated for the cases of mv=4, 5, 6, and 7 and an exposure 
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time of 16 msec. This is a commonly used exposure time for the AMOS system, and objects with mv in 
the range of 4 to 7 are typically encountered in operations. To incorporate detector characteristics, mean 
dark-current and flat-field maps estimated from the MIT Lincoln Laboratory COD used at AMOS were 
incorporated. The flat-field, 1Jk(x), in image channel k is a function of pixel location, x, and represents the 
non-uniform gain typically associated with a CCD detector array. The mean dark charge, bi(x; r), is an 
additive, Poisson noise source that is a function of exposure time, T. To form the noise-corrupted images, 
each noiseless image was multiplied by the flat and the result was added to bi(x; r). At this point, each 
image was corrupted with Poisson noise. This was followed by the addition to each pixel of an additive 
Gaussian noise component (independent from pixel to pixel) with a standard deviation, O'r. The readout 
noise for the AMOS CCD has been estimated as ar = 9.1 electrons. The seeds used to generate the random 
noise processes on the computer were varied from noise source to noise source and from image to image to 
simulate the independence of the noise across the large number of images. 

Ensemble Image SNR 

To calibrate visual magnitude in more familiar terms, we seek to define the signal-to-noise ratio (SNR) 
of the simulated imagery. The calculation of the SNR for an image of an object with compact support 
(like a satellite) is complicated by a number of considerations. First, the SNR is different at each pixel in 
the image due to the signal-dependent nature of the image and dark-current photon noise. Second, even 
if we know the compact support of the satellite, some definition of support is still required for a blurred 
image of the object. Because the blurring function extends to infinity, the support of the blurred object 
does as well. If we want to be able to say something useful about the SNR of an aberrated image (even 
on a pixel-by-pixel basis), then we need to define a support for that image that is finite. The fact that the 
blurring varies with aberration realization means that a new support could be defined for every image. 

We seek a definition that enables us to distill the signal-to-noise levels to a single number that represents 
the SNR for a set of data collected in an image channel. This alleviates the need to report the SNR on a 
per-image or even a per-pixel-per-image basis. This SNR figure would be a single, representative number 
for the entire set of images that provides a useful measure of the strength of the signal with respect to the 
noise level at a typical point in a typical image. We begin by defining the SNR of a pixel at location x for 
realization j of an image in channel k as 

(1) 

where Yjk(x) is the noiseless, aberrated image and 1Jk(x)gjk(x) incorporates the pixel-by-pixel CCD respon
sivity. Eq. (1) defines the SNR as the ratio of the expected value of the signal to the standard deviation 
due to three, independent noise sources: signal-dependent, dark-current, and COD-readout noise. 

To compress the pixel-by-pixel SNR defined in Eq. (1) into a single number, we define a SNR in channel 
k for an ensemble of J images collected in the channel. We begin by forming a "shift-and-add" image, 
defined as 

J 

dk(x) = ~ L[djk(x - xj) - b%(x - xj; r)] , 
j=l 

(2) 

where xj is a shift to the nearest pixel that brings the jkth detected image, djk(x), into registration with the 
other J - 1 images in the ensemble. To find xj, we define an arbitrary reference image to which the other 
J - 1 images are aligned; that is, xj = 0 for one value of j. We normally select the image that is centered 
the best within the field of view {FOV). Note that the image shift from realization to realization is the 
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(a) 

(b) (c) 

Figure 2: Support estimate for SNR calculation. (a) Examples of simulated focal-plane (k = 1) images for 
a satellite with mv = 5; (b) Shift-and-add image, d1, formed from J = 64 images; (c) Support, 0 1(0.8), 
obtained by thresholding (b) at the value for which 80% of the total energy is stored in pixels with intensities 
exceeding this threshold. 

same for each image channel, so xj is independent of k. In practice, we use the focal-plane image channel 
(k = 1 by convention), and we estimate xj from the location of the maximum of the cross-correlation of the 
bias-corrected dj1(x) [as in the summand in Eq. (2)] with the reference image. There are two advantages 
to using the shift-and-add image to define the ensemble SNR. First, dk(x) is formed through an averaging 
process that provides a better estimate of the mean signal at a typical pixel. Second, the support of dk is 
easier to define than the support of an individual image from the ensemble. 

A SNR metric that averages over pixels collected in the sensor FOV can depend on the ratio of the 
nominal size of the image to the size of the FOV. In the case of compact objects, we want to limit the 
contribution to the SNR estimate to those pixels that lie on or very near to the image of the object. Pixels 
far from the relatively compact image would have a very low SNR, and would pull down the average SNR 
if the image does not fill the entire FOV. Thus, our strategy is to define a support for the shift-and-add 
image over which we calculate the SNR. We define the support as a function of a single parameter, v: 

(3) 

where Tk(v) is a threshold for which the following equation is satisfied: 

L: dk(x) = v L: dk(x) , (4) 
xEflk(v) xEYk 

where T k is the set of all pixels in the detected FOV of channel k. In words, the support is determined by 
thresholding dk at the value for which (100 xv)% of the total energy in dk is stored in pixels with intensities 
exceeding this threshold. The thresholding operation is depicted in Figure 2 for the case of a satellite with 
mv = 5. Examples of images from the focal-plane channel are shown in Figure 2(a), and the shift-and-add 
image, d1, for J = 64 images is shown in Figure 2(b). We note that much of the noise observed in individual 
images is suppressed and that d1 is quite smooth with a fairly well-defined concentration of energy. The 
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(a) (b) (c) (d) 

Figure 3: Examples of simulated focal-plane images of a satellite with different values of visual magnitude, 
mv. (a) mv = 4 (S1 = 14.6); (b) mv = 5 (S1 = 8.2); (c) mv = 6 (S1 = 4.0); (d) mv = 7 (S1 = 1.8). 

support for a threshold corresponding to v = 0.8 is depicted with a binary mask in Figure 2(c), and we 
observe that 01(0.8) encompasses the area of interest in d1. We have found experimentally that v = 0.8 
specifies a satisfactory support for compact objects of interest. 

Finally, we define the ensemble SNR as the spatially-averaged SNR over the support-limited, shift-and
add image: 

(5) 

where the combined effects of dark-current and readout noise are represented with a single variance, a-;. If 
b~(x; r) and O"r are known, then a-; can be estimated from a spatial average of the variance at each pixel. 
This variance can also be estimated from the energy spectrum of the images by looking at the energy 
outside the diffraction limit of the system. The energy spectrum can be estimated with a standard peri
odogram technique [17]. Note that the estimate of the variance using energy measured outside the system 
passband is not immune to the influence of the signal-dependent noise in the imagery. The result is that a-; 
is over-estimated when the signal from the image (and, hence, the variance of the signal-dependent noise) 
is much larger than the combined contribution of dark-current and readout noise. This over-estimation 
leads to under-estimation of Sk. As the signal from the image drops and the energy outside the system 
passband is dominated by dark-current and readout noise, a-; becomes more accurate. It is usually the 
low-SNR cases that are of more interest, so we feel that it is acceptable to underestimate the SNR when it 
is large anyway. Examples of focal-plane images simulated for this study are shown Figures 3(a)-(d) for the 
cases of mv = 4 (S1 = 14.6), mv = 5 (S1 = 8.2), mv = 6 (S1 = 4.0), and mv = 7 (S1 = 1.8), respectively. 

Performance Results 

For this analysis, 64 image pairs were generated for mv = 4, 5, 6, and 7. Reconstructions were made using 
J = 64, 32, and 16 phase-diverse image pairs. For the 32 image-pair analysis, a set of 64 images was 
arbitrarily divided into two disjoint subsets of 32 image pairs each. Similarly, four disjoint subsets were 
formed to perform the 16 image-pair analysis. Thus, a total of 7 reconstructions were formed (1 for J = 64, 
2 for J = 32, and 4 for J = 16) for each value of mv, for a total of 28 reconstructions. The standard 
reconstruction strategy employed in these simulations is to begin with a 90 Zernike-polynomial aberration 
parameterization to establish the low-order shape of the phase screens, and then to follow this with a 
discretized-pupil parameterization, in which the aberrations are described on a point-by-point basis across 
the telescope aperture. A regularizing, Gaussian sieve is used for all object estimates. The width is varied 



8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

(a) (b) 

(c) (d) (e) 

Figure 4: Results for a satellite with mv=4 (S1 = 14.6). (a) Noiseless, diffraction-limited image; (b) 
Example of a conventional (left) and diversity image; (c) 64 image-pair reconstruction; (d) Example of a 
32 image-pair reconstruction; (e) Example of a 16 image-pair reconstruction. 

depending on the SNR of the imagery. Typically, between 500 and 600 total iterations are performed, and 
an automatic stopping criterion based on the percent change in the log-likelihood function is employed. 

Results for the most favorable case (mv = 4, S1 = 14.6) are shown in Figure 4. The diffraction-limited 
image is displayed in Figure 4(a) for reference, and example images in Figure 4(b) serve as visual aids to 
help gauge the SNR. In Figures 4(c), (d) and (e), respectively, we find the 64 image-pair, a 32 image-pair 
and a 16 image-pair reconstruction. In each case, the reconstruction is slightly sharper than the diffraction
limited image. Even the 16 image-pair reconstruction is quite good, and both the thin, diagonally-oriented 
feature (we'll refer to this as the diagonal antenna) and the thin, horizontal feature to the far right of the 
main body of the satellite (the horizontal antenna) are well-resolved. 

The simulation experiments for each value of mv are summarized in the array of reconstructions shown 
in Figure 5. The SNR is still fairly favorable (S1 = 8.2) for mv = 5, even though the detector noise 
is much more visible in the data [examples are shown in Figure 2(a)]. Nonetheless, we still find that 
the reconstructions [Figures 5(d)-(f)] are quite good in that the diagonal and horizontal antennae are 
recovered quite nicely. We do begin to notice a larger degree of pixel-to-pixel variation than observed 
for mv = 4 [Figures 5(a)-(c)], particularly on the cylindrical satellite body to the left of the horizontal 
antenna. Whereas the gross intensity variation is recovered, we note that there are variations at a finer 
spatial scale. The eye tends to integrate over this variation, however, and the reconstructions are still highly 
interpretable. The 16 image-pair reconstruction in Figure 5(f) is beginning to show signs of degradation, 
particularly with respect to the support of the reconstruction. We begin to observe residual energy in a 
dim, speckle-like cloud surrounding the reconstruction. Nonetheless, we believe that an analyst would still 
find that a 16-realization reconstruction is satisfactory. 

The SNR drops to 4.0 for mv = 6 [see Figure 3(c)], and we begin to notice in Figures 5(h) and (i) that 
the reconstruction fidelity visually deteriorates for J = 32 and J = 16. For mv = 4 and mv = 5, a Gaussian
shaped smoothing sieve with a standard deviation of 1 pixel was used to regularize the reconstructions. 
The width of the sieve was broadened to 1.5 pixels for mv = 6, and we observe a slight overall reduction in 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(k) (1) 

Figure 5: Summary of PDS simulations. (a) J = 64, mv = 4, Si = 14.6; (b) J = 32, mv = 4, Si = 14.6; 
(c) J = 16, mv = 4, Si = 14.6; (d) J = 64, mv = 5, Si= 8.2; (e) J = 32, mv = 5, Si = 8.2; (f) J = 16, 
mv = 5, Si = 8.2; (g) J = 64, mv = 6, Si = 4.0; (h) J = 32, mv = 6, Si = 4.0; (i) J = 16, mv = 6, 
Si = 4.0; (j) J = 64, mv = 7, Si = 1.8; (k) J = 32, mv = 7, Si = 1.8; (1) J = 16, mv = 7, Si = 1.8. 
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sharpness with respect to previous reconstructions. Another characteristic of these reconstructions can be 
observed in the diagonal and horizontal antennae. These linear, low-SNR features develop gaps, breaking 
up along their length. The support of the 16 image-pair reconstruction is less well-defined, and the speckle
like artifacts surrounding the body of the satellite are as bright as the horizontal antenna feature in some 
areas. The fact that the reconstructed antennae pixels align themselves linearly helps one distinguish these 
from artifacts. Since the antennae are about 1/2 the intensity of the brightest portions of the satellite, the 
SNR is lower than 4.0 for these pixels, and it is impressive that these features are restored at all. 

Finally, the last case explored is when mv = 7 and S1 = 1.8. We found through various reconstruction 
experiments that a sieve with a width of 3 pixels yielded the most interpretable results. The reconstruc
tions, shown in Figures 5(j)-(1), do not exhibit many fine-resolution internal features, and the support is 
somewhat eroded. This erosion can be understood when the effect of blurring is considered. The blurred 
edges in the raw imagery are lost in the noise [see Figure 3(d)], so the net result is an estimate of the object 
support that eats into these edges. We find that the erosion of the support in very low SNR regimes is a 
common feature of deblurring algorithms. While even the best reconstruction for the case of J = 64 is still 
quite poor with respect to the diffraction-limited image, an image analyst could surely learn something 
from the reconstruction in Figure 5(j) that cannot be observed in the extremely noisy raw imagery. We 
conclude that 16 realizations are adequate for mv = 4 and mv = 5, but that 32 realizations or more are 
desired for mv = 6, where the SNR is 4.0 and the performance is just beginning to decline. There is a large 
jump in loss of fidelity between mv = 6 and mv = 7, where the SNR dips below 2.0. In general, using 32 
image pairs is sufficient, and it does not appear that a significant improvement in fidelity is obtained when 
using 64 image pairs, which roughly doubles the computations per reconstruction. 

3. SATELLITE RECONSTRUCTIONS FROM REAL DATA 

Images of satellites were collected with the 1.5-meter telescope at the SOR using adaptive-optics (AO) 
compensation. The image data were collected at a center wavelength of 0.85 µm with a full-width at half
maximum optical bandwidth of about 0.1 µm. The selected satellites were small enough to accommodate 
the use of a single camera, so both the conventional and the diversity channels were imaged onto separate 
sides of a 12-bit, 64x64 CCD array. The signal was divided into two channels with a polarizing beamsplitter, 
and two BK7 glass plates with 1/8-inch and 1/4-inch thickness, respectively, were inserted into one channel 
to introduce a quadratic phase diversity of 0.7 wave peak-to-valley. The data are approximately Nyquist 
sampled at 283 nrad per pixel. Thus, the entire CCD captures a 18µrad x 18µrad FOV, which limits the 
satellite subtense when the two channels do not interfere. An important aspect of the PDS reconstruction 
algorithm is the accurate modeling of the imaging system, and calibration data were used to characterize 
the noise properties of the CCD (dark current and readout noise). Each of about a dozen satellite passes 
imaged consists of short-exposure images taken in sets of 256 frames for exposures times of 2, 5 or 10 msec. 
Sets of 256 dark frames (shutter closed) taken at the same exposure setting typically were collected after 
each set of data. 

The results of reconstructing a pass of Catalog No. (CATNO) 4419, which was imaged with self
referenced AO compensation, is discussed here. About a dozen, 256-frame image sets of varying SNR were 
collected across the pass. Examples of 5-msec image pairs (conventional on top) from the set with the 
largest SNR are shown in Figure 6(a). In this case, S1 = 7.4, which is quite comparable to the simulated 
case of mv = 5. We observe that the two images on the left of Figure 6(a) are reasonably well compensated, 
with aberrations that are quite a bit milder than a typical realization of Kolmogorov turbulence used in the 
simulations. The other two image pairs shown are examples of average and poor compensation, respectively, 
demonstrating our introductory assertion that aberrations can still be appreciable in systems employing AO 
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(a) 

(b) (c) (d) 

(e) (f) (g) 

Figure 6: PDS reconstructions of Catalog No. 4419. The set of 256 image pairs was divided into disjoint 
subsets of 256/J image pairs each, for J = 64, 32, 24, 16 and 8. (a) Examples of conventional (top) and 
diversity image pairs for a range of AO compensation quality. The ensemble SNR in the conventional 
channel is S1 = 7.4; (b) A 64-pair shift-and-add image; (c) Example of a 64-pair restoration; (d) Example 
of a 32-pair restoration; (e) Example of a 24-pair restoration; (f) Example of a 16-pair restoration; (g) 
Example of an 8-pair restoration. 



12

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

correction. We note that a portion of the diversity images fall outside of the detector FOV. Fortunately, the 
PDS algorithm is designed to handle this using a processing "guard band" that is particularly important 
for applications of imaging scenes that extend beyond the sensor FOV [7]. We also note that the images 
translate somewhat from frame to frame; PDS naturally registers .the data estimating wavefront tilt and, 
therefore, does not require that the data be aligned prior to processing. 

The consistency of PDS object estimates with respect to the number of image pairs input to the 
algorithm is summarized in Figure 6. For each number of images pairs, J, the 256-pair set was divided 
into 256/ J (truncated to the nearest integer) disjoint subsets, and a restoration was made for each subset. 
The 64-realization shift-and-add image, d1 (x), that is used as the initial guess to one of the four 64-pair 
subsets is shown in Figure 6(b). The corresponding 64-pair restoration is shown in Figure 6(c). This 
restoration has an excellent support estimate and interesting intensity variations. A glint on the main 
body is observed, and shadowing is noted at the junction of the main body with the solar panels. The 
shadowing is consistent with our intuition and experience with sun-illuminated artificial satellites. There is 
also an interesting feature at the base of the main body that protrudes roughly vertically. Representative 
restorations for the cases of J = 32, 24, 16 and 8 image pairs are found in Figures 6(d)-(g), respectively. 
There is a high degree of consistency between the restorations, and it is not until we use only J = 8 
image pairs that the intensity features begin to vary and the support is less defined. Nonetheless, this 
restoration improves dramatically upon any individual short-exposure image and is significantly sharper 
than the shift-and-add initial estimate. This group of restorations also demonstrates that PDS can work 
well on images with favorable SNR, even when a portion of the diversity image data fall outside of the FOV. 
Furthermore, high-fidelity restorations can be obtained with only 16 image pairs, and decent performance 
is exhibited here with as few as only 8 pairs. Fine-resolution PDS restoration of solar granulation have 
been made using only 5 image pairs [7, 8], but the satellite-imaging results presented here are from a more 
stressing regime of operation with respect to SNR. 

A powerful means for assessing reconstruction accuracy is the comparison of restorations at different 
points in the satellite pass. The CATNO 4419 pass provides us with a very nice time sequence of 12 
restorations that shows the satellite at a variety of aspects. The sequence of restorations using J = 32 
image pairs is shown in Figure 7. The first 9 sets were collected with a 5 msec exposure, and the last 3 
sets use 2 msec. The SNR, S1, has an average value of 6.0 for the 5 msec sets and only 2.2 for the 2 msec 
data. The time interval between sets is not evenly spaced, and our best estimate (based on the time spent 
above 45 degrees elevation) is approximately 10 seconds between restorations. The third restoration in the 
sequence was shown previously in Figure 6(d). The restorations share many common features. Perhaps 
most meaningful of all is the fact that these features evolve with the change in satellite aspect in a believ
able fashion. For instance, (1) a glint on the main body begins to form in restoration frame 2 and persists 
for several frames before fading out; (2) shadowing of the panels near the main body is common to most 
of the restorations; (3) the main body gradually experiences a foreshortening with aspect; ( 4) a subtle, 
low-intensity region on the panels is observed in frames 4-7. These are just a few of the characteristics 
that persist throughout the pass. One image analyst also noted that the two panels are not fully planar, 
and that they retain a slight zigzag from deployment. The value of a time series of restorations like this 
should not be underestimated, and has already provided a third dimension of information for astronomers 
studying the evolution of small-scale solar features from ground-based observatories [12]. The reduction 
of artifacts and the ability to view the object at a variety of angles opens the door to a wealth of reliable 
information that can be mined from movies of satellites. 
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Figure 7: Time series of Catalog No. 4419 restorations. Each restoration derives from 32 image pairs. The 
sequence rasters from the upper left to the bottom right. The first 9 sets derive from data collected with 
a 5 msec exposure, and the last three were collected with a 2 msec exposure. The average conventional
channel SNR is 6.0 for the 5 msec data and 2.2 for the 2 msec data. 
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4. CONCLUSIONS 

The use of PDS for satellite reconstruction was demonstrated in simulation for a variety of SNR's. 
For a given turbulence strength, satellite reconstruction fidelity was evaluated as a function of quality and 
quantity of data. We found that performance degrades as expected as both the SNR and number of image 
pairs are reduced. The credibility of this study is enhanced by reconstructions from compensated data 
collected with the 1.5-meter telescope at the SOR. The authenticity of the reconstuctions was enhanced via 
a time series of reconstructions for CATNO 4419. We confirmed the simulation findings when we showed 
that excellent reconstructions can be obtained with 16 image pairs when the SNR is high. Important 
features persist throughout the pass, and changes in aspect and the location of shadows evolve as expected. 
Glints evolve rapidly as expected, and the size and shape of the satellite varies in a believable fashion. In 
addition, details of the restorations were corroborated with sketches of the actual objects, and, features 
such as the orientation of solar panels were identified by analysts experienced in space-object imaging. 
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