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ABSTRACT

A generic architecture for realizing neural networks is presented in which
the synaptic interaction matrix is loaded in parallel into an electronic
integrated circuit from a SLM. Three types of the electronic processors
are described using CCD, CID and CMOS technologies respectively. The pros
and cons of currently existing SLMs for this architecture are pointed out.

1. INTRODUCTION

It is now commonly accepted that further advancement of neural network (NN)
models, as a competitive tool for artificial intelligence, will be largely
determined by future success in developing efficient hardware realizations
of these models. Conventional single processor and coarse grain
multiprocessor simulators are not particularly suited to NN processing --a
fine grain, low precision task. A need therefore exists for fine grain
hardware realizations of NN models based on existing technology that can be
used immediately for applications development.

The optoelectronic realizations of NN models which are described below are
aimed at satisfying this need. These systems consist of an electronic
processor into which the synaptic interaction matrix is fèd optically in
parallel from a spatial light modulator (SLM) . Thus these systems take
advantage of the fact that signal processing in silicon is an advanced and
mature technology, and incorporate optics where silicon fails -- namely the
interconnectivity problem.

In order to explain the underlying operational principles of the
architecture, let us first describe the basic dynamics of a NN. 2,3

Let V = (V1...14) designate the state of a network with N neurons, where V i
is the state of the i'th neuron and let W designate the synaptic interaction
matrix --i.e. , Wi is the strength of the interaction from the j'th neuron to
the i'th neuron. The i'th neuron is updated periodically according to its
total input Ii, where

Ii =
WiiVi

i

and by using some decision process designated by

Vi = IS (Ij)

[1]

[2]
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integrated circuit from a SLM. Three types of the electronic processors 
are described using CCD, CID and CMOS technologies respectively. The pros 
and cons of currently existing SLMs for this architecture are pointed out.

1. INTRODUCTION

It is now commonly accepted that further advancement of neural network (NN) 
models, as a competitive tool for artificial intelligence, will be largely 
determined by future success in developing efficient hardware realizations 
of these models. Conventional single processor and coarse grain 
multiprocessor simulators are not particularly suited to NN processing a 
fine grain, low precision task. 1 A need therefore exists for fine grain 
hardware realizations of NN models based on existing technology that can be 
used immediately for applications development.

The optoelectronic realizations of NN models which are described below are 
aimed at satisfying this need. These systems consist of an electronic 
processor into which the synaptic interaction matrix is fed optically in 
parallel from a spatial light modulator (SLM). Thus these systems take 
advantage of the fact that signal processing in silicon is an advanced and 
mature technology, and incorporate optics where silicon fails namely the 
interconnectivity problem.

In order to explain the underlying operational principles of the 
architecture, let us first describe the basic dynamics of a NN. 2/3

Let y= (V x ...VK ) designate the state of a network with N neurons, where Vj 
is the state of the i' th neuron and let W designate the synaptic interaction 
matrix i.e., Wj j is the strength of the interaction from the j 'th neuron to 
the i f th neuron. The i f th neuron is updated periodically according to its 
total input I i , where

j
and by using some decision process designated by

Vj = #(Ii) [2]
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where Vi is the next state of neuron i.

The basic idea of the architecture is presented schematically in Figure 1.
The system consists of two main subassemblies: a 2D spatial light
modulator (SLM) , including its memory and control unit, and an integrated
circuit which we shall henceforth refer to as the neural processor (NP) .

Consider Figure 1. The synaptic interaction matrix W is stored in the SLM.
Thus, by imaging the SLM contents onto an array detector, W can be loaded in
parallel to the NP. The NP then updates the state of the network V by
computing the inputs Ii in parallel and using the decision process [2] .

In what follows we shall describe three types of neural processors, which
are now at different stages of development.

1.1 CCD -NP (based on charge coupled devices --CCD):
These NPs implement synchronous semiparallel networks.

1.2 CID -NP (based on charge injection devices --CID):
These NPs implement fully parallel synchronous networks.

1.3 PT -NP (based on phototransistor arrays):
These NPs implement fully parallel continuous networks.

2. THE CCD -NEURAL PROCESSOR

2.1 Principle of Operation

The CCD -NP is a semiparallel synchronous device. For the sake of clarity
we shall explain its principle of operation by describing an implementation
of a network with analog synapses and binary neurons. It should be borne in
mind that the CCD-NP is not limited to implementing such networks.
Implementation of more complex networks will be presented further on.
Consider Figure 2:

(SYNP) is a CCD array built of N self- connected rows, each N elements long.
(The rightmost element feeds the leftmost element.)

(G) is a column of N analog switches with a common enable port in the case of
binary neurons (Figure 2b) , or a column of analog multipliers in the
case of analog neurons.

(ACCUM) is a column of N integrators --each integrates the signal that flows
into it from the respective element of G.

(F) is a column of N "decision functions" (defined schematically in [2]).

(X) is a one -dimensional binary CCD column. Each element of X can be fed
directly from the respective element of (F) , and the contents of (X) can
be output sequentially through the top element.

The various control units, clocks, and input /output units are not included
in Figure 2. A complete update cycle is as follows:
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where Vj is the next state of neuron i.

The basic idea of the architecture is presented schematically in Figure l. 
The system consists of two main subassemblies: a 2D spatial light 
modulator (SLM) , including its memory and control unit, and an integrated 
circuit which we shall henceforth refer to as the neural processor (NP) .

Consider Figure 1. The synaptic interaction matrix W is stored in the SLM. 
Thus, by imaging the SLM contents onto an array detector, W can be loaded in 
parallel to the NP. The NP then updates the state of the network V by 
computing the inputs 1^ in parallel and using the decision process [2].

In what follows we shall describe three types of neural processors, which 
are now at different stages of development.

1.1 CCD-NP (based on charge coupled devices CCD):
These NPs implement synchronous semiparallel networks.

1.2 CID-NP (based on charge injection devices CID):
These NPs implement fully parallel synchronous networks.

1.3 PT-NP (based on phototransistor arrays):
These NPs implement fully parallel continuous networks.

2. THE CCD-NEURAL PROCESSOR 

2.1 Principle of Operation

The CCD-NP is a semiparallel synchronous device. For the sake of clarity 
we shall explain its principle of operation by describing an implementation 
of a network with analog synapses and binary neurons. It should be borne in 
mind that the CCD-NP is not limited to implementing such networks. 
Implementation of more complex networks will be presented further on. 
Consider Figure 2:

(SYNP) is a CCD array built of N self-connected rows, each N elements long. 
(The rightmost element feeds the leftmost element.)

(G) is a column of N analog switches with a common enable port in the case of 
binary neurons (Figure 2b) , or a column of analog multipliers in the 
case of analog neurons*

(ACCUM) is a column of N integrators each integrates the signal that flows 
into it from the respective element of G.

(F) is a column of N "decision functions 11 (defined schematically in [2]) .

(X) is a one-dimensional binary CCD column. Each element of X can be fed 
directly from the respective element of (F), and the contents of (X) can 
be output sequentially through the top element.

The various control units, clocks, and input/output units are not included 
in Figure 2. A complete update cycle is as follows:
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1. The synaptic interaction matrix W, and the initial state vector V(0)
are loaded into SYNP and X respectively.

2. After RESET, 1° ) supplied by the upper element of X appears at the
enable port of G while the first column of W, supplied by SYNP, appears
to the respective inputs of G. The elements of ACCUM are set to zero.

3. After the first clock pulse the outputs of G, namely W i 1V1 : i=1... N, and
V ° appears at its enable port.

4. Similarly the consecutive terms WiVj:j= 3...N, are accumulated into
ACCUM until after the Nth clock pulse . The its, element of ACCUM
contains the complete input to the ith neuron (given by [1]).

5. The (N +1) clock pulse now activates the decision function, column F,
which produces the updated values of Vi 's.

6. Finally, the new updated state vector, VI1), is transferred to X.

Thus the complete network is updated after N +2 clock cycles.

2.2 An Overview of the Design Considerations:

Careful consideration of the operation stages of the CCD -NP as described
above reveals that the decision column remains inactive throughout most of
the operation cycle. Moreover, at each clock pulse only one neuronic
output is used to update the device (in the description above: at the ENABLE
port of G) . It therefore becomes natural to divide the CCD -NP into two
separate modules: A CCD based module and a controller module.

The CCD module function is to compute the neuronic inputs I , using the
neuron's state Vi as an input supplied by the controller module. The
controller module function is to determine the next neuronic state Vi,
using a decision module which realizes the decision process ¢. The
controller then outputs the V1 's into the CCD module,. A schematic
description of the two modules is presented in Figure 3.

The division of the CCD -NP into two separate modules has two main
advantages:

2.2.1 The operations performed by the CCD module, namely the
computations of the I

i
's (as described in [1] ) , are common to most

NN models. The details of the models differ in architecture
(e.g. , feedback networks, forward propagating networks, etc. ) in
the decision process ¢, and in updating schemes. One CCD module
can therefore serve for realizing many different NN models, the
details of which are contained in the controller module. As the
interconnectivity problem is taken care of by the CCD module, the
controller module does not require massive parallelism and is
therefore simple to design and fabricate.

2.2.2 The CCD module performs operations which are natural to perform in
the charge domain. The controller performs operations which are
natural to perform by digital /analog CMOS circuits. Combining
CMOS devices with CCDs in the same integrated circuit decreases the
yield of the fabrication process substantially. This problem is
avoided by separating the CMOS devices from the CCD integrated
circuit.
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1. The synaptic interaction matrix W, and the initial state vector V (0> 
are loaded into SYNP and X respectively.

2. After RESET, Vj (0) supplied by the upper element of X appears at the 
enable port of G while the first column of W, supplied by SYNP, appears 
to the respective inputs of G. The elements of ACCUM are set to zero.

3. After the first clock pulse the outputs of G, namely Wj 1 V l : i=l.. .N, and 
V ? <0) appears at its enable port.

4. Similarly the consecutive terms Wj<Vj:j=3...N, are accumulated into 
ACCUM until after the N th clock pulse . The i th element of ACCUM 
contains the complete input to the i th neuron (given by [1]).

5* The (N+l) clock pulse now activates the decision function, column F, 
which produces the updated values of V^s.

6. Finally, the new updated state vector, V ( l} , is transferred to X.

Thus the complete network is updated after N+2 clock cycles. 

2.2 An Overview of the Design Considerations:

Careful consideration of the operation stages of the CCD-NP as described 
above reveals that the decision column remains inactive throughout most of 
the operation cycle. Moreover, at each clock pulse only one neuronic 
output is used to update the device (in the description above: at the ENABLE 
port of G) . It therefore becomes natural to divide the CCD-NP into two 
separate modules: A CCD based module and a controller module.

The CCD module function is to compute the neuronic inputs I if using the 
neuron f s state Vj as an input supplied by the controller module. £he 
controller module function is to determine the next neuronic state V if 
using a decision module which^ realizes the decision process #. The 
controller then outputs the Vj f s into the CCD module,. A schematic 
description of the two modules is presented in Figure 3.

The division of the CCD-NP into two separate modules has two main 
advantages:

2.2.1 The operations performed by the CCD module, namely the 
computations of the Ij f s (as described in [1]) , are common to most 
NN models. The details of the models differ in architecture 
(e.g., feedback networks, forward propagating networks, etc.) in 
the decision process #, and in updating schemes. One CCD module 
can therefore serve for realizing many different NN models, the 
details of which are contained in the controller module. As the 
inter connectivity problem is taken care of by the CCD module, the 
controller module does not require massive parallelism and is 
therefore simple to design and fabricate.

2.2.2 The CCD module performs operations which are natural to perform in 
the charge domain. The controller performs operations which are 
natural to perform by digital/analog CMOS circuits. Combining 
CMOS devices with CCDs in the same integrated circuit decreases the 
yield of the fabrication process substantially. This problem is 
avoided by separating the CMOS devices from the CCD integrated 
circuit.

Spatial Light Modulators and Applications III / 179

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/10/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.3 Expected Performance of the CCD -NP:

The state of the art of CCD technology enables the fabrication of arrays
with 103 x 103 registers, each with 8 bit accuracy, that can be operated at
10 MHz. It can be easily seen that the interconnect update rate for a CCD -
NP with N=103 operated at f =10 MHz will be

RcCD = f N = 1010 interconn. updt. /sec. [3]

The CCD -NP enables loading of the synaptic interaction matrix T both
optically and electrically. Optical loading depends mainly on the SLM and
will be discussed below. Electric loading, however, depends on the
details of the CCD -NP and, in particular, on the number of the input lines,
ni. The time required to load the matrix is given by

TL = N2/(ni'f) [4]

for N =103, f =10MHz and n1 =32 we get TL_3msec.

Two effects are expected to limit the performance of the CCD -NP: the
inefficiency of the charge transfer process and the thermally generated
charge. It was verified in simulations that the required refresh rate of
the main storage array (SYNP in Figure 2) is much lower than the loading rate
(1/TL), thus the CCD -NP will not be substantially affected by these
effects.

3. THE CID NEURAL PROCESSOR

3.1 General Architecture

A fully parallel version of the CCD -NP can be built by using Charge
Injection Devices5 (CID) , rather than CCD' s. The general architecture of
the CID -NP implementing an N dimensional NN with analog synapses and binary
neurons, 6 is presented schematically in Figure 4.

(SYNP) is an NxN detector array where each detector is a CID pixel of the
type described in References.

(AMP) is a column of N amplifiers each capable of sensing the charge flow
into its respective row.

(DF) is a column of decision function circuits.
(X) is a column of binary registers containing the state vector of the

network, V.

A complete network update is performed as follows:
Initially the synaptic interaction matrix is imaged onto SYNP, so that
charge proportional to WI is accumulated under the collecting electrode of
the (i,j)'th pixel. After charge accumulation is completed, the charge in
each pixel is then transferred to its respective row electrode provided its
column neuron is on. (i.e. , W i j is transferred to the i'th row for all the
column for which V =1) . The charge transfer into each row is sensed by its
respective amplifier in AMP. The output of these amplifiers (which is the
neuronic input I ) , is used by the respective decision circuit in DF to
determine the next state of the neurons. These new state values are then
stored in X. Finally the device is reset. Two modes of resetting are
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type described in References. 
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into its respective row.
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A complete network update is performed as follows:
Initially the synaptic interaction matrix is imaged onto SYNP, so that 
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possible: destructive and nondestructive. 5 In destructive reset the
charge under the sensing electrodes is flushed into the substrate and the
device is ready for optical loading. In nondestructive reset the charge
under each sensing electrode is returned to its respective collecting
electrode, and the device is ready for the next update without the need for
new optical loading.

3.2 Expected Performance 9.1 the CID-NP

The CID -NP should be comparable in size to the CCD -NP but the time required
to read it is expected to be much shorter (typicaly T R=10 usec per lines ) .
The computation speed of the CID-NP is therefore, expected to be

RCID = N2/R = 109 - 1011 interconn. updt/sec [5]

This speed can be maintained only by using nondestructive reset. The
currently existing SLMs are not fast enough to enable reloading of W at each
iteration at this speed.

4. THE PHOTOTRANSISTOR NEURAL PROCESSOR

4.1 General Architecture

The underlying principal of the phototransistor (PT) neural processor is
described schematically in Figures 5 and 6. The weight input is achieved
with an array of phototransistors. The synaptic interaction matrix W,
which is emitted from the SLM as a spatial distribution of light intensity,
is incident continuously on this array and, thus, the Wi ' s are transformed
into currents. Each node of the array, in addition to the photodetector,
is a multiplier. One input of each multiplier is connected to the
respective photodetector and the second input is connected to the column
input line. The potential of each column line is the state of the
respective neuron --that is, the potential of the j 'th column is Vj. The
multipliers at each synapse of the NN compute the partial product Wi j Vi and
produce a continuous current output proportional to Wij1V1. Figure 5
describes the simplest synapse - -the multiplier (a single FET) is an on -off
switch (binary multiplication) . The output of each multiplier is
connected to the respective row line, where Kirchoff current summing occurs
(i.e. partial products are summed) , and thus each row line carries a current
proportional to I i . Each row line is connected to a circuit which realizes
the decision function.2 The output of each of these circuits can be
connected to the respective column to achieve a feedback network. In
addition, the PT -NP contains circuitry for subtracting weight and input
offsets for full four -quadrant multiplication with minimum node size. In
contrast to the charge transfer devices, this network requires that the
optically configured Wij matrix be continuously illuminated. The device
is also unclocked and limited in computation time only by the response of
the devices.

4.2 Circuit Description and Preliminary Results

A typical p -well CMOS process contains a parasitic vertical bipolar
transistor which can be used as a photodetector. A description of this
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possible: destructive and nondestructive. 5 In destructive reset the 
charge under the sensing electrodes is flushed into the substrate and the 
device is ready for optical loading. In nondestructive reset the charge 
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described schematically in Figures 5 and 6. The weight input is achieved 
with an array of phototransistors. The synaptic interaction matrix W, 
which is emitted from the SLM as a spatial distribution of light intensity, 
is incident continuously on this array and, thus, the W| j 's are transformed 
into currents. Each node of the array, in addition to the photodetector, 
is a multiplier. One input of each multiplier is connected to the 
respective photodetector and the second input is connected to the column 
input line. The potential of each column line is the state of the 
respective neuron that is, the potential of the j f th column is Vj . The 
multipliers at each synapse of the NN compute the partial product W ^ jV-^ and 
produce a continuous current output proportional to WyVj. Figure 5 
describes the simplest synapse the multiplier (a single FET) is an on-off 
switch (binary multiplication). The output of each multiplier is 
connected to the respective row line, where Kirchof f current summing occurs 
(i.e. partial products are summed) , and thus each row line carries a current 
proportional to I t . Each row line is connected to a circuit which realizes 
the decision function. 2 The output of each of these circuits can be 
connected to the respective column to achieve a feedback network. In 
addition, the PT-NP contains circuitry for subtracting weight and input 
offsets for full four-quadrant multiplication with minimum node size. In 
contrast to the charge transfer devices, this network requires that the 
optically configured Wjj matrix be continuously illuminated. The device 
is also unclocked and limited in computation time only by the response of 
the devices.

4.2 Circuit Description and Preliminary Results

A typical p-well CMOS process contains a parasitic vertical bipolar 
transistor which can be used as a photodetector. A description of this
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device is presented in Figure 8. As can be seen this is an NPN bipolar
device in which the substrate (which acts as the collector) is tied to Vd d
the emitter is formed by a heavy N type diffusion at the surface of the
substrate, and the base region (the p -well) is left floating. Thus
photocurrent generated in the base will be multiplied by the current gain
factor. (It was found that the standard MOSIS 3u CMOS process produces a
phototransistor with a typical current gain of over 200.)

A simple version of the PT -NP has been built and tested. The IC containing
a 32 x 32 array of synapses of the type described in Figure 5, and 32 binary
decision functions was fabricated in MOSIS's 3um p -well process. The
synapse size was approximately 50 x 50 um2. The binary decision function
circuits were found to have thresholds within 5 -10% uniformity across the
chip. The phototransistors themselves could resolve the minimum SLM
changes in input intensity, putting their sensitivity >45 dB. The
sensitivity of the entire neuron (synapses and decision functions) was
measured at 35 dB, which translates into 5 -6 bit accuracy. The settling
time of the network depends on the illumination strength as shown in Figure
7. A simple two -layer inverting XOR was implemented using a low power CRT
as the SLM. Six weights and three neurons were used to demonstrate the
operation shown in Figure 9.

In summary, this device has 103 interconnects with 5 -6 bit accuracy and
converges between lusec to 10 usec, thus the interconnect update rate here
is 108 -109 inerconnects updates per second (depending on the illumination
level) .

4.3 Expected Performance of the PT -NP

The device described in the last section is a first prototype, and as such
its performance is far from the optimal performance of the PT -NP. The
device is very small (less than 3mm on the side) , and therefore scaling -up
to a network with 100 -500 neurons can be easily done. This will give an
interconnect update rate of

Rpt = 101° -s1 interconn. updates /sec.

depending on the illumination level. It should be also noted that the PT-
NP is not limited to realizing networks with analog synapses, and binary
neurons. A more complex synapse than the one described in Figure 5 which
incorporates an analog multiplier has been built and is now being tested.
The new synapse enables the construction of networks with analog synapses
and analog neurons.

Finally it should be noted that PT -NP has two limitations resulting from the
fact that it is a current device (unlike the CCD -NP and the CID -NP which are
charge devices).

4.3.1 The fact that in the PT -NP the synaptic strength
Wii is

proportional to the light intensity emerging from the (i,j) 'th
pixel of the SLM requires that the PT -NP be illuminated
continuously. This requires the SLM to output constant intensity
(per pixel) after it is refreshed. This is true only for the
magnetooptic SLMs which are binary, and for one type of analog
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device is presented in Figure 8, As can be seen this is an NPN bipolar 
device in which the substrate (which acts as the collector) is tied to Vddf 
the emitter is formed by a heavy N type diffusion at the surface of the 
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In summary, this device has 10 3 interconnects with 5-6 bit accuracy and 
converges between lusec to 10 usec, thus the interconnect update rate here 
is 10 8 -10 9 inerconnects updates per second (depending on the illumination 
level).

4.3 Expected Performance of the PT-NP

The device described in the last section is a first prototype, and as such 
its performance is far from the optimal performance of the PT-NP. The 
device is very small (less than 3mm on the side) , and therefore scaling-up 
to a network with 100-500 neurons can be easily done. This will give an 
interconnect update rate of

Rpt = lo 10 " 11 interconn. updates/sec.

depending on the illumination level. It should be also noted that the PT- 
NP is not limited to realizing networks with analog synapses, and binary 
neurons. A more complex synapse than the one described in Figure 5 which 
incorporates an analog multiplier has been built and is now being tested. 
The new synapse enables the construction of networks with analog synapses 
and analog neurons.

Finally it should be noted that PT-NP has two limitations resulting from the 
fact that it is a current device (unlike the CCD-NP and the CID-NP which are 
charge devices) .

4.3.1 The fact that in the PT-NP the synaptic strength W^ is 
proportional to the light intensity emerging from the (i,3) f th 
pixel of the SLM requires that the PT-NP be illuminated 
continuously. This requires the SLM to output constant intensity 
(per pixel) after it is refreshed. This is true only for the 
magnetooptic SLMs which are binary, and for one type of analog
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liquid crystal SLM( (The latter refresh time is too long
rendering this device impractical for our purposes.)
Alternatively, the update cycle of the PT -NP can be synchronized
with the refresh cycle of the SIM. This slows down the PT -NP
considerably and is therefore not an attractive solution.

This problem was found to be a major limitation of this approach by
an AT &T group developing neural processing based on amorphous
silicon photoconductive arrays.7

4.3.2 It was found experimentally that crosstalk between adjacent
synapses (i.e., phototransistor) is large, if for one of them the
respective neuron is off.

Consider Figure 6. If, for example, V2=0, then the photocurrent W32
produced at the respective PT cannot flow normally into row 3, because the
respective FET is off. Some of this photocurrent will flow into adjacent
PT's and will affect the input into adjacent neurons. This problem is also
characteristic to the PT -NP alone.

5. DISCUSSION

It is commonly accepted that the field of hardware realizations of NN is
still in its infancy. Current efforts are aimed to be more exploratory in
nature rather than to serve as an ultimate solution. Moreover, at this
stage very few NN algorithms have been identified as solutions for "real -
life" applications. In this context, namely for the purpose of serving as
a research tool, the approach presented here seems to be very competitive.

The computational speed of other analog networks lies between 109 -1011
interconnect updates /second, but it is usually argued that in general there
is a tradeoff between the complexity of the interconnections and their
size. 8 This is not the case here. The use of the SIM as a short term memory
that can be loaded in parallel into the device simplifies the structure of
the synapse considerably. We are currently developing a fully analog
synapse (that can accept analog neuron states) with 4 -6 transistors per per
synapse. In particular the CCD -NP has a very simple structure and yet
enables very complex networks to be realized. This results from the fact
that the operation of the CCD -NP is semiparallel. Thus the complexity of
the neuron affects one circuit in the controller module only.9

Although the CCD -NP is the slowest of the three NPs (but well within the
range of 109-1011 updated /sec) , it seems to be at this point to be the most
promising of the three. This is unfortunately due to the fact that it can
be operated without the SLM, using the CCD array as a short term memory.

The currently available SLMs are either nonstationary between loading
(e.g. , the CRT) , or with a small dynamic range (e.g. , the magnetooptic SIM) .
Thus the full potential of the architecture proposed here cannot be
realized based on existing SLMs.
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i if ENABLE = I
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0 otherwise

Fig. 2. (a) Basic Architecture of the CCD -NP

(b) One of the switches of (G) in Figure 2 (a) : an analog switch
with binary enable port.

186 / SPIE Critical Reviews Series Vol 1150

(a)

r
c

NN

SYNP G ACCUM F

ENABLE

Fig. 2. (a) 

(b)

ENABLE 1

fi if ENABLED

0 1[0 otherwise

Basic Architecture of the CCD-NP

One of the switches of (G) in Figure 2 (a) 
with binary enable port.

an analog switch

186 / SPIE Critical Reviews Series Vol. 1150

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/10/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



SYNP G

y Storage Storage

ACCUM

Decision
Function

/7:

MUX

.111

CCD
Module

Controller
Module

Fig. 3. The separation of the CCD -NP into a CCD module and a controller
module.
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Fig. 5. Circuit description of one synapse in the PT -NP with analog
synapses and binary neurons.
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Fig. 5. Circuit description of one synapse in the PT-NP with analog 
synapses and binary neurons.
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Fig. 9. Inverse XOR operation implemented by the PT -NP.
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Fig. 9. Inverse XOR operation implemented by the PT-NP.
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