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Microlattices are architected materials that allow for an unprecedented control of mechanical prop-

erties (e.g., stiffness, density, and Poisson’s coefficient). In contrast to their quasi-static mechanical

properties, the acoustic properties of microlattices remain largely unexplored. This paper analyzes

the acoustic response of periodic millimeter-sized microlattices immersed in water using experi-

ments and numerical simulations. Microlattices are fabricated using high-precision stereolitho-

graphic three-dimensional printing in a large variety of porosities and lattice topologies. This paper

shows that the acoustic propagation undergoes a frequency dependent transition from a classic

poroelastic behaviour that can be described by Biot’s theory to a regime that is dominated by scat-

tering effects. Biot’s acoustic parameters are derived from direct simulations of the microstructure

using coupled fluid and solid finite elements. The wave speeds predicted with Biot’s theory agree

well with the experimental measures. Within the scattering regime, the signals show a strong atten-

uation and dispersion, which is characterized by a cut-off frequency. The strong dispersion results

in a frequency dependent group velocity. A simplified model of an elastic cylindrical scatterer

allows predicting the signal attenuation and dispersion observed experimentally. The results in this

paper pave the way for the creation of microlattice materials for the control of ultrasonic waves

across a wide range of frequencies. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

The behaviour of acoustic waves propagating in hetero-

geneous materials depends on the ratio between their wave-

length and the length scale of the inhomogeneity or scatterer.

For instance, kHz sound waves in a solid can be described by

elastic continuum theory, while the description of THz ther-

mal phonons in the same material requires the knowledge of

the exact molecular structure of the crystal.1,2 The transition

between the different regimes of wave propagation is of great

technological importance: thermal transport can undergo a

transition from wave-like to diffusive transport that we per-

ceive on macroscopic scales. Such transitions from quasi-

homogeneous to scattering dominated behaviour also occur in

acoustical systems.3 In microstructured acoustic systems

strong scattering can lead to dramatically altered acoustic

transmission and frequency dependent group velocity.4

An emerging class of microstructured materials are

microlattices that can be designed to obtain material

properties which are unobtainable in natural solid materials

such as negative Poisson’s ratio5 or zero-shear module6,7 and

dilatation metamaterials.8 As microlattice materials are com-

posed of a periodic arrangement of slender truss elements,

they can be interpreted as perfectly ordered open-cell foams.

The acoustics of fluid saturated cellular foams at low fre-

quencies are described by Biot’s effective medium the-

ory,9,10 which predicts the occurrence of two kinds of

longitudinally polarized waves: a fast wave cp1 where the

cellular frame and the fluid in the pores move in-phase, and

a slow wave cp2 where they move out-of-phase. Biot’s the-

ory has been successfully applied to waves across scales

ranging from cancellous bone11,12 to seismic waves.13 An

important step towards its application is the calculation of all

the required physical parameters directly from the complex

porous microstructure. This process is mainly carried out for

rigid microstructures14,15 in the field of audible acoustics to

derive effective medium theories of the compressible fluid in

the pores.16 A fundamental limitation of Biot’s theory is the

continuum assumption, which is valid only for low fre-

quency waves with wavelengths much larger than the pore

size. For shorter wavelengths, scattering effects play a role.

Strong scattering phenomena have been extensively studied

in granular media.3,17 Materials composed of random
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arrangements of spherical solid particles dispersed in a fluid

matrix have been successfully used to realize acoustic analo-

gies of Anderson localization,18 electron tunneling,19 and

negative index of refraction.20 Scattering effects can be sub-

wavelength in the fluid matrix21 if the wavelength is drastically

shortened within the scatterer or if the scatterer undergoes low

frequency structural modes, such as Minaert bubble resonan-

ces.22 In contrast, for open cellular materials, scattering effects

have only been considered in the limit of weak scattering23,24

or low frequencies.25 Therefore, the impact of strong scattering

on wave propagation in cellular materials and the physical

mechanisms beyond the continuum description of Biot are less

well understood.26 Microlattices can serve as a model material

with controlled microarchitecture and used to study scattering

effects in a highly controllable system. Moreover, as cellular

architectures frequently occur in natural and artificial materi-

als, the correct interpretation of their acoustic footprint is

important for applications in biomedical imaging and nonde-

structive testing.

Here we show that ultrasonic wave propagation in

microlattice materials can be described by either continuum

or scattering theory depending on the carrier frequency and

the truss radius. The splitting of wave propagation into dif-

ferent propagation regimes as a function of grain radius has

been observed for non-linear granular media;27,28 however,

it has not been shown for foam-like structures. We fabricate

millimetre-sized lattices using high precision stereo-

lithographic (SLA) three-dimensional (3D) printing and

experimentally measure cp1-waves at low frequencies in

microlattice samples with varying porosity and topology.

We employ coupled solid-fluid Bloch-Finite Element (FE)

simulations with periodic boundary conditions of the form

ðu; pÞþ ¼ expðik � xÞðu; pÞ�, where ðu; pÞþ;� are the solid

displacement and fluid pressure field on the boundaries of

the unit cell and k denotes the wave vector. Using these sim-

ulations, we predict the microlattices’ fast wave speeds,

which are in excellent agreement with the experimental mea-

surements. At high frequency, the continuum description

breaks down and scattering effects lead to a distinct cut-off

frequency with strong signal attenuation. The experimental

measured group velocities past the cut-off are decreased by

up to 40% when compared to Biot’s theory. The extremely

slow waves are the result of the interaction of scatterers in

the medium.29 The cut-off frequency is independent of lat-

tice topology and robust against random perturbations of the

periodicity. We show that the cross-over frequency can be

well predicted by a simple multiple scattering model and

Bloch-FE simulations that incorporate the effect of the

elastic frame.

II. MICROLATTICE FABRICATION

We fabricate Kelvin and Diamond-like microlattices with

bending dominated topology [Figs. 1(a) and 1(b)] and Octet

lattices with stretch dominated topology [Fig. 1(c)] using

micro-SLA fabrications techniques (Autodesk EmberTM). The

connectivity of the lattices, and therefore the dominant defor-

mation mechanism, has an important impact on the macro-

scopic mechanical properties such as stiffness or strength;30

however, the impact on the acoustical properties is not clearly

understood. We use the PR48TM base material, which is a

commercial acrylic photoresist, and measure a compressional

wave speed of cp¼ 2380 m/s, a shear wave speed of

cs¼ 1000 m/s, and a density of qs¼ 1190 kg m–3.

To vary the porosity, we vary the aspect ratio between

the truss radius r and the truss length L. Trusses are either

1 mm or 0.66 mm in length and have a radius between

0.15 mm and 0.4 mm. The microlattice samples show a large

range of porosities ranging from 54% to 98% [Fig. 1(d)].

Stretch dominated lattices have a significantly lower porosity

at the same aspect ratio due to the larger connectivity of the

lattice. We fabricate lattice samples with an overall dimen-

sion of 35� 25� 25 mm3 consisting of a large number of

unit cells (�2000, 18 unit cell in the z-direction).

III. LOW FREQUENCY PROPAGATION

A. Experimental measurements of fast Biot waves

To study acoustic wave propagation in the fluid saturated

lattices, we immerse our structures in water (with wave speed

cw¼ 1481 m/s), between a broadband ultrasonic transducer

(V391-SU centered at 0.5 MHz for low-frequency and V394-

SU centered at 1 MHz for high frequency measurements) and

a hydrophone (Precision Acoustics, diameter¼ 4 mm), see

Fig. 1(e). Signals are generated by the arbitrary waveform

generator of a Lock-In amplifier (UHFLI, Zurich Instruments)

connected to a radio-frequency amplifier (Amplifier Research

75A220). To study low-frequency Biot waves, we transmit

short pulses (1 cycle) at 200 kHz with a wavelength of 1.5 cm

in the fluid, much larger than the characteristic pore size of

the lattices. Typical measurements are shown in the inset in

Fig. 1(e). We observe the arrival of a compact wave packet,

which corresponds to the fast Biot wave. The arrival of the

wave packet is shifted to earlier times for lower porosities,

indicating an increasing wave speed. To estimate the Biot

wave speed, we measure the time of flight for pulses travelling

through each lattice [Figs. 2(a)–2(c)].

The experimental results show wave speeds ranging

between 1500 m/s and 1780 m/s for cp1 waves, see Figs.

2(a)–2(c). Stretch dominated lattices [Figs. 2(a) and 2(b)]

show a larger variability as their mechanical properties scale

stronger with a varying porosity. We are not able to measure

slow Biot waves due to their highly dissipative nature.12

B. Experimental attenuation at low frequencies

In addition to the wave speed of the propagating fast

waves we measure the attenuation coefficient al defined as

al ¼
20 log10

Sw

Sl

L
; (1)

where Sw is the transmitted amplitude through water and Sl

is the transmitted amplitude through the microlattice with

length L. Experiments were carried out by propagating short

cycles at four different frequencies between 100 and 400

kHz. The experimental outcomes show a significant depen-

dence of the attenuation on the porosity [see Figs. 2(d)–2(f)].
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A lower porosity results in significantly larger signal attenu-

ation up to 1000 dB/m for the lowest porosity Octet lattice

[Fig. 2(f)]. The dependence on the frequency in the long

wavelength regime is low. Especially for the Diamond and

Kelvin structures a slightly increasing attenuation between

100 and 400 kHz is detectable [see Figs. 2(d) and 2(e)].

C. Numerical predictions of fast Biot wave speeds
and attenuation

We compare the experimental measurements for fast

waves to the predictions of Biot’s theory. The governing

equations for Biot’s theory are31

�q̂11x
2û � q̂12x

2Û

¼ ðP� GÞrðr � ûÞ þ Qrðr � ÛÞ þ Gr2û; (2)

�q̂22x
2Û � q̂12x

2û ¼ Rrðr � ÛÞ þ Qrðr � ûÞ; (3)

where û and Û denote the volume average solid and fluid

displacement fields; P, G, Q, and R are generalized elastic

constants; and q̂11; q̂22, and q̂12 are frequency dependent

solid, fluid, and coupling density terms. The constants (P, G,

Q, R) appearing in the equations of motion are derived from

measurable quantities such as the porosity /, the bulk modu-

lus of the fluid, the bulk modulus of the solid and fluid mate-

rial Ks, Kf, the shear modulus of the solid G, and the

effective compressional modulus of the microlattice frame

Kl. The parameters that are required to solve Eqs. (2) and (3)

are derived by modelling the microstructure directly in a

finite element framework using Comsol Multiphysics. The

first parameter we calculate is the bulk compressional mod-

ule of the drained lattice Kl. We simulate the drained lattices

with varying porosities [see inset Fig. 3(a)] assuming 3D lin-

ear elasticity. To obtain the characteristic dispersion relation

for each lattice type, we apply periodic Floquet boundary

conditions on the sites of the cubic unit cell. Subsequently,

we vary the wave vector kz and solve for the eigenfrequen-

cies. The dispersion describes the propagation of acoustic

waves in the solid frame in the z-direction. In the non-

dispersive long-wavelength regime (k¼ 2p/kz � a, where a
denotes the size of the unit cell), the shear and pressure wave

speeds are related to the gradient of the frequency with respect

to the wave number

FIG. 1. (Color online) Microlattices fabricated using stereolithographic 3D printing. (a) Photograph of fabricated Diamond lattice, (b) Kelvin lattice, and (c)

Octet lattice. The scale bar is 2 mm. (d) Porosity of the analysed lattices as a function of the truss aspect ratio r/L. (e) Experimental setup including a

Hydrophone (left) and a broadband ultrasonic transducer (right). The bottom panel shows typical waveforms obtained for low frequency (100 kHz) measure-

ments for high and low porosity samples. Signals have been normalised by their maximum amplitude to ease visualisation.
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@xp;s

@kz

����
kz¼0

¼ cp;s; (4)

where xp,s is the angular frequency of the pressure, shear

waves in the drained lattice. By assuming linear-elastic

and isotropic behaviour, the wave speeds are related to the

drained elastic constants and the solid density qs: the

Young’s modulus of the lattice, El, shear module of the lat-

tice, Gl, compressibility of the lattice, Kl and Poisson’s ratio

of the lattice, �l,

�l ¼
1� 2 cs=cp

� �2

2� 2 cs=cp

� �2
; (5)

El ¼
c2

p 1� /ð Þqs 1þ �lð Þ= 1� 2�lð Þ
1� �l

; (6)

Gl ¼ c2
s ð1� /Þqs; (7)

Kl ¼
El

3 1� 2�lð Þ : (8)

To calculate the permeability, j0, under quasi-static condi-

tions, we assume a laminar flow throughout the lattice for an

applied pressure drop, DP, along the z-direction [see inset Fig.

3(b)]. To account for continuity, we apply periodic boundary

conditions in the x- and y-directions. According to Darcy’s

law, the flow in the z-direction through porous media under

static conditions is governed by

/Vz ¼ �
j0

l
rp; (9)

where Vz is the average flow velocity in the z-direction, l is

the dynamic viscosity of water (lw¼ 1� 10�3), and rp is

the pressure gradient. The average flow velocity can be cal-

culated by integration over the fluid area in the z-direction

with unit vector ez,

FIG. 2. (Color online) Fast Biot wave speeds as a function of porosity and experimental attenuation at low frequencies for (a) Diamond lattices, (b) Kelvin lat-

tices, and (c) Octet lattices. Markers represent experiments at 200 kHz, solid lines analytic Biot’s theory, and dashed lines finite element simulations. Hollow

markers are lattices with L¼ 0.66 mm, solid markers are lattices with L¼ 1 mm. The error bars represent the error in the calculated porosities due to variations

in the fabrication process and the uncertainty in determining the peak amplitude in time. Experimentally measured and analytically calculated attenuation coef-

ficients for (d) Diamond lattices, (e) Kelvin lattices, and (f) Octet lattices. Markers are used for experimental data. The size of the marker is proportional to the

porosity, where a small size represents high porosity and a large size low porosity with an overall range between 1.8% and 42.2%. The lines of the analytical

calculations are also scaled according to the same porosities.
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Vz ¼
1

Az

ð
Az

V � ezdA: (10)

For an applied pressure drop of DP across the finite size unit

cell of length a, we can express the permeability

j0 ¼
/gVza

DP
: (11)

The simulated results show that the permeability increases

rapidly with the porosity for all types of lattices [see Fig.

3(b)]. Moreover, the Octet lattice shows significantly lower

permeability when compared to the other lattices, due to

the larger number of trusses that perturb the flow through

the unit cell. The last parameter necessary to calculate

Biot’s waves in microlattices is the tortuosity a1. To esti-

mate its value, we exploit the fact that for an infinitely rigid

frame, the slow wave speed in the porous media is related

to the wave speed in the fluid: cp2
¼ cw=

ffiffiffiffiffiffi
a1
p

. This equa-

tion is only valid when viscous effects of the fluid are

neglected. Therefore, we calculate the wave speed in the

fluid part of the unit cell under the high-frequency approxi-

mation by applying the Floquet boundary conditions with a

wave vector kz in the z-direction and continuity conditions

in the other directions [see inset Fig. 3(c)]. The tortuosity

of the three different lattices shows a similar porosity scal-

ing with values of approximately 1.5 at 50% porosity.

Assuming plane wave solutions, the dispersion relation for

compressional Biot waves can be derived in terms of the

complex valued inverse wave velocity fp ¼ k2
p=x

2 (for deri-

vation see Appendix A),

d2f
2
p þ d1fp þ d0 ¼ 0; (12)

where the parameters d2, d1, and d0 are expressed in terms of

generalized elastic constants and density terms

d2 ¼ PR� Q2; (13)

d1 ¼ �ðPq̂22 þ Rq̂11 � 2Qq̂12Þ; (14)

d0 ¼ q̂11q̂22 � q̂2
12: (15)

The dispersion relation has two complex solutions. We are

interested in fast Biot waves, which are described by

fp1
¼ �d1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d0d2=d2

1

p
2d2

: (16)

Using the values of the frame stiffness, the static permeabil-

ity, and the tortuosity, we can calculate the Biot wave speeds

for the analyzed microstructures (see Fig. 2). The predictions

of Biot’s theory based on the derived parameters agree well

with the experimental data [Figs. 2(a)–2(c)] but slightly

overestimate the reached speeds. We attribute this to the fact

that one main assumption of Biot’s theory is isotropy, which

is not valid for the analysed cubic lattice materials given

their orthotropic elastic response. From the imaginary part of

the derived complex wave numbers, Im(kp1), we estimate the

FIG. 3. (Color online) Calculation of parameters for Biot wave speeds. (a) Pressure (thick lines) and shear wave speeds (thin lines) of the drained lattices:

Diamond (solid, red), Kelvin (dashed, green), Octet (pointed, blue) as a function of porosity. Inset shows modal displacement fields for the longitudinal and

shear wave, the color intensity ranges from minimal to maximal absolute displacement (b) Static permeability of the lattices: Diamond (solid, red), Kelvin

(dashed, green), Octet (pointed, blue) as a function of porosity. Inset shows the absolute flow velocity in the cubic unit cell for the applied pressure drop. (c)

Geometric tortuosity of the lattices: Diamond (solid, red), Kelvin (dashed, green), Octet (pointed, blue) as a function of porosity. Inset shows the pressure dis-

tribution for the longitudinal acoustic mode propagating in the z-direction for the rigid lattice case.
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wave attenuation gp1¼ Im(kp1). The calculated attenuation

values reproduce well the slight increase in attenuation over

the considered frequency range, as found in the experimental

measurement [see Figs. 2(d) and 2(f)]. However, they under-

estimate the attenuation especially for low porosities. This is

certainly related to the fact that we use a lossless material

model for the solid. For a better fit to the experimental val-

ues, viscous effects in the solid need to be included.

D. Direct finite element calculations

We also perform direct finite element simulations of

water-saturated microlattices, including anisotropy. We

model both the solid and the fluid parts of the lattices in

Comsol Multiphysics coupling the two phases by pressure

conditions at their interfaces. We perform a mesh conver-

gence study in Comsol to ensure accurate results indepen-

dent from the adopted discretization. We neglect any viscous

coupling of the frame to the fluid. This simplification is

justified by the fact that, in the investigated frequency

region, the inertial effects dominate. We use cubic unit cells

for each lattice and apply Floquet-type boundary conditions

for the solid and fluid parts. We solve for the first eigenfre-

quencies of the coupled system for a given wave vector

k ¼ ½0 0 kz�. At small wave numbers, the first four modes

correspond to two degenerate shear modes, the slow Biot

and the fast Biot waves, respectively. The simulated fast

wave speeds match well with the experimental data with a

significant improvement with respect to the analytical pre-

diction [Figs. 2(a)–2(c)]. The small differences between the

finite element simulations and the theoretical predictions by

Biot’s theory are due to their different assumptions. These

include the assumption of material isotropy in Biot’s theory.

Another source of discrepancy is the viscous dissipation of

the fluid, which is accounted for in Biot’s theory, but not in

the finite element simulation.

IV. HIGH FREQUENCY PROPAGATION

A. Experimental investigation of high frequency
propagation

To investigate the limitations of the Biot’s description,

we study the wave propagation at intermediate frequencies

(up to 2 MHz) in our microlattice materials (Fig. 4). We

send longer (ten cycles) chirps between 0.2 MHz and 2 MHz

through the sample. The large hydrophone surface measures

only the coherent part of the propagating wave, as the scat-

tered wave shows an incoherent phase in the hydrophone

plane, which is cancelled during integration.29 Moreover, we

average over repeated measurements at slightly different

positions to decrease the influence of intensity fluctuations.

We show examples of the transmission curves, for Diamond

lattices with truss radius r¼ 0.075 mm, 0.215 mm, and

0.395 mm and L¼ 1 mm, corresponding to porosities of

97.8%, 84.5%, and 56.1% [Fig. 4(a)]. The initial oscillations

of the transmission function are due to the finite size of the

measurement line between transducer and hydrophone. The

transmission spectrum of the two lowest porosity structures

is characterized by an initial flat region followed by a sharp

cut-off frequency that decreases for decreasing porosity

FIG. 4. (Color online) Scattering cut-off frequencies of microlattices. (a) Transmission through Diamond lattices of r¼ 0.075, 0.215, and 0.395 mm (thicker

lines for larger radius). (b) Experimental cut-off frequencies for different lattices (markers) compared to the theoretical predicted cut-off at kr¼ 0.89. Hollow

markers correspond to L¼ 0.66 mm and solid markers to L¼ 1 mm. The inset shows the normalized transmitted chirp signals for the three structures in (a). (c)

Calculated scattering cross-section for the radii r¼ 0.075, 0.215, and 0.395 mm (thicker lines for larger radius).
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from 0.95 MHz to 0.6 MHz. We define the cut-off frequency

as the frequency at which transmission drops by 6 dB with

respect to the low frequency transmission at 200 kHz. The

biggest drop in transmission of the coherent wave is approxi-

mately two orders of magnitude for the tested lattice sam-

ples. The high porosity sample does not show any cut-off in

the analyzed frequency region. We measure all lattice types

and find the cut-off frequency between 0.6 MHz and

1.7 MHz [Fig. 4(b)].

B. Scattering model

To gain insights into the origin of the cut-off frequency,

we employ a simplified scattering model of an elastic cylin-

der of radius r and length L immersed in a loss-less fluid32

(see details in Appendix B). This approach captures well the

geometry of the truss; however, it does not include any stress

carried by the frame as all scatterers are independent. We

analyze the scattering cross section rs, which is indicative

for the amount of energy transported via scattered waves,

rs ¼
�����L

p
sin Dð Þ

D

X1
m¼0

�m sin gmð Þ � e�igm � cos mhð Þ
����
2

:

(17)

Here, the scattering direction angle h¼ 0 results in the

forward scattering cross-section, rsf, and h¼p in the

back-scattered cross-section, rsb. In the case of a cylinder, D
¼ kL cos p=2 with the wave number k0¼x/cw. The deriva-

tion of the scattering phase angle, gm, is detailed in the

Appendix B. In Fig. 4(c), we show the forward scattering

cross-section for the truss configurations in Fig. 4(a). The

first peak of the cross-section agrees well with the experi-

mentally measured cut-off frequency of the lattice for the

larger radius samples. In general, the first peak is associated

with the first acoustic Mie-resonance.32 Above the frequen-

cies of this first peak, the scattering cross-section stays on a

high level, which explains the permanent drop in signal

transmission that does not recover past the cut-off frequency

[see Fig. 4(a)]. Interestingly, the simple scattering model can

very well be used to describe the cut-off for the various con-

sidered lattices [Fig. 4(b)] even though it neglects multiple

scattering, the influence of the frame, and the orientation of

the truss elements. The first acoustic Mie-resonance in this

system can be described by a line of constant kr� 0.89,

which matches all lattice systems despite their varying topol-

ogies and porosities (Fig. 4). In particular, the model is able

to describe the cut-off frequencies of lattices independent of

the truss length L and hence unit cell size a. This is a strong

indication that the observed phenomena is related to Mie-

scattering governed by the truss-radius rather than Bragg-

scattering, which is instead related to the periodicity of the

unit cell.

C. Group velocities

In addition to the drastic dip in transmission by the

strong scattering, we observe that the arriving ultrasonic

pulses are highly dispersed (see inset of Fig. 4). We

experimentally investigate the lattice dispersive properties

by measuring the pulse group velocity. We filter the trans-

mitted signals to a narrow frequency region (0.1 MHz) using

a second order Butterworth filter in MATLAB and fit an enve-

lope function to the resulting Gaussian pulse. The group

velocity, vg, is then calculated for every frequency step as a

function of the time difference, Dt, between the arrival of the

maximum amplitude peak in the porous medium of length

l and the maximum amplitude peak through pure water

vg ¼
cwl

Dtcw þ l
: (18)

The experimentally measured group velocity vg shows a pro-

nounced drop for the higher density lattices (Fig. 5). The

lowest measured speeds of the low and medium porosity lat-

tices are approximately 1100 m/s and therefore much lower

than the speed of sound in the solid or in the fluid constitu-

ents. To calculate the group velocity based on scattering the-

ory, we employ a multiple scattering model20 that describes

the effective wave number k as a function of the forward and

backward scattering amplitudes (fsf and fsb; for details, see

Appendix B)

k ¼ k2
0 þ 4pn0fsf þ

4p2n2
0

k2
0

f 2
sf � f 2

sb

� �
; (19)

where n0 ¼ 1� /=pr2L is the number of cylinders per unit

volume and k0¼x/cw is the wave number in pure water.

From the effective wave number k, we calculate the fre-

quency dependent group velocity by vg¼ dx/dkz in the z-

direction. The theoretical model shows good agreement with

the high and medium porosity sample in predicting the fre-

quency region of the lowest group velocity, even though it

overestimates the decrease in velocity (see Fig. 5). This

discrepancy can be explained noting that the experimental

measurements of low group velocity pulses is difficult,

FIG. 5. (Color online) Group velocity of Diamond lattices with varying den-

sities. We show theoretically predicted group velocities based on multiple

scattering theory (solid lines) and experimental measurements (markers) for

the Diamond lattices with r¼ 0.395 mm (brown, circles), r¼ 0.215 mm (red,

squares), and r¼ 0.075 mm (orange, Diamond). Error bars represent the

finite frequency width of the Gaussian filter that was applied to the experi-

mental data.
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especially as they occur in regions with very low overall

transmission.

D. Discrete model

The ability to explain the cut-off frequency by means of

scattering theory suggests that the occurring phenomena do

not depend strictly on periodicity of the lattice. To validate

this hypothesis, we perform extended frequency fluid/solid

Bloch-FE simulations of the Diamond structures (see results

in Fig. 6). We focus on modes in the z-direction given that

our experimental setup excites and measures only modes

that are symmetric in the transducer plane. Therefore,

we investigate the band-diagrams selecting only the modes

with a large average eigenvector magnitude in the z-

direction, both in solid and fluid displacement fields:

Mz ¼ 1=2
Ð

Vs
ðjûz j=jûjÞdV þ 1=2

Ð
Vf
ðjÛz j=jÛjÞdV. Here, Mz is

a normalized effective displacement. During integration, the

z-component of the displacement fields of solid and fluid

over the unit cell volume effectively cancels all asymmetric

modes. We analyze the phase P of the occurring modes as

the sign of the ratio of displacement fields, which dramati-

cally simplifies the band-structures (see Fig. 6). The band

diagrams for the three different lattices clearly show the

propagation of non-dispersive slow and fast Biot waves at

low frequencies (Fig. 6). The cut-off frequency fc agrees

extremely well with the termination of the in-phase wave

mode in the lower porosity lattices [Figs. 6(b) and 6(c)],

which dominates the energy transport in the poroelastic

material. Interestingly, the fast mode terminates above the

first band folding in the intermediate porosity lattice, Fig.

6(b), and below the first folding for the low porosity lattice,

Fig. 6(c). This behaviour contradicts the behaviour of a sim-

ple phononic crystal with lattice periodicity a, where the gap

always opens at the edge of the first Brillouin zone kz¼ p/a.

In addition, we find a narrow band-gap for the intermediate

porosity lattice, which stems from the hybridization with a

bending mode of the truss.33

V. CONCLUSION

We showed that periodic microlattices undergo a transi-

tion from a classic poroelastic effective medium description

at low frequencies to a strongly scattering medium at high

frequencies. Surprisingly, the frequency cut-off, which

marks the limits between both descriptions, is independent

of the lattice periodicity, but depends solely on the truss

diameter. This result is counterintuitive when compared to

classic results in multiple scattering theory17 of close packed

granular media, which predicts a dependence on the lattice

periodicity as described by the grain radius. The main differ-

ence in the studied microlattice materials is that their period-

icity is independent of the radius, which allows for a

separate treatment of periodicity and radius related effects.

Biot’s theory allows the description of the low frequency

propagation regime, in which waves travel with small disper-

sion and with speeds in between pressure wave speeds in the

solid and the fluid. Above the cut-off frequency, we find

strong signal attenuation and exceedingly low group veloci-

ties. Such low group velocities cannot be explained by effec-

tive theories as they rely on the multiple scattering pathways

through the porous material. The obtained results give

insights into cross-over phenomena in acoustics that can

inspire analogies to electronic or optical systems. Moreover,

FIG. 6. (Color online) Band structures for fluid saturated Diamond lattices with (a) radius 0.075 mm, (b) radius 0.215 mm, and (c) radius 0.395 mm. The color

scales represent the normalized magnitude of solid and fluid displacements in the z-direction over the full unit cell. We show in-phase modes in red and out-

off-phase modes in blue.
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the interpretation of the acoustic footprint of natural porous

materials such as bones or sandstone can benefit from a pre-

cise understanding of the present acoustic regime.
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APPENDIX A: DERIVATION OF BIOT WAVE SPEEDS

There exist two fundamental frequency regions: (i) a

low frequency region, where the fluid can freely move

between the pores, and in which the viscous forces dominate

and (ii) a higher frequency region, where inertial forces are

dominant, as the fluid is essentially locked to the frame

movement. We restrict our investigation to the higher fre-

quency regime, dominated by the inertial behaviour. Here

we follow the derivation from Ref. 31 to obtain the equations

of motion. We can start by writing the linearized equations

of the solid, e, and fluid, e, strain,

e ¼ 1

2
rû þ rûð ÞT
� �

; (A1)

e ¼ 1

2
rÛ þ rÛð ÞT
� �

; (A2)

where ui denotes the averaged solid particle displacement

and Ui denotes the average fluid particle displacement

defined by the averaging operation over the unit cell domain,

û x; tð Þ ¼
1

Vs

ð
Vs

us x0; tð ÞdV; (A3)

Û x; tð Þ ¼
1

Vf

ð
Vf

Uf x0; tð ÞdV: (A4)

The primary variable describing the mechanical properties

of porous material is the porosity, which describes the ratio

of pores Vf (fluid volume) with respect to the bulk volume

VfþVs (fluid and solid volume) of the unit cell

/ ¼ Vf

Vf þ Vs
: (A5)

Using these definitions and applying continuity and constitu-

tive equations and assuming harmonic motion with angular

frequency x, we can write down the governing equations of

motion, see Eqs. (2) and (3). In particular, we may express

the elastic parameters

A ¼
/Kl þ 1� /ð ÞKf 1� /� Kl

Ks

� 	

b
� 2

3
G; (A6)

Q ¼
/Kf 1� /� Kl

Ks

� 	

b
; (A7)

R ¼ /2Kf

b
; (A8)

P ¼ Aþ 2G; (A9)

where b denotes the so-called effective porosity, defined by

b¼/þKf/Ks(1 – /). The density terms are expressed as

q12 ¼ �ða1 � 1Þ/qf ; (A10)

q11 ¼ ð1� /Þqs � q12; (A11)

q22 ¼ /qf � q12: (A12)

Here, a1 denotes the tortuosity (a1> 1), which is a purely

geometrical parameter. This parameter can be interpreted as

the slowdown of sound due to the added path in the porous

structure. In fact, it can be shown34 that in the limit of an

infinitely stiff frame, the fast compressional wave does not

exist and there is only a slow compressional wave with the

wave speed cp2 ¼ cw=
ffiffiffiffiffiffi
a1
p

. To account for the dynamic

interaction between lattice and fluid movement, the density

terms are corrected as a function of frequency

q̂12 ¼ q12 � ib̂ðxÞ=x; (A13)

q̂11 ¼ q12 � ib̂ðxÞ=x; (A14)

q̂22 ¼ q22 � ib̂ðxÞ=x: (A15)

The frequency dependent dissipation function b̂ðxÞ
¼ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� if=2fr

p
is related to the dynamic permeability

ĵðxÞ of the porous material

b̂ xð Þ ¼ b0

j0

ĵ xð Þ þ i
f

fc

� 	
: (A16)

Furthermore, we define the viscous damping parameter as

b0 ¼
gf /

2

j0

; (A17)

where gf is the fluid viscosity, and k0 the static permeability

according to a Darcian flow. The dynamic interaction is

characterized by the rollover frequency or Biot frequency

fr ¼
gf /

2pqj0a1
; (A18)

which can be interpreted as a ratio between viscous and iner-

tial forces. We may rewrite the displacement of the solid and

the liquid components in terms of scalar and vector potential

functions

û ¼ rÛs þr� Ŵs; (A19)

Û ¼ rÛf þr� Ŵf : (A20)

Using plane-wave like solutions for the potentials

Ûs; f ¼ ~Us; f e
ik�x; (A21)

Ŵs; f ¼ ~Ws; f e
ik�x; (A22)
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and considering the propagation of longitudinal waves in

one direction of the isotropic space, we can derive the dis-

persion relation for compressional waves in terms of the

complex valued inverse wave velocity fp ¼ k2
p=x

2,

d2f
2
p þ d1fp þ d0 ¼ 0: (A23)

APPENDIX B: ACOUSTIC SCATTERING OF FINITE
ELASTIC CYLINDERS

According to Ref. 32, the normal incidence scattering

pressure field from an elastic cylinder of length L and radius

r immersed in a fluid can be estimated as

pscat ¼ P0

eikr

r

�L

p

� 	
sin Dð Þ

D

X1
m¼0

�m sin gmð Þ

� e�igm � cos mhð Þ; (B1)

where D ¼ kL cosðp=2Þ and �m is the Neumann number. The

wave numbers gm can be calculated by

tan gm ¼ tan dmðxf Þ

 �

tan Um þ tan amðxf Þ

 �

=

tan Um þ tan bm½ �; (B2)

tan dmðxf Þ ¼ �Jmðxf Þ=Nmðxf Þ; (B3)

tan amðxf Þ ¼ �xf J
0
mðxf Þ=Jmðxf Þ; (B4)

tan bmðxf Þ ¼ �xf N
0
mðxf Þ=Nmðxf Þ; (B5)

tan Um ¼ �ðqf=qsÞ tan nm; (B6)

tan nm ¼ �
x2

s;s

2

A� B

C� D

� 	
; (B7)

where

A ¼ tan amðxs;pÞ

 �

= tan amðxs;pÞ þ 1

 �

; (B8)

B ¼ m2

�
tan am xs;pð Þ þ m2 � 1

2
x2

s;s


 �
; (B9)

C ¼ tan am xs;pð Þ þ m2 � 1

2
x2

s;s


 ��
tan am xs;pð Þ þ 1

 �

;

(B10)

D ¼ m2 tan am xs;sð Þ þ 1

 ��

tan am xs;sð Þ þ m2 � 1

2
x2

s;s


 �
:

(B11)

Here, Jm(x) denotes a Bessel function of first kind and order

m, and Nm(x) a Bessel function of second kind and order m.

The scattering phase angles gm, dm, Um am, bm, and nm are

functions of the relative wave numbers in the solid xs,s¼ ksr,

xs,p¼ kpr, and the fluid xf¼ kfr. The scattering pressure can

be brought in a more compact form

pscat ¼ P0ðeikr=rÞf ðxÞ; (B12)

where f is denoted as the scattering amplitude of the cylinder

object

f xð Þ ¼ �L

p
sin Dð Þ

D

X1
m¼0

�m sin gmð Þ � e�igm � cos mhð Þ:

(B13)

The scattering cross section is then defined as

rs ¼ jf ðxÞj2: (B14)

To calculate the frequency dependent scattering cross sec-

tion of the microlattice materials, we fix the frequency

dependent wave numbers, k ¼ 2pf=ci, in solid and fluid. The

sum in Eq. (B13) can be terminated after 30 terms.
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