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ABSTRACT 

The well-documented formation of amorphous bands in boron carbide (B4C) under contact 

loading has been identified in the literature as one of the possible mechanisms for its 

catastrophic failure. To mitigate amorphization, Si-doping was suggested by an earlier 

computational work, which was further substantiated by an experimental study. However, 

there have been discrepancies between theoretical and experimental studies, about Si 

replacing atom/s in B12 icosahedra or the C-B-C chain. Dense single phase Si-doped boron 

carbide is produced through a conventional scalable route. A powder mixture of SiB6, B4C, 

and amorphous boron is reactively sintered, yielding a dense Si-doped boron carbide material. 

A combined analysis of Rietveld refinement on XRD pattern coupled with electron density 

difference Fourier maps and DFT simulations were performed in order to investigate the 

location of Si atoms in boron carbide lattice. Si atoms occupy an interstitial position, between 

the icosahedra and the chain. These Si atoms are bonded to the chain end C atoms and result 

in a kinked chain. Additionally, these Si atoms are also bonded to the neighboring equatorial 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 

B atom of the icosahedra, which is already bonded to the C atom of the chain, forming a 

bridge like geometry. Si atoms are found to reside around the chain, resulting in a kinked 

chain. These Si atoms lie close to boron atom of the neighboring icosahedra. Owing to this 

bonding, distance suggests weak bonding and Si is anticipated to stabilize the icosahedra 

through electron donation, which is expected to help in mitigating stress-induced 

amorphization. Possible supercell structures are suggested along with the most plausible 

structure for Si-doped boron carbide. 

 

Key Words: Crystal structure, Ceramics, Si-doped boron carbide, Density Functional Theory 

simulations, Scanning Transmission Electron Microscopy 

  

1. Introduction  

Most of the boron rich compounds possess high hardness, low density, and low fracture 

toughness. B12 icosahedra serve as a signature to this class of compounds. Boron carbide is 

one of the most important members of this class, owing to its extremely high hardness (30 

GPa), high Hugoniot elastic limit (15-20 GPa), and still a low theoretical density (~ 2.52 

g/cm3) [1]. It consists of a three-atom chain, typically a C-B-C chain in addition to B12 or 

B11Cp icosahedra [1, 2]. Boron carbide is a material of interest for personal body armor, 

abrasives, neutron capture and high pressure nozzles owing to the afore-mentioned blend of 

properties but its low fracture toughness [3] limits its widespread usage. Formation of 

nanoscale amorphous bands is believed to be responsible for the subsided ballistic 

performance of boron carbide under high velocity impacts [4]. Numerous research groups 

have tried to unveil the underlying mechanism behind the formation of these bands. Fanchini 

et al. [5], using Density Functional Theory (DFT) simulations, claimed that the B12(CCC) 

polytype is responsible for this failure. Contrary to that, An et al., [6] by employing DFT 

simulations, demonstrated that it is the strong interaction of C-B-C chain with the icosahedra 

that initially distorts and finally breaks the icosahedra, leading to amorphization and abated 

ballistic performance. Silicon doping in boron carbide has been suggested as a possible 

remediation to the formation of amorphous bands. An et al., through DFT simulations, 

suggested replacing C-B-C chain by Si-Si in boron carbide in order to make it more “ductile” 

and advised that it could mitigate amorphization in boron carbide [7]. However, replacing all 

existing chains with Si-Si chains corresponds to roughly 14 atomic % Si, in the boron carbide 
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lattice [7]. Silicon has never been successfully incorporated to such a large extent despite 

multiple attempts [8-13]. The maximum solubility of Si in boron carbide, experimentally 

achieved, is reported to be 2.5 ±0.5 at. % at 2050 °C [14]. Fanchini et al. [5], also suggested 

Si doping as a possible route to mitigate amorphization of boron carbide, but through a 

different mechanism; the reduction of B12(CCC) polytype. Although some investigations on 

Si-doped boron carbide confirmed the positive role of silicon in suppressing the formation of 

amorphous bands [10], the underlying mechanism is still debated.  

DFT simulations can help unveil the amorphization mitigation mechanism of Si-doped 

boron carbide. However, the outcome of DFT simulations is highly dependent on the crystal 

structure information, i.e. different initial locations of Si atoms in the boron carbide lattice. 

Moreover, the location of Si atoms in the boron carbide lattice is highly disputed. X-ray 

diffraction data by Morosin et al. [12] implied that the Si atoms are present around the chain 

atoms of boron carbide. Werheit et al. [15], using the interpretation of the vibrational 

spectroscopy data, claimed that Si atoms form Si-Si chain linked to the icosahedra. DFT 

calculations by Fanchini et al. [5], based on energy minimization, pointed towards two 

possible locations of Si atoms in the boron carbide lattice, namely icosahedra and the center 

of the chain. Therefore, it is critical to have reliable information on the location of Si atoms in 

the boron carbide lattice based on experimental analysis and feed it to theoretical calculations, 

to get a better understanding of the effect of Si-doping on the amorphization of boron carbide 

and suggest possible routes to suppress this failure.  

Moreover, it is also important to synthesize single phase Si-doped boron carbide. Prior 

experimental work has yielded additional phases, such as silicon carbide (SiC) or α–B and as 

such has not succeeded in the formation of a single phase Si-doped boron carbide [8, 10].   

This study focuses on solving these two issues. We succeeded in synthesizing single phase Si-

doped boron carbide and reliably defined the resultant crystal structure. Feeding this 

information to the DFT simulations dissipated the discrepancy between experimental and 

theoretical results. 

 

2. Experimental Section  

 

Boron carbide was synthesized by using rapid carbothermal reduction (RCR) process 

discussed in previous studies [16, 17]. This process aided in synthesizing fine particles of 

boron carbide free of particulate carbon. The resulting powder was mixed with SiB6 powders 

(H.C. Starck, Germany) in various ratios using the Resodyn acoustic mixture. The powder 
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mixtures were densified using a spark plasma sintering (SPS) furnace (Thermal Technologies 

LLC, USA) under conditions shown in Table 1. For sample 3, commercial boron carbide 

(H.C. Starck, Germany) was used and the powder mixture was hot pressed in order to access 

the feasibility of large-scale industrial production. Sample 3 was aimed to produce 1.5 at. % 

silicon doped boron carbide with a B/C ratio of B13C2. The powder was placed in a Nalgene 

jar along with silicon carbide grinding media, methanol, and dispersant. The powder was 

mixed for 18 hours using a rotary ball mill apparatus followed by filtering, and dried under 

argon. The 5g material was pre-pressed in 20mm dies under ~56MPa and reactively hot 

pressed according to conditions mentioned in Table 1. After densification, each disk had a 

20mm diameter and 3-4mm thickness. The resultant discs were sectioned, polished and 

characterized with Field Emission Scanning Electron Microscope (FESEM, Zeiss Sigma, 

Germany) coupled with Energy Dispersive Spectrometer (EDS, X-max 80, Oxford 

Instruments, UK), Raman Spectroscopy (InVia Reflex Raman Microscope equipped with 633 

nm HeNe laser, Renishaw, UK) and then crushed for X-ray diffraction analysis (XRD, 

X’PERT PRO, PANalytical, Netherlands). An input file for the GFourier program was 

generated through Rietveld refinement of the XRD pattern using FullProf Suite [18]. Atomic 

level scanning transmission electron microscopy (STEM, ARM200, JOEL, Japan) equipped 

with an annular bright-field (ABF) detector, was applied to obtain detailed microstructural 

information and elemental distribution.  

Quantum mechanical (QM) DFT calculations were performed with the VASP package 

[19-22], using the Perdew-Burke-Ernzerhof (PBE) function and the projector augmented 

wave (PAW) method to account for the core−valence interactions. The energy cutoff for the 

plane wave expansion was 600 eV and Brillouin zone integration was performed on Γ-

centered symmetry-reduced Monkhorst−Pack meshes with a fine resolution of 2π × 1/40 Å−1 

for all calculations. The energy error for terminating electronic self-consistent field (SCF) and 

the force criterion for the geometry optimization was set equal to 10−6 eV and 10−3 eV/Å, 

respectively.  

To identify the Si-doped boron carbide structure, we considered the plausible structures 

combining various 12-atom icosahedra and 3-atom (or 2-atom) chains. The icosahedral 

clusters include (B12) and (B11Cp) units and the chain units include CBC, CSiB, CSiC (both 

straight and bent configurations), BVB, and BB. Here BB represents two-atom chain 

consisting of B atoms forming a covalent bond while B-V-B represents a vacancy existing 

between two B atoms. To compare the relative stability of various possible structures, the 
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zero-temperature enthalpy of formation of various configurations was calculated using the 

electronic energy from DFT simulations using below equation 

             E_formation =  E_Bn1Cn2Sin3 – n1*
�

��
*E_ α-B12 – n2*

�

�
*E_graphite – n3*

�

�
*E_Si   

Where n1, n2, and n3 are the number of boron, carbon, and silicon atoms in the final 

configurations and the reference materials are a-B12 (12 atoms in the rhombohedral unit cell), 

graphite (2 atoms in the hexagonal unit cell), and silicon (8 atoms in diamond structure unit 

cell). 

    

3. Results and Discussion 

 

Phase diagrams serve as a basis for predicting the resultant phases from the reaction of 

precursors. Therefore, an isothermal section was constructed from the isopleth of Si-B-C 

system reported by Telle [14], to facilitate the selection of compositions (Fig. 1). Binary 

powder mixtures of boron carbide and SiB6 with various ratios (Table 1) were studied in order 

to densify and dope boron carbide with maximum Si concentration (at sintering temperature) 

in a single step. In house synthesized boron carbide powder [16, 17] was mixed with SiB6 

powder and densified at 1600 °C for 4 hours. The reaction of the precursor powders resulted 

in a densified material comprised of phases consistent with those predicted from the phase 

equilibria in Fig. 1. XRD patterns of these samples are shown in Fig. 2. Sample 1 contained 

Si-doped boron carbide, SiB6, and silicon (mainly silicon melt with some solubility of boron 

and carbon). Being a very low symmetry phase, the intensity of the SiB6 peaks in XRD 

pattern is very low as compared to the other phases. Inclusions of small sized boron and 

carbon in silicon engender shorter lattice parameters of Si (a = 0.5416(2) nm) as compared to 

the lattice parameters of pure Si (a = 0.5431 nm) [23]. Although according to Telle’s isopleth 

[14], the liquid phase should react with boron carbide at lower temperatures (~1560 °C) to 

form SiB6 and SiC, no detectable amount of reaction was observed due to relatively fast 

cooling in SPS.  

Sample 2 was aimed at achieving Si-doped boron carbide along with some liquid, which 

was expected to aid the sintering and crystallization. The composition was targeted to lie in 

the two-phase region, in order to avoid the precipitation of SiC or SiB6, to easily refine the 

XRD pattern. The composition of the liquid resembled that observed in Sample 1 and agreed 

well with the isothermal section shown in Fig. 1. Post sintering XRD analysis of the polished 

central piece confirmed two-phase equilibrium (Fig. 2) and high density (>99% of theoretical 

density) of the sintered pellet complimented the role of liquid during sintering. Moreover, 
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liquid helped in achieving thermodynamic equilibrium rather quickly and an XRD pattern 

suitable for Rietveld refinement was obtained from this sample.    

Inspired by these results and encouraged by the reliability of the reported phase equilibria, 

an additional attempt was made to synthesize single phase Si-doped boron carbide with 

controlled B/C ratio. The B13C2 ratio was selected based on the phase equilibria for Si-B-C 

system [14, 24] illustrating the maximum solubility of Si close to this B/C ratio. Amorphous 

boron was added to adjust the B/C ratio. However, commercial boron carbide was used in this 

experiment in order to assess the feasibility of large scale synthesis. Owing to the presence of 

free carbon in commercial boron carbide, an excess of boron was added. Relatively long 

dwell time at high temperature ensured a complete reaction of precursors and post sintering 

XRD analysis showed only Si-doped boron carbide. Micrographs obtained by using FESEM 

(Fig. 2) agreed well with the XRD analysis. To the best of our knowledge, it is the first 

successful synthesis of practically single phase dense Si-doped boron carbide through a 

conventional scalable route.  

Sample 3, which was sintered at 1850 °C, showed larger lattice parameters (a=0.5629±2, 

c=1.2291±4 nm), compared to the literature values for various undoped boron carbides [25] 

and pointed towards lattice expansion, due to the Si incorporation in the boron carbide lattice. 

However, these lattice parameters are still shorter as compared to the ones heat treated at 

2050 °C [14] and gave a hint of lower Si content at 1850 °C than the one at 2050 °C. 

Calculated c/a ratio (2.183±2) agrees well with the literature values (~2.185) for the Si-doped 

boron carbide having a carbon content of ~13 at. %, corresponding to B13C2 ratio [14]. 

Electron density difference Fourier maps based on the refinement of the XRD pattern clearly 

showed a considerable residual electron density around the central atom of the C-B-C chain 

(Fig. 3). Further Rietveld refinement with Si atoms placed in those positions obtained from 

electron density maps, greatly improved the R-factor. This location of Si in the lattice is 

consistent with the one reported for boron rich Si-doped boron carbide [12], except the fact 

that all the possible Si atom positions do not lie in the same plane in hexagonal setting (18h 

site, x/a= 0.56890, y/b= 0.43110, z/c= 0.32800). Instead, the actual positions of half of the Si 

atom locations (at z/c= 0.33866) are slightly above the z/c= ⅓ plane and the other half (at z/c= 

0.32800), slightly below the z/c= ⅓ plane. It is contradictory to the previous 

suggestions/observations of Si replacing C or B atoms of the chain or occupying one of the 

positions in the icosahedra [5, 7, 14]. It also excludes the possibility of Si-Si chain replacing 

C-B-C or broken chains [15]. This split of z/c= ⅓ position is associated with the nearest boron 

atoms of the neighboring icosahedra. It is evident from the crystal structure observation that 
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the Si atoms are attracted towards the nearby B atoms (which is already bonded to the chain) 

and come out of the z/c= ⅓ plane. This weak bonding of the Si atoms with the icosahedra 

(bond length = 0.1764 nm) could further stabilize the icosahedra by donating electrons owing 

to the less electro-negativity of silicon. Shirai [26] noted that in boron carbide, (1) the 

intraicosahedral bonds are weaker than the intericosahedral bonds, and (2) the restoring force 

against the displacement perpendicular to the chain bond axis is much lower than the bond 

stretching force, which would result in lower energetic barrier for chain bending vs. chain 

stretching. Ab initio simulations by several groups implied that the amorphization in boron 

carbide must be triggered by the bending (not breaking) of the 3-atom chain that leads to 

formation of a new bond between the displaced chain center atom and an atom in the 

neighboring icosahedron, pulling this atom out of the icosahedron and subsequently resulting 

in the destruction of the crystalline phase [2, 6, 27-29]. This was later substantiated through 

an experimental study, which confirmed that the icosahedra in boron carbide are weakly 

bonded as compared to the interconnecting chains and disintegrate prior to the chain [30]. 

Moreover, a connection between the disintegration of icosahedra and the nanoscale 

amorphous bands formed under high velocity impacts was anticipated [4] and later confirmed 

by Reddy et al. [31]. Therefore, silicon doping can play an important role by stabilizing the 

icosahedra and leading to the mitigation of amorphization.  

Incorporation of Si atoms in these locations results in a kinked C-Si-C chain rather than a 

C-B-C straight chain (Fig. 3). Additionally, Si only partially occupies the 18h site (0.55/18) 

giving an overall concentration of Si to be ~1.2 at. %, in good agreement with the EDS values 

(1.1 at. %).  

In addition to XRD, all samples were characterized by Raman spectroscopy. The typical 

Raman spectra acquired in various random locations on samples 1 to 3 are shown in Fig. 4. In 

agreement with the XRD results, Raman spectroscopy revealed the presence of SiB6 (175 cm-

1 band) in sample 1 (Fig. 4c); (Si) phase (300 cm-1 and 520 cm-1 bands) in sample 1 (Fig. 4b) 

and sample 2 (Fig. 4e); and boron carbide phase in all three samples. Further, as follows from 

an examination of Fig. 4, the Raman spectra acquired from the boron carbide phase (Fig. 4d, 

4f, 4g) on the dense samples are very similar to those of the starting B4C (Fig. 4a), with the 

exception of the absence of the doublet at ~300 cm-1 (typically associated with disorder 

activated phonons) [1] and the appearance of the new bands at 240 and 1210 cm-1. Taking into 

account the XRD and EDS results that demonstrate the presence of silicon in these areas 

along with boron and carbon, we infer that these changes in the Raman spectra stem from the 

Si incorporation into the B4C lattice. Observation of similar Raman features has been reported 
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in reaction bonded boron carbide [32] and attributed to a kink in a linear chain due to Si 

substitution for the chain-end C atoms. The only published structural refinement of a Si-doped 

boron carbide single crystal was consistent with Si substitution in either the chain-center or 

the chain-end site, resulting in a bent chain [12]. In this work, our structural refinement 

demonstrated Si incorporation close to the chain-center sites. Further, based on our estimation 

of Si concentration in boron carbide areas (1.1-1.2 at.%), combined with Telle’s finding that 

the maximum Si solubility in boron carbide occurs at 13 at. % C (B6.5C) [14],  and the 

experimental observation by Sologub et al. of 13% two-atom chain units and 87% three-atom 

chain units in B6.5C single crystal [33], we hypothesize that Si atoms are primarily 

incorporated into the available two-atom chain unit cells forming bent X-Si-X (where X 

stands for either B or C) chains. Based on the interatomic distance of 0.1764 nm obtained 

from the refined crystal structure, we infer that the new bond forms between the chain center 

Si atom and the adjacent icosahedron B atom. Si incorporation in the lattice results in the 

significant reduction of the disorder-induced Raman doublet at ~300 cm-1 (as most of the two-

atom chain units resulting in this substitutional disorder are now saturated with Si atoms), and 

the appearance of the 240 cm-1 band, originating from vibrations in this new weak bond. As 

for the 1210 cm-1 Raman band, it is commonly observed in B-rich boron carbide [34] and for 

the samples reported in this work, it is most likely to be formed due to the shift in the 

stoichiometry of boron carbide towards boron-rich. We also note that the two-atom Si-Si 

chains are not likely formed in Si-doped boron carbide as no stretching Si-Si vibrational mode 

is observed (taking as reference the Raman band at 415 cm-1 in isostructural SiB3) [35], once 

again in agreement with the findings of Rietveld refinement. 

<<PARAGRAPH REMOVED>> 

Although Si atoms were located reliably, the conundrum of locating boron and carbon 

atoms through XRD remained unsolved due to mere one electron difference between these 

two elements. To get the insight, we performed DFT simulations on four possible supercell 

structures that were constructed based on ground state structures (B11Cp)CBC and (B12)CBC 

for stoichiometries B4C and B13C2, respectively. Here, “p” stands for the icosahedral “polar” 

site, i.e., the atomic site that connects icosahedra to the chain. The supercell structures were 

adapted to account for the 1.1 at. % Si concentration as observed in the experiment. To test 

possible atomic configurations that would conform to our experimental observations, we 

considered C-Si-C, C-Si-B, and B-Si-B kinked chains. Out of the three configurations, the 

structure with the B-Si-B kinked chains was found to have a much higher energy of formation, 

therefore we excluded it from further consideration. Here we consider C-Si-C and C-Si-B 
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three-atom kinked chains rather than B-Si-B because replacing C-B-C chain by B-Si-B in 

boron carbide leads to a much higher energy structure than by C-Si-C or C-Si-B. We also 

considered replacing some C-B-C chain in B13C2 by B-V-B (“V” stands for a vacancy) two-

atom chains [33] to match the lattice parameters determined from experiments. Figure 5 

displays the four optimized crystal structures from DFT simulations: structure (a) composed 

of 1 (B11Cp)CBC +  4 (B12)CBC + 1 (B12)CSiB; structure (b) composed of 1 (B11Cp)CBC +  4 

(B12)CBC + 1 (B12)CSiC; structure (c) composed of 1 (B11Cp)CBC +  3 (B12)CBC + 1 

(B12)CSiC + 1 (B12)BB; and structure (d) composed of 1 (B11Cp)CBC +  3 (B12)CBC + 1 

(B12)CSiC + 1 (B12)BVB. Here BB represents two-atom chain consisting of B atoms forming 

a covalent bond while B-V-B represents a vacancy existing between two B atoms. All of these 

four structures contain ~1.1 at. % of Si, which is consistent with the experimental 

measurements. The B/C ratios are 6.4:1, 5.8:1, 7.0:1 and 7.0:1 for these four structures, 

respectively.  

Our QM simulations give the optimized lattice parameters of a = 5.653 Å, b = 5.654 Å, c = 

12.163 Å and the rhombohedral unit cell angles of α = 90.6°, β=89.8°, γ=120.1° with a 

density of 2.48 g/cm3 for structure (a); a = 5.631 Å, b = 5.635 Å, c = 12.208 Å and α = 90.2°, 

β= 90.1°, γ= 120.0° with a density of 2.49 g/cm3 for structure (b); a = 5.611 Å, b = 5.590 Å, c 

= 12.225 Å and α = 90.2°, β= 89.6°, γ= 119.8° with a density of 2.47 g/cm3 for structure (c); 

and a = 5.631 Å, b = 5.598 Å, c = 12.232 Å and α = 90.3°, β= 90.1°, γ= 119.7° with a density 

of 2.45 g/cm3 for structure (d). Comparing the lattice parameters with experimental 

measurements, the structures (c) and (d) are the most plausible structures. To compare the 

relative energy of these four structures, we computed the enthalpies of formation with respect 

to the stable forms of boron (α-B12) and carbon (graphite), as listed in Table 2. For carbon 

phases, graphite has the lowest energy structure at ambient conditions. Therefore, we selected 

graphite as the referent state in the enthalpies of formation calculation, similar to the previous 

study [36]. Structure (d) is more stable than structure (c) by 0.7 eV, suggesting it is the most 

plausible structure for Si-doped boron carbide. Therefore, we identified that the possible 

experimental Si-doped boron carbide system is composed by (B11Cp)CBC, (B12)CBC, 

(B12)CSiC and (B12)BVB with ratios of 1:3:1:1. The structural parameters and the enthalpy of 

formation for all these structures are summarized in Table 2. Experimentally, we targeted a 

B/C ratio of B13C2, which has a density of 2.50 g/cm3. This is slightly lower than the density 

of B4C (2.52 g/cm3). The length of Si-C bond in the C-Si-C chain is 1.79 Å, which is larger 

than the C-B bond length (1.43 Å) in C-B-C, leading to a further density decrease to 2.47 

g/cm3, which correspond to the lattice parameters increased by 0.67% compared to B4C. The 
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icosahedra and chain units may be randomly distributed in the supercell in experimental 

conditions. To test whether this random distribution affects our DFT results, we computed 

another possible atomic structure for structure-d. We found that the distribution will not 

significantly affect the DFT results with the energy changed by only 1.42 meV/atom and the 

lattice parameters are maximally changed by 0.3%. 

Our simulation results suggest that Si atoms fill the pre-existing vacancy in the chain 

structure. The vacancy sites are weak points that may facilitate the deconstruction under 

pressure, leading to amorphous band formation. Thus, inserting Si atom into the vacancy sites 

may suppress the deconstruction of icosahedral clusters by altering the amorphization 

mechanism but this topic requires a comprehensive study in the future. 

To verify the absence of Si-Si chains forming a regular lattice, atomic-level scanning 

transmission electron microscopy (STEM) was employed. In the (B11C)Si2 model reported by 

An et al., the icosahedra retains the B11C configuration, similar to those in B4C, whereas the 

chains are comprised of Si-Si instead of C-B-C, as illustrated in Fig. 6a [7]. The contrast from 

ABF arises from both phase contrast and Z-contrast (Z stands for the atomic number). At 

appropriate defocus values, Z-contrast can be the dominant one, which illustrates the chemical 

differences of atomic columns in compounds [37]. If the Si-Si chain had replaced all the C-B-

C chains, the resultant crystal structure would have engendered ABF micrograph as shown in 

Fig. 6b: the atomic columns of Si-Si chain would have appeared much darker due to higher Z 

number compared to lighter elements (B and C) that formed the icosahedra. However, the 

experimental STEM-ABF micrographs showed the opposite: the icosahedra actually appeared 

to be darker than the chains (Fig. 6c). This precludes the possibility of Si-Si replacing all the 

C-B-C chains in Si-doped boron carbide, and the lighter chains are due to the smaller number 

of atoms in the chains compared to the icosahedra, for a given unit volume. It also confirms 

the findings of the Rietveld refinement, regarding the absence of Si-Si chains in Si-doped 

boron carbide.  

 

4. Conclusions 

 

Rietveld refinement of the XRD patterns coupled with electron density difference Fourier 

maps, obtained from Si-doped boron carbide samples prepared in this study, confirmed that 

the Si atoms occupy an interstitial position, between the icosahedra and the C-B-C chain. 

These Si atoms are bonded to the chain end C atoms and engender kinked chain. Si atoms 

reside around the chain and engender kinked chains. These Si atoms have a bonding with the 
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nearest boron atoms of the neighboring icosahedra, bridging the B(icosahedra)-C(chain) bond. 

This bonding is anticipated to stabilize the icosahedra and thereby is expected to mitigate 

amorphization in Si-doped boron carbide. No Si-Si chains were observed during this study by 

XRD as well as Raman spectroscopy. QM simulations and TEM micrographs, support this 

observation.  
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Table 1. Composition and densification conditions for all samples prepared in this study.  

Sample 

# 

B4C:SiB6:aB (Wt. %, 

nominal composition) 

Densification conditions 

(Temperature/Dwell time) 

Experimental 

Density (g/cm3) 

Comments 

1 50:50:0 1600 °C/4 hours 2.48 RCR boron carbide 

2 60:40:0 1600 °C/4 hours 2.49 RCR boron carbide 

3 56.32:12.42:31.26 1850 °C/3 hours 2.48 All commercial powders 

 

 

 

 

 

Table 2. Structural parameter and enthalpy of formation from DFT simulations.  

 Structure 

configurations 

Parameters Carbon 

content 

(%) 

B:C Relative 

Energy * 

(eV/unit 

cell) 

Si 

(%) 

Density 

(g/cm
3
) (Å) (

o
) 

Structure a 1 (B11Cp)CBC 

+  

4 (B12)CBC +  

1 (B12)CSiB 

a=5.653 

b=5.654 

c=12.163 

α=90.6 

β=89.8 

γ=120.1 

13.5 6.4:1 -6.216 1.11 2.48 

Structure b 1 (B11Cp)CBC 

+  

4 (B12)CBC +  

1 (B12)CSiC 

a=5.631 

b=5.635 

c=12.208 

α=90.2 

β=90.1 

γ=120.0 

14.6 5.8:1 -0.493 1.11 2.49 

Structure c 1 (B11Cp)CBC 

+  

3 (B12)CBC +  

1 (B12)CSiC+ 

1 (B12)BBshort  

a=5.611 

b=5.590 

c=12.225 

α=90.2 

β=89.6 

γ=119.8 

12.5 7.0:1 -3.439 1.12 2.47 

Structure d 1 (B11Cp)CBC a=5.631 α=90.3 12.5 7.0:1 -4.039 1.12 2.45 
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+  

3 (B12)CBC +  

1 (B12)CSiC+ 

1 (B12)BVB  

b=5.598 

c=12.232 

β=90.1 

γ=119.7 

* Enthalpy of formation referring to graphite and α-B12 for all the four structures. 
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Fig. 1. The tentative isothermal section at 1600 °C, mainly based on Telle’s isopleth [14]. Circles represent the 

composition of samples prepared in this study.  
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Fig. 2. Comparison of the XRD patterns of all the samples prepared in this study. The inset shows the FESEM 

micrograph obtained from sample 3, showing single-phase dense material.  
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Fig. 3. Rietveld refinement of the XRD pattern of sample 2 (top left) and the difference electron density Fourier 

maps for Si-doped boron carbide phase in hexagonal setting (on the right). Residual electron density around the 

B3 position (highlighted with red circles) points towards Si atoms present in these locations. These maps clearly 

depict the difference in electron density with varying z/c, indicating a split of six possible locations. Variation in 

electron density concentration along z-axis clearly depicts that the Three possible Si atom locations are slightly 

above the z/c= ⅓ (0.33333) position and the other three, slightly below the z/c= ⅓ (0.33333) position. Lower left 

corner shows the alteration of chain with Si incorporation in one of the six possible locations.   
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Fig. 4 (a) Typical Raman spectrum of the starting B4C powder used for synthesizing the samples. (b-d) Typical 

Raman spectra acquired in random locations on sample 1. (e-f) Typical Raman spectra acquired in random 

locations on sample 2. (g) Typical Raman spectra acquired in random locations on sample 3. The characteristic 

Raman bands discussed in the text are shown with arrows. 

 

 

Fig. 5. DFT predicted four plausible supercell structures for Si-doped boron carbide: (a) 1 (B11Cp)CBC +  4 

(B12)CBC + 1 (B12)CSiB; (b) 1 (B11Cp)CBC +  4 (B12)CBC + 1 (B12)CSiC; (c) 1 (B11Cp)CBC +  3 (B12)CBC + 1 

(B12)CSiC + 1 (B12)BB; and (d) 1 (B11Cp)CBC +  3 (B12)CBC + 1 (B12)CSiC + 1 (B12)BVB. Here V represents a 

vacancy. The B, C and Si atoms are represented by green, brown and blue balls, respectively.  
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Fig. 6. Various atomic arrangements of Si-doped boron carbide. (a) the (B11C)Si-Si crystal structure with blue 

atoms representing Si-Si chain, (b) the simulated ABF image, anticipated to be found in TEM, and (c) the actual 

micrograph obtained from Si-doped boron carbide samples, prepared in this study, confirming the absence of Si-

Si chains.  

  

 


