
ar
X

iv
:1

80
6.

09
24

0v
1 

 [
cs

.I
T

] 
 2

5 
Ju

n 
20

18
1

Two Deletion Correcting Codes

from Indicator Vectors
Jin Sima, Netanel Raviv, and Jehoshua Bruck

Abstract

Construction of capacity achieving deletion correcting codes has been a baffling challenge for decades. A recent

breakthrough by Brakensiek et al., alongside novel applications in DNA storage, have reignited the interest in this

longstanding open problem. In spite of recent advances, the amount of redundancy in existing codes is still orders of

magnitude away from being optimal. In this paper, a novel approach for constructing binary two-deletion correcting

codes is proposed. By this approach, parity symbols are computed from indicator vectors (i.e., vectors that indicate

the positions of certain patterns) of the encoded message, rather than from the message itself. Most interestingly,

the parity symbols and the proof of correctness are a direct generalization of their counterparts in the Varshamov-

Tenengolts construction. Our techniques require 7 log(n) + o(log(n) redundant bits to encode an n-bit message,

which is near-optimal.

I. INTRODUCTION

A deletion in a binary sequence c = (c1, . . . , cn) ∈ {0, 1}n is the case where a symbol is removed from c, which

results in a subsequence length n− 1. Similarly, the result of a k-deletion is a subsequence of c of length n− k.

A k-deletion code C is a set of n-bit sequences, no two of which share a common subsequence of length n − k;

and clearly, such a code can correct any k-deletion.

It has been proved in [1] that the largest size Lk(n) of a k-deletion code satisfies

2k(k!)22n

n2k
. Lk(n) .

k!2n

nk
, (1)

which implies the existence of a k-deletion code with at most 2k log(n) + o(log n) bits of redundancy for a

constant k. However, to this day no explicit construction of such code is known beyond the case k = 1.

For k = 1, the well-known Varshamov-Tenengolts (VT) [2] construction
{

c :

n
∑

i=1

ici = 0 mod (n+ 1)

}

(2)

can correct one deletion with not more than log(n+ 1) bits of redundancy [1]. Several attempts to generalize the

VT construction to k > 1 have been made. In the construction of [3], a modified Fibonacci sequence is used as

weights instead of (1, 2, . . . , n) in (2). In [4], number-theoretic arguments are used to obtain k-deletion correction

in run-length limited sequences. Yet, both [3] and [4] have rates that are asymptotically bounded away from 1.

The problem of finding an explicit k-deletion code of rate that approaches 1 as n grows has long been unsettled.

Only recently, a code with O(k2 log k log n) redundancy bits and encoding/decoding complexity1 of Ok(n log4 n)
was proposed in [5]. This code is based on a k-deletion code of length log n, which is constructed using computer

search. Nevertheless, the constants that are involved in the work of [5] are orders of magnitude away from the

The work was presented in part at the IEEE International Symposium on Information Theory, July 2018. The work was supported in

part by NSF grant CCF-1717884. The work of Netanel Raviv was supported in part by the postdoctoral fellowship of the Center for the

Mathematics of Information (CMI), Caltech, and in part by the Lester-Deutsch postdoctoral fellowship.

Jin Sima is with the Electrical Engineering Department, California Institute of Technology, Pasadena, CA, 91125, Email: jsima@caltech.edu.

Netanel Raviv is with the Electrical Engineering Department, California Institute of Technology, Pasadena, CA, 91125, Email:

netanel.raviv@gmail.com.

Jehoshua Bruck is with the Electrical Engineering Department, California Institute of Technology, Pasadena, CA, 91125, Email:

bruck@caltech.edu.
1Here Ok denotes parameterized complexity, i.e., Ok(n log4 n) = f(k)O(n log4 n) for some function f .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216288788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1806.09240v1


2

lower bound in (1) even for k = 2, and the code is not systematic. Moreover, finding a k-deletion correcting code

with an asymptotic rate 1 as an extension of the VT construction remains widely open2.

One such potential extension is using higher order parity checks
∑n

i=1 i
jci = 0 mod (nj + 1) for j = 1, . . . , t,

but counterexamples are easily constructible even for k = 2. In this paper, we find that similar higher order parity

checks work when t = 3, given that we restrict our attention to sequences with no consecutive ones. Consequently,

applying these parity checks on certain indicator vectors yields the desired result. For a and b in {0, 1} and a

binary sequence c, the ab-indicator 1ab(c) ∈ {0, 1}n−1 of c is

1ab(c)i =

{

1 if ci = a and ci+1 = b

0 else.
.

Since any two 10 or 01 patterns are at least two positions apart, the 10- and 01-indicators of any n-bit sequence

do not contain consecutive ones, and hence higher order parity checks can be applied.

The parity checks in the proposed code rely on the following integer vectors.

m(0) , (1, 2, . . . , n− 1)

m(1) ,

(

1, 1 + 2, 1 + 2 + 3, . . . ,
n(n− 1)

2

)

m(2) ,

(

12, 12 + 22, 12 + 22 + 32, . . . ,
n(n− 1)(2n − 1)

6

)

.

Further, for c ∈ {0, 1}n let

f(c) , (110(c) ·m
(0) mod 2n,

110(c) ·m
(1) mod n2,

110(c) ·m
(2) mod n3), and

h(c) , (101(c) · 1 mod 3,101(c) ·m
(1) mod 2n), (3)

where · denotes inner product over the integers, and 1 denotes the all 1’s vector.

For any integer k let Bk(c) be the k-deletion ball of c, i.e., the set of n-bit sequences that share a common n−k
subsequence with c. The main result of this paper, from which a code construction is immediate, is as follows.

Theorem 1. For any integer n ≥ 3 and N = n+7 log n+o(log n), there exists an encoding function E : {0, 1}n →
{0, 1}N and a decoding function D : {0, 1}N−2 → {0, 1}n such for any c ∈ {0, 1}n and subsequence c′ ∈
{0, 1}N−2 of E(c), we have D(c′) = c. In addition, functions E and D can be computed in O(n) time.

To prove this, we first show that the parities f(c) and h(c) can be used to correct two deletions.

Theorem 2. For c, c′ ∈ {0, 1}n, if c ∈ B2(c
′), f(c) = f(c′), and h(c) = h(c′), then c = c′.

Theorem 2 readily implies that that the functions h and f can serve as the redundancy bits in a 2-deletion code,

and that the induced redundancy is at most 7 log(n) + o(log n) (the additional term stems from protecting the

redundancy bits). Furthermore, the encoding algorithm is trivial, and the decoding algorithm in Section VI is linear.

Most interestingly, the proof of Theorem 2 can be seen as a higher dimensional variant of the proof for the VT

construction, as explained in the remainder of this section.

Clearly, a length n−1 VT code can be seen as the set of sequences c for which the values of ℓ(c) , c·m(0) mod n
coincide. Adopting this point of view, the correctness of the VT construction can be proved by the following lemma,

in which ℓv(c) , c · v mod (vn−1 + 1), and v = (v1, . . . , vn−1) is a vector in Z
n−1
+ .

Lemma 1. For c, c′ ∈ {0, 1}n−1, and v ∈ Z
n−1
+ , if c ∈ B1(c

′), ℓv(c) = ℓv(c
′), and v1 < v2 < . . . < vn−1

then c = c′.

2For k = 2, [6] has very recently improved the redundancy up to 8 log n using techniques similar to [5], our techniques incur lower

redundancy and complexity, and use a fundamentally different approach.



3

In turn, the proof of this lemma can be completed by defining the following function. For a vector v ∈ Z
n−1
+ ,

an integer r ∈ [n− 1], and a binary vector x = (x1, . . . , xs) with r + s− 2 ≤ n− 1, let

gv(r,x) , x · ((v(r,r+s−2), 0)− (0,v(r,r+s−2)))

= x1vr − xsvr+s−2 +

s−1
∑

t=2

xt(vt+r−1 − vt+r−2), (4)

where v(r,r+s−2) , (vr, vr+1, . . . , vr+s−2), and ’·’ denotes inner product. Let k1 and k2 (k1 < k2) be the indices

of the deletions after which c and c′ are identical. Then we have

ct = 110(c
′)t if t < k1

or t > k2, and

ct+1 = 110(c
′)t if k1 ≤ t ≤ k2 − 1. (5)

One can find that

c · v − c′ · v =

k1−1
∑

t=1

ctvt + ck1
vk1

+

k2
∑

t=k1+1

ctvt +

n
∑

t=k2+1

ctvt

−

k1−1
∑

t=1

ctvt +

k2−1
∑

t=k1

ct+1vt + c′k2
vk2

+

n
∑

t=k2+1

ctvt

= ck1
vk1

+

k2
∑

t=k1+1

ct(vt − vt−1)− ck2
vk−2

= gv(k1, (c
(k1,k2), c′k2

)) (6)

Hence, if ℓv(c) = ℓv(c
′) then gv(k1, (c

(k1,k2), c′k2
)) ≡ 0 mod (vn−1 + 1). Furthermore, since

−vn−1 ≤ −vr+s−2 ≤ x1vr − xsvr+s−2 +

s−1
∑

t=2

xt(vt+r−1 − vt+r−2)

≤ vr +

s−1
∑

t=2

(vt+r−1 − vt+r−2) = vr+s−2 ≤ vn−1,

it follows that ℓv(c) = ℓv(c
′) if and only if gv(k1, (c

(k1,k2), c′k2
)) = 0. Therefore, the proof is concluded by the

following lemma.

Lemma 2. For integers r and s such that r + s− 2 ≤ n− 1, a vector v ∈ Z
n−1
+ , and an s-bit binary vector x,

if gv(r,x) = 0 and v1 < . . . < vn−1 then x is a constant vector.

Proof. We dinstinguish between two cases according to the value of xs. On the one hand, if xs = 0, then it is

readily verified that gv(r,x) is the sum of nonnegative terms. In which case, the equation gv(r,x) = 0 holds if

and only if x = 0.

On the other hand, if xs = 1, then

gv(r,x) = vrx1 +

s−1
∑

t=2

(vt+r−1 − vt+r−2)xt − vr+s−2

≤ vr +

s−1
∑

t=2

(vt+r−1 − vt+r−2)− vr+s−2 = 0. (7)

The equality holds if and only if x = 1.

Remark 1. The VT code is the special case when v = (1, . . . , n). From Lemma 2 we have that ck1
= . . . = ck2

=
c′k2

. According to Equation 5, this implies that c′t = ct+1 = ct for k1 ≤ t ≤ k2−1 and c′t = ct for t < k1 or t ≥ k2.



4

ci−1cici+1 000 001 010 011 100 101 110 111
110(c)i−1110(c)i 00 00 01 00 10 10 01 00
101(c)i−1101(c)i 00 01 10 10 00 01 00 00

TABLE I

ALL POSSIBLE CASES OF DELETIONS OF ci FOR 2 ≤ i ≤ n− 1 CORRESPOND TO DELETIONS IN 110(c). THE DELETED SYMBOL IS IN

BOLD.

The crux of proving Theorem 2 boils down to the following higher dimensional variant of Lemma 2.

Lemma 3. For integers r1, r2, s1, and s2 such that r2 > r1+s1−2 and r2+s2−2 ≤ n−1, and binary sequences x

and y of lengths s1 and s2, respectively, if

g
m

(0)(r1,x) + λg
m

(0)(r2,y) = 0, and

g
m

(1)(r1,x) + λg
m

(1)(r2,y) = 0, (8)

where λ = ±1, then x and y are constant vectors.

Additional technical claims, which involve the remaining ingredients of the redundancy bits, are given in the

sequel.

II. OUTLINE

The proof of Theorem 2 is separated to the following two lemmas. In a nutshell, it is shown that for two

confusable sequences, i.e., that share a common n − 2 subsequence, if the f redundancies coincide, then so are

the 10-indicators. Then, it is shown that confusable sequences with identical 10-indicators and identical h redundancy

have identical 01-indicators.

Lemma 4. For c and c′ in {0, 1}n, if c ∈ B2(c
′) and f(c) = f(c′), then 110(c) = 110(c

′).

Lemma 5. For c and c′ in {0, 1}n such that c ∈ B2(c
′), if 110(c) = 110(c

′) and h(c) = h(c′), then 101(c) =
101(c

′).

From these lemmas it is clear that two n-bit sequences that share a common n−2 subsequence and agree on the

redundancies f and h have identical 10- and 01-indicators, and hence the next simple lemma concludes the proof

of Theorem 2.

Lemma 6. For c and c′ in {0, 1}n such that c ∈ B2(c
′), if 110(c) = 110(c

′) and 101(c) = 101(c
′) then c = c′.

Proof. The conditions 110(c) = 110(c
′) and 101(c) = 101(c

′) imply that the ascending and descending transition

positions of 101(c) coincide with those of 101(c
′) respectively. Hence if transitions happen in c or c′, then c = c

′.

If no transitions happen in c or c
′ and c 6= c

′, then one of c and c
′ is all 0’s vector and the other is all 1’s

vector. Since all 0’s vector does not share a common subsequence of length n− 2 with all 1’s vector, we conclude

that c = c
′.

The proofs of Lemma 4 and Lemma 5 make extensive use of the following two technical claims, that are easy

to prove.

Lemma 7. For c and c′ in {0, 1}n, if c ∈ B2(c
′) then 110(c) ∈ B2(110(c

′)) and 101(c) ∈ B2(101(c
′)).

Proof. We first show that if c ∈ B1(c
′) then 110(c) ∈ B1(110(c

′)) and 101(c) ∈ B1(101(c
′)). To this end, it suffices

to show that if d ∈ {0, 1}n−1 is obtained from c by one deletion, then 110(d) (101(d)) is obtained from 110(c)
(101(c)) by one deletion (see table I).

Further, it is easy to see that a deletion of c1 corresponds to a deletion of 110(c)1 (resp. 101(c)1) and a deletion

of cn corresponds to a deletion of 110(c)n−1 (resp. 101(c)n−1). Hence, it follows that if

c
1 del’
−→ d

1 del’
−→ e

c′
1 del’
−→ d′ 1 del’

−→ e



5

then

110(c)
1 del’
−→ 110(d)

1 del’
−→ 110(e)

110(c
′)

1 del’
−→ 110(d

′)
1 del’
−→ 110(e)

101(c)
1 del’
−→ 101(d)

1 del’
−→ 101(e)

101(c
′)

1 del’
−→ 101(d

′)
1 del’
−→ 101(e),

which concludes the claim.

Lemma 8. For c, c′ ∈ {0, 1}n, if c ∈ B2(c
′) and 101(c) · 1 = 101(c

′) · 1 mod 3, then 101(c) · 1 = 101(c
′) · 1.

Proof. Since c ∈ B2(c
′) it follows from Lemma 7 that 110(c) ∈ B2(110(c

′)), and thus 110(c) and 110(c
′) have a

mutual (n− 3)-bit string s. Clearly,

s · 1 ≤ 110(c) · 1 ≤ s · 1+ 2, and

s · 1 ≤ 110(c
′) · 1 ≤ s · 1+ 2,

and thus |110(c) · 1 − 110(c
′) · 1| ≤ 2. However, since 3 divides |110(c) · 1 − 110(c

′) · 1|, we must have that

110(c) · 1 = 110(c
′) · 1.

In addition, one of the cases of the proof of Lemma 4 requires a specialized variant of Lemma 3.

Lemma 9. Let r1, r2, s1, s2 and s3 be positive integers that satisfy r2 = r1 + s1 and r2 + s2 + s3 ≤ n− 1, and let

x ∈ {0, 1}s1+s2+1 and y ∈ {0, 1}1+s2+s3 be such that

(xs1+1, xs1+2, . . . , xs1+s2) = (y2, y3, . . . , ys2+1),

and (xs1+1, xs1+2, . . . , xs1+s2) has no adjacent 1’s. If

g
m

(0)(r1,x) + g
m

(0)(r2,y) = 0,

g
m

(1)(r1,x) + g
m

(1)(r2,y) = 0, and

g
m

(2)(r1,x) + g
m

(2)(r2,y) = 0, (9)

then either x1 = . . . = xs1+s2+1 = y1 = . . . = ys2+s3+1 or

x1 = x2 = . . . = xs1+1 = 1− y1,

xt + xt+1 = 1, for t ∈ {s1 + 1, . . . , s1 + s2 − 1},

xs1+s2+1 + ys2+1 = 1, and

ys2+1 = . . . = ys2+s3+1. (10)

The following lemma shows a property of gv(r,x), which will be useful in the proof of Lemma 3 and Lemma 9

that are given in Section V.

Lemma 10. For integers r and s such that r + s− 2 ≤ n− 1, a vector v, and an s-bit binary vector x, if gv(r,x) =
0, then gv(r,x) = 0, where x , 1 − x.

Proof. Since

gv(r,x) = vrx1 +

s−1
∑

t=2

(vt+r−1 − vt+r−2)xt − vr+s−2xs

= vrx1 +

s−1
∑

t=2

(vt+r−1 − vt+r−2)xt − vr+s−2xs − vr −

s−1
∑

t=2

(vt+r−1 − vt+r−2) + vr+s−2

= vr(x1 − 1) +

s−1
∑

t=2

(vt+r−1 − vt+r−2)(xt − 1) − vr+s−2(xs − 1) = −gv(r,x) (11)



6

Hence if gv(r,x) = 0, we have gv(r,x) = 0.

Lemma 5 is proved in Section III, and its more involved counterpart Lemma 4 is proved in Section IV. Finally,

Lemma 3 and Lemma 9 are proved in Section V.

III. PROOF OF LEMMA 5

We now show that for any c and c′ in {0, 1}n that satisfy c ∈ B2(c
′), if 110(c) = 110(c

′) and h(c) = h(c′)
(see (3) for definition of the h function), then 101(c) = 101(c

′). Since c and c′ have an identical 10-indicator, they

can be written as

c = 0π01π10π21π3 · · · 0π2ℓ1π2ℓ+1 ,

c′ = 0τ01τ10τ21τ3 · · · 0τ2ℓ1τ2ℓ+1 , (12)

where {πi}
2ℓ+1
i=0 and {τi}

2ℓ+1
i=0 are nonnegative integers such that πi and τi are strictly positive for every i /∈ {0, 2ℓ+1},

and such that π2i + π2i+1 = τ2i + τ2i+1 for all i ∈ {0, 1, . . . , ℓ}. In addition, since h(c)1 = h(c′)1 it follows from

Lemma 8 that 101(c) · 1 = 101(c
′) · 1. Hence, we have

101(c) · 1 = 101(c
′) · 1 = ℓ+ 1 if π0 > 0, π2ℓ+1 > 0

101(c) · 1 = 101(c
′) · 1 = ℓ if π0 > 0, π2ℓ+1 ≤ 0

or π0 = 0, π2ℓ+1 > 0

101(c) · 1 = 101(c
′) · 1 = ℓ− 1 if π0 < 0, π2ℓ+1 < 0

if π0 and π2ℓ+1 (resp. τ0 and τ2ℓ+1) are both positive then this number is ℓ+1, if precisely one of them is positive

then it is ℓ, and if they are both zero it is ℓ− 1.

Let d = 0γ01γ10γ21γ3 · · · 0γ2ℓ1γ2ℓ+1 ∈ {0, 1}n−2 be a common subsequence of c and c′ which is obtained by

deleting two bits from either c or c′, where γi ≥ 0 for all i. Then, it is readily verified that

2ℓ+1
∑

i=0

(πi − γi) = 2,

2ℓ+1
∑

i=0

(τi − γi) = 2, , and hence

2ℓ+1
∑

i=1

|πi − τi| ≤

2ℓ+1
∑

i=1

|πi − γi|+

2ℓ+1
∑

i=1

|τi − γi| = 4.

Moreover, since π2i + π2i+1 = τ2i + τ2i+1 for all i ∈ {0, 1, . . . , ℓ}, it follows that |π2i − τ2i| = |π2i+1 − τ2i+1|.
Assuming for contradiction that the 01-indicators do not coincide implies either of the following cases.

Case (a). There exists an integer j ∈ [ℓ] such that |π2j − τ2j | is either 1 or 2 and π2i = τ2i for i 6= j.

Case (b). There exist two integers m and r (where m < r) such that |π2m−τ2m| = |π2r−τ2r| = 1, and π2i = τ2i
for i /∈ {m, r}.

In Case (a), since π2i + π2i+1 = τ2i + τ2i+1 for every i and π2i = τ2i for every i 6= j, it follows that 101(c)
and 101(c

′) differ in precisely two positions s and t such that 1 ≤ s − t ≤ 2. Hence, since the number of 1’s

in the 01-indicators is equal, it follows that 101(c)s = 101(c
′)t, 101(c)t = 101(c

′)s, and 101(c)s 6= 101(c)t, and

therefore

h(c)2 − h(c′)2 = (101(c)s − 101(c
′)s)

(

s+ 1

2

)

+

(101(c)t − 101(c
′)t)

(

t+ 1

2

)

=±

((

s+ 1

2

)

−

(

t+ 1

2

))

. (13)

Since 1 ≤ s − t ≤ 2, it follows that (13) equals either ±(t + 1) or ±(2t + 3), and a contradiction follows since

neither of which is 0 modulo 2n, .



7

Similarly, in Case (b), if non of π2m, τ2m, π2m+1, τ2m+1, π2r, τ2r, π2r+1, τ2r+1 is zero, then 101(c) and 101(c
′)

differ in four positions s, s+ 1, t, and t+ 1, and hence

h(c)2 − h(c′)2 = (101(c)s − 101(c
′)s)

(

s+ 1

2

)

+

(101(c)s+1 − 101(c
′)s+1)

(

s+ 2

2

)

+

(101(c)t − 101(c
′)t)

(

t+ 1

2

)

+

(101(c)t+1 − 101(c
′)t+1)

(

t+ 2

2

)

. (14)

Once again, since 101(c) and 101(c
′) have an identical number of 1’s, we have that

101(c)s = 101(c
′)s+1 101(c)s+1 = 101(c

′)s

101(c)t = 101(c
′)t+1 101(c)t+1 = 101(c

′)t

101(c)s 6= 101(c
′)s 101(c)t 6= 101(c

′)t.

This readily implies that (14) equals either ±(s−t) or ±(s+t+2), and since non of which is 0 modulo 2n, another

contradiction is obtained. If π2m = 0 (resp. τ2m = 0), by the discussion after Eq. (12) it follows that τ2r+1 = 0
(resp. π2r+1 = 0), and hence 101(c) and 101(c

′) differ in the first and last positions. Hence, (14) becomes ±(1−
n(n−1)

2 ), which is nonzero modulo 2n, and the claim follows.

IV. PROOF OF LEMMA 4

Since c ∈ B2(c
′) it follows that there exist integers i1, i2, j1, and j2 such that

c
del’ i1−→ d

del’ j1
−→ e

c′
del’ i2−→ d′

del’ j2
−→ e

and by Lemma 7 it follows that there exist integers ℓ1, ℓ2, k1, and k2 such that

110(c)
del’ ℓ1−→ 110(d)

del’ k1−→ 110(e)

110(c
′)

del’ ℓ2−→ 110(d
′)

del’ k2−→ 110(e).

Due to symmetry between c and c′, we distinguish between the following three cases. In each case, the difference

between the f values of c and c′ are given in terms of the function g (Eq. (4)). Further, the computation of these

three differences, which is tedious but straightforward, is deferred to the appendices.

Case (a). If ℓ1 ≤ ℓ2 < k2 ≤ k1 (Fig. 1), then

110(c)t = 110(c
′)t if t < ℓ1

or ℓ2 < t < k2

or t > k1,

110(c)t+1 = 110(c
′)t if ℓ1 ≤ t ≤ ℓ2 − 1,

110(c)t = 110(c
′)t+1 if k2 ≤ t ≤ k1 − 1,

Thus, for e ∈ {0, 1, 2},

(110(c) − 110(c
′)) ·m(e) = g

m
(e)(ℓ1, (110(c)

(ℓ1,ℓ2),110(c
′)ℓ2))−

g
m

(e)(k2, (110(c
′)(k2,k1),110(c)k1

)). (15)



8

110(c)

110(c
′) ⋆

⋆ ⋆

⋆= = =

= = =

ℓ1 ℓ2 k1k2

Fig. 1. Case (a)

110(c)

110(c
′) ⋆

⋆

⋆

⋆

= = =

= = =

ℓ1 ℓ2 k2k1

Fig. 2. Case (b)

Case (b). If ℓ1 ≤ ℓ2 < k1 ≤ k2 (Fig. 2), then

110(c)t = 110(c
′)t if t < l1

or l2 < t < k1.

or t > k2.

110(c)t+1 = 110(c
′)t if ℓ1 ≤ t ≤ ℓ2 − 1

or k1 ≤ t ≤ k2 − 1.

Thus, for e ∈ {0, 1, 2},

(110(c) − 110(c
′)) ·m(e) = g

m
(e)(ℓ1, (110(c)

(ℓ1,ℓ2),110(c
′)ℓ2))+

g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)). (16)

Case (c). If ℓ1 < k1 ≤ ℓ2 < k2 (Fig. 3), then

110(c)t = 110(c
′)t if t < l1

or t > k2,

110(c)t+1 = 110(c
′)t if ℓ1 ≤ t ≤ k1 − 2

or ℓ2 + 1 ≤ t ≤ k2 − 1,

110(c)t+2 = 110(c
′)t if k1 − 1 ≤ t ≤ ℓ2 − 1.

Thus, for e ∈ {0, 1, 2},

(110(c)− 110(c
′)) ·m(e) = g

m
(e)(ℓ1, (110(c)

(ℓ1,k1−1),

110(c)
(k1+1,ℓ2+1),110(c

′)ℓ2))+

g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)). (17)



9

110(c)

110(c
′)

⋆⋆

⋆⋆= =

= =

ℓ1 k1 k2ℓ2

Fig. 3. Case (c)

Note that if f(c) = f(c′), then 110(c) ·m
(e) ≡ 110(c) ·m

(e) mod ne, where n0 = 2n, n1 = n2, and n2 = n3.

Hence, from (15)-(17) we have that

g
m

(e)(ℓ1, (110(c)
(ℓ1,ℓ2),110(c

′)ℓ2))− g
m

(e)(k2, (110(c
′)(k2,k1),110(c)k1

)) ≡ 0 mod 2n,

g
m

(e)(ℓ1, (110(c)
(ℓ1,ℓ2),110(c

′)ℓ2)) + g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)) ≡ 0 mod n2, and

g
m

(e)(ℓ1, (110(c)
(ℓ1,k1−1),110(c)

(k1+1,ℓ2+1),110(c
′)ℓ2))

+ g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)) ≡ 0 mod n3.g (18)

In what follows, we show that these equalities also hold in their non modular version. On the other hand, we have

−m
(e)
r+k−2 ≤ g

m
(e)(r,x) ≤ m

(e)
r+k−2

for any x ∈ {0, 1}n−1 and any integer r that satisfies r + k − 2 ≤ n− 1. Therefore,

−m
(e)
ℓ2

−m
(e)
k2

≤g
m

(e)(ℓ1, (110(c)
(ℓ1,ℓ2),110(c

′)ℓ2))− g
m

(e)(k2, (110(c
′)(k2,k1),110(c)k1

)) ≤ m
(e)
ℓ2

+m
(e)
k2

,

−m
(e)
ℓ2

−m
(e)
k2

≤g
m

(e)(ℓ1, (110(c)
(ℓ1,ℓ2),110(c

′)ℓ2)) + g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)) ≤ m

(e)
ℓ2

+m
(e)
k2

, and

−m
(e)
ℓ2

−m
(e)
k2

≤g
m

(e)(ℓ1, (110(c)
(ℓ1,k1−1),110(c)

(k1+1,ℓ2+1),110(c
′)ℓ2))

+ g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)) ≤ m

(e)
ℓ2

+m
(e)
k2

. (19)

Further note that

m
(0)
ℓ2

+m
(0)
k2

< 2n,m
(1)
ℓ2

+m
(1)
k2

< n2,m
(2)
ℓ2

+m
(2)
k2

< n3 (20)

Combining (18), (19), and (20), we conclude that if f(c) = f(c′), then

g
m

(e)(ℓ1, (110(c)
(ℓ1,ℓ2),110(c

′)ℓ2))− g
m

(e)(k2, (110(c
′)(k2,k1),110(c)k1

)) = 0, (21)

g
m

(e)(ℓ1, (110(c)
(ℓ1,ℓ2),110(c

′)ℓ2)) + g
m

(e)(k1, (110(c)
(k1,k2),110(c

′)k2
)) = 0, and (22)

g
m

(e)(ℓ1, (110(c)
(ℓ1,k1−1),110(c)

(k1+1,ℓ2+1),110(c
′)ℓ2)) + g

m
(e)(k1, (110(c)

(k1,k2),110(c
′)k2

)) = 0. (23)

For Case (a), Equation (21) and Lemma 3 implies that

110(c)ℓ1 = . . . = 110(c)ℓ2 = 110(c
′)ℓ2

110(c
′)k2

= . . . = 110(c
′)k1

= 110(c)k1
,

which readily implies that

110(c
′)t = 110(c)t+1 = 110(c)t

for ℓ1 ≤ t < ℓ2 and

110(c)t = 110(c
′)t+1 = 110(c

′)t

for k2 ≤ t < k1. Together with 110(c)ℓ2 = 110(c
′)ℓ2 and 110(c

′)k1
= 110(c)k1

, we have that 110(c) = 110(c
′).



10

For Case (b), Equation (22) and Lemma 3 implies that

110(c)ℓ1 = . . . = 110(c)ℓ2 = 110(c
′)ℓ2

110(c
′)k1

= . . . = 110(c
′)k2

= 110(c)k2

and hence

110(c
′)t = 110(c)t+1 = 110(c)t

for ℓ1 ≤ t < ℓ2 and k1 ≤ t < k2. 110(c) = 110(c
′).

For Case (c), Equation (23) and Lemma 9 imply that either

110(c)ℓ1 = . . . = 110(c)k2
= 110(c

′)ℓ2 = 110(c
′)k2

(24)

or

110(c)ℓ1 = . . . = 110(c)k1−1 = 110(c)k1+1,

110(c)i + 110(c)i+1 = 1 for i ∈ {k1, . . . , ℓ2},

110(c
′)ℓ2 + 110(c

′)k2
= 1, and

110(c)ℓ2+1 = . . . = 110(c)k2
= 110(c

′)k2
. (25)

If (24) is true, we can obtain c = c′ by following similar steps as above.

If (25) is true, we have

110(c
′)t = 110(c)t+1 = 110(c)t

for ℓ1 ≤ t ≤ k1 − 2 and ℓ2 + 1 ≤ t ≤ k2 − 1. Further more, we have

110(c
′)t = 110(c)t+2 = 1− 110(c)t+1 = 110(c)t

for k1 ≤ t ≤ ℓ2 − 1. In addition, we have 110(c
′)k1−1 = 110(c)k1+1 = 110(c)k1−1, 110(c

′)ℓ2 = 1 − 110(c
′)ℓ2+1 =

110(c)ℓ2 and 110(c
′)k2

= 110(c)k2
. Therefore, we conclude that c = c′.

V. PROOFS OF g-LEMMAS

Proof. (of Lemma 3) According to Eq. (11), if λ = 1, then Eq. (8) can be written as

g
m

(0)(r1,x)− g
m

(0)(r2,y) = 0, and

g
m

(1)(r1,x)− g
m

(1)(r2,y) = 0.

Therefore, it suffices to prove the claim for λ = −1. We distinguish between four cases according to the value

of (y1, ys2).
Case (1). (y1, ys2) = (0, 1)
we have that

g
m

(e)(r1,x)− g
m

(e)(r2,y)

=m(e)
r1 x1 +

s1−1
∑

t=2

(m
(e)
t+r1−1 −m

(e)
t+r1−2)xt−

m
(e)
r1+s1−2xs1 −m(e)

r2 y1 −

s2−1
∑

t=2

(m
(e)
t+r2−1 −m

(e)
t+r2−2)yt +m

(e)
r2+s2−2ys2

≥−m
(e)
r1+s1−2 −

s2−1
∑

t=2

(m
(e)
t+r2−1 −m

(e)
t+r2−2) + m

(e)
r2+s2−2

=m(e)
r2

−m
(e)
r1+s1−2 > 0,

a contradiction.

Case (2). (y1, ys2) = (1, 0)



11

From Lemma 10 and (8) we have g
m

(e)(r1,x)+g
m

(e)(r2,y) = 0 for e ∈ {0, 1}, where x , 1−x and y , 1−y.

Since (y1, ys2) = (1, 0), from the previous case we have that x and y are constant vectors. So are x and y.

Case (3). (y1, ys2) = (1, 1)
Let

S1 , {j : yj−r2+1 = 1, r2 + 1 ≤ j ≤ r2 + s2 − 2}, and

Sc
1 , {j : yj−r2+1 = 0, r2 + 1 ≤ j ≤ r2 + s2 − 2},

and notice that

g
m

(0)(r2,y) = m(0)
r2 −m

(0)
r2+s2−2 +

s2−1
∑

j=2

(m
(0)
j+r2−1 −m

(0)
j+r2−2)yj

= −

r2+s2−2
∑

j=r2+1

(m
(0)
j −m

(0)
j−1) +

s2−1
∑

j=2

(m
(0)
j+r2−1 −m

(0)
j+r2−2)yj

= −

r2+s2−2
∑

j=r2+1

(m
(0)
j −m

(0)
j−1)(1− yj)

= −
∑

j∈Sc
1

(m
(0)
j −m

(0)
j−1) = −

∑

j∈Sc
1

1, and similarly

g
m

(1)(r2,y) = −
∑

j∈Sc
1

(m
(1)
j −m

(1)
j−1) = −

∑

j∈Sc
1

j. (26)

Now, on the one hand if xs1 = 0 we have

g
m

(0)(r1,x) = m(0)
r1 x1 +

s1−1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt ≥ 0, (27)

and hence, (26) and (27) imply that g
m

(0)(r1,x)− g
m

(0)(r2,y) ≥ 0, and equality holds only when g
m

(0)(r1,x) and

g
m

(0)(r2,y) are both 0, which by Lemma 2 implies that x and y are constant vectors. On the other hand, if xs1 = 1
let S2 = {j : xmax{j−r1+1,1} = 0, 1 ≤ j ≤ r1 + s1 − 2}, and notice that

g
m

(0)(r1,x) = m(0)
r1

x1 +

s1−1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt −m

(0)
r1+s1−2

= m(0)
r1

(x1 − 1) +

s1−1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)(xt − 1)

=−
∑

t∈S2

1, and similarly

g
m

(1)(r1,x) =−
∑

t∈S2

t. (28)

Inserting (26) and (28) into (8), we have

−
∑

t∈S2

1 +
∑

j∈Sc
1

1 = 0,

−
∑

t∈S2

t+
∑

j∈Sc
1

j = 0.

This implies that the sets Sc
1 and S2 have the same cardinality and the same sum of elements. However, the maximum

element in S2 is smaller than the minimum element in Sc
1. Therefore Sc

1 and S2 are empty, which implies that x

is the 0 vector and y is the all 1’s vector.

Case (4). (y1, ys2) = (0, 0)



12

From Lemma 10 and Eq. (8) we have g
m

(e)(r1,x) + g
m

(e)(r2,y) = 0 for e ∈ {0, 1}, where x , 1 − x

and y , 1 − y. Since (y1, ys2) = (1, 1), from the previous case x and y are constant vectors, and thus so are x

and y.

Proof. (of Lemma 9) We distinguish between four cases according to the value of (xs1+s2+1, ys2+s3+1).
Case (1). (xs1+s2+1, ys2+s3+1) = (0, 0)
Similar to (27), we have that g

m
(0)(r1,x)+g

m
(0)(r2,y) ≥ 0, where equality holds only if x and y are constant 0

vectors.

Case (2). (xs1+s2+1, ys2+s3+1) = (1, 1)
From Lemma 10 and Eq. (9) we have g

m
(0)(r1,x)+g

m
(0)(r2,y) = 0. On the other hand, since (xs1+s2+1, ys2+s3+1) =

(0, 0) , it follows that g
m

(0)(r1,x) + g
m

(0)(r2,y) ≥ 0 where equality holds when x and y are constant 1 vectors.

Case (3). (xs1+s2+1, ys2+s3+1) = (0, 1)
On the one hand, for y1 = 0 we have

g
m

(0)(r1,x) + g
m

(0)(r2,y) =

= m(0)
r1

x1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt +

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)xt+1

+

s2
∑

t=2

(m
(0)
t+r2−1 −m

(0)
t+r2−2)yt +

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r2−2)yt −m

(0)
r2+s2+s3−1

= m(0)
r1 x1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt +

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)(xt + xt+1)

+

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r2−2)yt −m

(0)
r2+s2+s3−1

≤ m(0)
r1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2) +

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)

+

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r2−2)−m

(0)
r2+s2+s3−1 = 0,

where equality equality holds when

xt = 1 for t ∈ {1, . . . , s1 + 1},

xt + xt+1 = 1 for t ∈ {s1 + 1, . . . , s1 + s2 − 1}, and

yt = 1 for t ∈ {s2 + 1, . . . , s2 + s3},

and hence (10) holds. On the other hand, when y1 = 1, let

S1 = {t : xmax{t−r1+1,1} = 1, 1 ≤ t ≤ s1 + r1},

S2 = {t : xt−r1 + xt−r1+1 = 0, r2 + 1 ≤ t ≤ r2 + s2 − 1},

S3 = {t : yt−r2+1 = 0, r2 + s2 ≤ t ≤ r2 + s2 + s3 − 1},



13

and notice that

g
m

(0)(r1 ,x) + g
m

(0)(r2,y)

= m(0)
r1 x1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt+

m
(0)
s1+r1

+

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)(xt + xt+1)+

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r1−2)yt −m

(0)
r2+s2+s3−1

=
∑

t∈S1

(m
(0)
t −m

(0)
t−1)−

∑

t∈S2

(m
(0)
t −m

(0)
t−1)−

∑

t∈S3

(m
(0)
t −m

(0)
t−1)

=
∑

t∈S1

1−
∑

t∈S2

1−
∑

t∈S3

1 (29)

Similarly, we have

g
m

(1)(r1,x) + g
m

(1)(r2,y) =
∑

t∈S1

t−
∑

t∈S2

t−
∑

t∈S3

t. (30)

Equations (9), (29), and (30) imply that the cardinality of S1 equals the sum of cardinalities of S2 and S3, and in

addition, the sum of elements of S1 equals the sum of elements of S2 and S3. Note that the minimum element

of S2 ∪ S3 is larger than the maximum element of S1. This is impossible, unless S1, S2, and S3 are empty,

which implies that xt = 0 for t ∈ {1, . . . , s1 + 1}, xt + xt+1 = 1 for t ∈ {s1 + 1, . . . , s1 + s2 − 1}, and

yt = 1 for t ∈ {s2 + 1, . . . , s2 + s3}, and hence (10) holds.

Case (4). (xs1+s2+1, ys2+s3+1) = (1, 0)
On the one hand, for y1 = 0, let

S1 = {t : xmax{t−r1+1,1} = 0, 1 ≤ t ≤ s1 + r1},

S2 = {t : xt−r1 + xt−r1+1 = 0, r2 + 1 ≤ t ≤ r2 + s2 − 1},

S3 = {t : yt−r2+1 = 1, r2 + s2 ≤ t ≤ r2 + s2 + s3 − 1}.

We have

g
m

(0)(r1,x) + g
m

(0)(r2,y)

= m(0)
r1 x1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt +

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)(xt + xt+1)−

m
(0)
r1+s1+s2−1 +

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r1−2)yt

=−m(0)
r1

(1− x1)−

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)(1− xt)−

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)(1 − xt − xt+1) +

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r1−2)yt

=−
∑

t∈S1

(m
(0)
t −m

(0)
t−1)−

∑

t∈S2

(m
(0)
t −m

(0)
t−1) +

∑

t∈S3

(m
(0)
t −m

(0)
t−1)

=−
∑

t∈S1

1−
∑

t∈S2

1 +
∑

t∈S3

1 = 0.

Then similar to the previous case, we obtain sets with identical cardinalities and sum of elements, and yet the

smallest element in one is greater than the largest element in the others. Therefore, it follows that S1, S2, and S3



14

are empty. Then we have xt = 1 for t ∈ {1, . . . , s1 + 1}, xt + xt+1 = 1 for t ∈ {s1 + 1, . . . , s1 + s2 − 1}, and

yt = 0 for t ∈ {s2 + 1, . . . , s2 + s3}, and hence (10) holds.

On the other hand, for y1 = 1, let

S1 = {t : xmax{t−r1+1,1} = 1, 1 ≤ t ≤ s1 + r1},

S2 = {t : xt−r1 + xt−r1+1 = 0, r2 + 1 ≤ t ≤ r2 + s2 − 1},

S3 = {t : yt−s2+1 = 1, r2 + s2 ≤ t ≤ r2 + s2 + s3 − 1}.

We have

g
m

(0)(r1,x) + g
m

(0)(r2,y)

= m(0)
r1

x1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt +m

(0)
s1+r1

+

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)(xt + xt+1)−

m
(0)
r1+s1+s2−1 +

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r1−2)yt

= m(0)
r1

x1 +

s1+1
∑

t=2

(m
(0)
t+r1−1 −m

(0)
t+r1−2)xt−

s1+s2−1
∑

t=s1+1

(m
(0)
t+r1

−m
(0)
t+r1−1)(1− xt − xt+1) +

s2+s3
∑

t=s2+1

(m
(0)
t+r2−1 −m

(0)
t+r1−2)yt

=
∑

t∈S1

(m
(0)
t −m

(0)
t−1)−

∑

t∈S2

(m
(0)
t −m

(0)
t−1) +

∑

t∈S3

(m
(0)
t −m

(0)
t−1)

=
∑

t∈S1

1−
∑

t∈S2

1 +
∑

t∈S3

1 = 0. (31)

Similarly, we have

g
m

(1)(r1,x) + g
m

(1)(r2,y) =
∑

t∈S1

t−
∑

t∈S2

t+
∑

t∈S3

t

g
m

(2)(r1,x) + g
m

(2)(r2,y) =
∑

t∈S1

t2 −
∑

t∈S2

t2 +
∑

t∈S3

t2 (32)

According to (31) and (32), the following linear equation

Ax =





∑

t∈S1
1

∑

t∈S2
1

∑

t∈S3
1

∑

t∈S1
t

∑

t∈S2
t

∑

t∈S3
t

∑

t∈S1
t2

∑

t∈S2
t2

∑

t∈S3
t2









x1
x2
x3



 = 0 (33)

has a nonzero solution (x1, x2, x3) = (1,−1, 1)⊤ . However, according to the linearity of the determinant, sharethe

determinant

det(A) =
∑

i∈S1,j∈S2,k∈S3

det





1 1 1
i j k
i2 j2 k2





=
∑

i∈S1,j∈S2,k∈S3

(j − i)(k − i)(k − j) (34)

is strictly positive since maxi∈S1
i < minj∈S2

j < mink∈S3
k. Thus, Eq. (33) has no nonzero solution unless

A = 0, which implies that S1, S2, and S3 are empty. Therefore, xt = 0 for t ∈ {1, . . . , s1 + 1}, xt + xt+1 = 1
for t ∈ {s1 + 1, . . . , s1 + s2 − 1}, and yt = 0 for t ∈ {s2 + 1, . . . , s2 + s3}, which implies (10).



15

VI. ENCODING AND DECODING ALGORITHMS

We now show how to use Theorem 2 to construct an encoding algorithm and a decoding algorithm. Similar

to the two layer encoding method described in [5], we use the f(c) and h(c) redundancies (3) to protect the

sequence c from two deletions in the first layer. In the second layer, the f(c) and h(c) redundancies are protected

again by their corresponding f(f(c), h(c)) and h(f(c), h(c)) redundancies. Since f(f(c), h(c)) and h(f(c), h(c))
are short, they can be protected by an inefficient 3-fold repetition code. Specifically, for any sequence c ∈ {0, 1}n,

the encoding function is

E(c) = (c, f(c), h(c), r3(f(f(c), h(c))), r3(h(f(c), h(c)))), (35)

where r3 is a 3-fold repetition encoding function. The length of the first layer redundancy f(c), h(c) is N1 =
7 log n+2. The length of the 3-fold repetition of the second layer redundancy r3(f(f(c), h(c))), r3(h(f(c), h(c)))
is N2 = 21 log(7 log n+ 2) + 6. The length of the codeword E(c) is

N = n+N1 +N2 = n+ 7 log n+ 2 + 21 log(7 log n+ 2) + 6 = n+ 7 log n+ o(log n).

Clearly, the computation of the function E(c) can be done in linear time.

To conveniently describe the decoding algorithm, two building blocks are needed. The first is a 3-fold repetition

decoding function

D1 : {0, 1}
3N2−2 → {0, 1}N2

that takes a subsequence d1 ∈ {0, 1}3N2−2 of a 3-fold repetition codeword r3(s1) ∈ {0, 1}3N2 for some s1 ∈
{0, 1}N2 as input, and outputs an estimate s̃1 of the sequence s1. The second is a decoding function

D2 : {0, 1}
n−2 × {0, 1}7 logn+2 → {0, 1}n

that takes a subsequence d2 ∈ {0, 1}n−2 of some s2 ∈ {0, 1}n , redundancy f(s2), and redundancy h(s2) as input,

and outputs an estimate s̃2 of the sequence s2. The 3-fold repetition decoding D1 can be implemented by adding

two bits to d1 such that the length of each run is a multiple of 3, which can obviously be done in linear time.

According to Theorem 2, there exists a decoding function D2 that recovers the original sequence correctly given

its f and h redundancy. The linear complexity of D2 will be shown later in this section.

The functions D1 and D2 are used as subroutines to describe the decoding procedure that is given in Algorithm 1.

First, we use the function D1 to recover the second layer redundancy f(f(c), h(c)) and h(f(c), h(c)) from the 3-fold

repetition code. Then, by applying D2 and using the second layer redundancy f(f(c), h(c)) and h(f(c), h(c)), the

first layer redundancy f(c) and h(c) can be recovered. Finally and similarly, the first layer redundancy f(c) and h(c)
can be used to recover the original sequence c, with the help of D2. In the case of single deletion, Algorithm 1

outputs the orginal sequence c. One can also use a VT decoder (see [1]), which has a simper implementation

and O(n) time complexity.

Algorithm 1: Decoding

Input: Subsequence d ∈ {0, 1}N−2 of E(c)
Output: The sequence c.

layer2 redundancy = D1(d
(N−N2+1,N−2));

if detect two deletions after the first run in dN−N2+1,N−2 then

return d(1,n);

else

L , the length of the longest suffix of d that is a subsequence of r3(layer2 redundancy);

layer1 redundancy = D2(d
(N−N1+1−L,N−2−L), layer2 redundancy);

c = D2(d
(1,n−2), layer1 redundancy);

return c.

Theorem 3. If the functions D1 and D2 provide the correct estimates in O(n) time, then given a N−2 subsequence

of E(c), Algorithm 1 returns the original sequence c in O(n) time.



16

Proof. To prove the correctness of Algorithm 1, it suffices to show the following

(1). d(N−N2+1,N−2) is a length N2 − 2 subsequence of the repetition code r3(f(f(c), h(c))), r3(h(f(c), h(c)))).
(2). d(N−N1+1−L,N−2−L) is a length N1 − 2 subsequence of the f(c), h(c) redundancy.

(3). d(1,n−2) is a length n− 2 subsequence of the sequence c.

Since d is a length N − 2 subsequence of E(c), dn−2 must be either the (n − 2)-th, the (n − 1)-th or the n-

th bits of E(c), and hence (3) must hold. Similarly, (1) holds by looking at d and E(c) in reverse order. By

the definition of L, dN−2−L is the i1-th bit of E(c) for some i1 ≤ n + N1. Since (1) holds, we have that L is

either the N2-th, the (N2 − 1)-th, or the (N2 − 2)-th bits of E(c). Therefore, dN−N1+1−L is the i2-th bit of E(c)
for some i2 ≥ N −N1 + 1− L > n. Since (f(c), h(c)) = E(c)(n+1,n+N1), (2) must hold.

Since finding L has O(N2) complexity, the complexity of Algorithm 1 is O(N) = O(n), given that the

complexities of the functions D1 and D2 are linear.

We are left to implement D2 with linear complexity. In particular, we need to recover the sequence c ∈ {0, 1}n

from its length n− 2 subsequence d in time O(n), given the redundancy f(c) and h(c). Note that there are O(n2)
supersuquences of d of length n, and f and h can be computed on each of them in O(n). Hence, the brute force

approach would require O(n3).
To achieve linear time complexity, we first recover 110(c), which is an (n−3)-subsequence of 110(c) ∈ {0, 1}n−1,

and then use it to recover c. In particular, we find the positions of the deleted bits by an iterative updating algorithm,

rather than by exhaustive search, and hence linear complexity is obtained. Furthermore, the uniqueness of the

obtained sequence is guaranteed by Lemma 4.

After recovering 110(c), We can find all length n supersequences c′ of d such that 110(c
′) = 110(c). It is shown

that there are at most 4 such possible supersequences, and since Theorem 2 guarantees uniqueness, the right c is

found by computing and comparing h.

A. Recovering 110(c)

For 1 ≤ i ≤ 2n− 2, let

pi ,

{

n− i if 1 ≤ i ≤ n− 1

i− n+ 1 if n ≤ i ≤ 2n− 2
, and (36)

bi ,

{

1 if 1 ≤ i ≤ n− 1

0 if n ≤ i ≤ 2n− 2
. (37)

Given a subsequence d ∈ {0, 1}n−2 of c, let 110(d) = (r1, . . . , rn−3), and let d : [2n−2]×[2n−2] → {0, 1}n∪{⋆}
be defined as

d(i, j) =











(r1, r2, . . . , rpi−1, bi, rpi
, . . . , rpj−2, bj , rpj−1, . . . , rn−3) if pi < pj

(r1, r2, . . . , rpj−1, bj , rpj
, . . . , rpi−2, bi, rpi−1, . . . , rn−3) if pi > pj

⋆ if pi = pj

,

that is, d(i, j) results from 110(d) inserting bi at position pi and bj in position pj of 110(d), if pi 6= pj . Notice

that d(i, j) is one possible way of correcting two deletions in the sequence 110(d).
For e ∈ {0, 1, 2} define matrices {A(e)}2e=0 as follows.

A
(e)
i,j =

{

d(i, j) ·m(e) −
∑n−3

i=1 m
(e)
i 110(d)i if d(i, j) 6= ⋆.

⋆ if d(i, j) = ⋆.
.

Notice that A
(e)
i,j is the difference in entry e of the f redundancies of d(i, j) and 110(d), i.e., A

(e)
i,j = f(d(i, j))e −

f(110(d))e.

We prove the following properties of A(e). In the first property, we give an explicit expression for the matrices A
(e)
i,j

in terms of 110(d), pi, pj , bi, and bj . The expression will be used for calculating A
(e)
i,j in constant time from its

neighboring entries during D2. In the following we use δ(x) to denote the indicator of the event x, where δ(x) = 1
if and only if x is true.



17

Proposition 1. If A
(e)
i,j 6= ⋆ then

A
(e)
i,j = bim

(e)
pi

+ bjm
(e)
pj

+

n−3
∑

k=1

110(d)k[(k + 1)eδ(min{pi, pj} < k + 1) + (k + 2)eδ(max{pi, pj} < k + 2)].

(38)

Proof. The difference between
∑n−3

k=1 m
(e)
k 110(d)k and d(i, j)·m(e) consists of two parts. The first part follows from

the two inserted bits, and can be written as

bim
(e)
pi

+ bjm
(e)
pj

(39)

The second part follows from the shift of bits in 110(d)k that is caused by the insertions of two bits bi and bj . Each

bit 110(d)k shifts from position k to position k+1 if one insertion occurs before 110(d)k, i.e., min{pi, pj} < k+1
and max{pi, pj} ≥ k + 2. The resulting difference is given by

n−3
∑

k=1

110(d)kδ(min{pi, pj} < k + 1)δ(max{pi, pj} ≥ k + 2)(m
(e)
k+1 −m

(e)
k )

=

n−3
∑

k=1

110(d)kδ(min{pi, pj} < k + 1)δ(max{pi, pj} ≥ k + 2)(k + 1)e. (40)

The bit 110(d)k shifts from position k to k + 2 if two insertions occur before 110(d)k , i.e., max{pi, pj} < k + 2.

The corresponding difference is given by

n−3
∑

k=1

110(d)kδ(min{pi, pj} < k + 1)δ(max{pi, pj} < k + 2)110(d)k(m
(e)
k+2 −m

(e)
k )

=

n−3
∑

k=1

110(d)kδ(max{pi, pj} < k + 2)[(k + 1)e + (k + 2)e]. (41)

Combining (40) and (41), we have that the difference that results from the second part is given by

n−3
∑

k=1

110(d)k[(k + 1)eδ(min{pi, pj} < k + 1) + (k + 2)eδ(max{pi, pj} < k + 2)],

that together with (39), implies (38).

The following shows that the entries of each A(e) are non-decreasing in rows and columns, and that the respective

sequences d(i, j) that lie in the same column or the same row, are unique given each entry value. This property

guarantees a simple algorithm for finding a sequence d(i, j) with a given value A
(e)
i,j by decreasing i or increasing j

by 1 in each step.

Proposition 2. For every i, j and i1 < i2, j1 < j2, if neither of d(i1, j),d(i2, j),d(i, j1), and d(i, j2) equals ⋆,

then A
(e)
i1,j

≤ A
(e)
i2,j

and A
(e)
i,j1

≤ A
(e)
i,j2

. Moreover, if A
(e)
i1,j

= A
(e)
i2,j

(resp. A
(e)
i,j1

= A
(e)
i,j2

), then d(i1, j) = d(i2, j)
(resp. d(i, j1) = d(i, j2)).

Proof. By symmetry we only need to prove that the matrix A(e) is non-decreasing in each column, for which it

suffices to prove that:

(1). A
(e)
i1,j

≤ A
(e)
i2,j

for 1 ≤ i1 < i2 ≤ n− 1.

(2). A
(e)
n−1,j ≤ A

(e)
n,j .

(3). A
(e)
i1,j

≤ A
(e)
i2,j

for n ≤ i1 < i2 ≤ 2n− 2.

For (2), the only difference between d(n− 1, j) and d(n, j) is that their first bits are 0 and 1 respectively, and

hence A
(e)
n−1,j + 1 = A

(e)
n,j . We are left to show (1) and (3).

(1): For 1 ≤ i1 < i2 ≤ n − 1, we have bi1 = bi2 = 0 and pi1 > pi2 . Let d′(i1, j) ∈ {0, 1}n−2 and d′(i2, j) ∈
{0, 1}n−2 be two subsequences of d(i1, j) and d(i2, j) respectively after deleting the pj-th bit from both d(i1, j)



18

and d(i2, j), and similarly, let m(e),pj = (m
(e)
1 ,m

(e)
2 , . . . ,m

(e)
pj−1,m

(e)
pj+1, . . . ,m

(e)
n−1) be a subsequence of m(e)

after deleting the pj-th entry. Then, according to (5) and (6), we have

A
(e)
i2,j

−A
(e)
i1,j

= d(i2, j) ·m
(e) − d(i1, j) ·m

(e)

= d′(i2, j) ·m
(e),pj − d′(i1, j) ·m

(e),pj

= g(k1,d
′(i2, j)

(k1,k2),d′(i1, j)k2
)

≥ 0, (42)

where k1 = pi2 − δ(pi2 > pj) and k2 = pi1 − δ(pi1 > pj) are the indices whose deletion from d′(i2, j)
and d′(i1, j), respectively, results in 110(d). Similarly, as in the proof in Lemma 2, the last inequality follows from

the fact that d′(i1, j)k2
= bi1 = 0. Furthermore, equality holds when d′(i2, j)

(k1,k2) = 0 and d′(i1, j)k2
= 0, which

implies that d′(i1, j) = d′(i2, j), and hence d(i1, j) = d(i2, j).
(3): For n ≤ i1 < i2 ≤ 2n− 2, we have bi1 = bi2 = 1 and pi1 < pi2 . Similar to (42), we have that

A
(e)
i1,j

−A
(e)
i2,j

= g(k1,d
′(i1, j)

(k1,k2),d′(i2, j)k2
) ≤ 0,

where k1 = pi1−δ(pi1 > pj) and k2 = pi2−δ(pi2 > pj)g are the indices whose deletion from d′(i1, j) and d′(i2, j),
respectively, results in 110(d). The last inequality follows from the fact that d′(i2, j)k2

= bi2 = 1, and equality

holds when d(i1, j) = d(i2, j).

Remark 2. From proposition 2, we have that

0 = A
(e)
1,2 ≤ A

(e)
i,j ≤ A

(e)
2n−2,2n−3 ≤ m

(e)
n−1 +m

(e)
n−2 ≤ ne, , 1 ≤ i, j ≤ 2n− 2, A

(e)
i,j 6= ⋆

where n0 = 2n, n1 = n2, n2 = n3.

Our goal is to find a sequence d(i, j) 6= ⋆ for which

A
(e)
i,j ≡ f1(c)−

n−3
∑

i=1

m
(e)
i 110(d)i mod ne (43)

for every e ∈ {0, 1, 2}. In addition, the sequence d(i, j) cannot contain adjacent 1’s, i.e.,

d(i, j)pi−1 · d(i, j)pi
= d(i, j)pi

· d(i, j)pi+1 = 0

d(i, j)pj−1 · d(i, j)pj
= d(i, j)pj

· d(i, j)pj+1 = 0, (44)

and from Lemma 4, such d(i, j) equals 110(c). Moreover, since Remark 2 implies that 0 ≤ A
(e)
i,j ≤ ne, it follows

that the modular equality in (43) is unnecessary, i.e., it suffices to find a sequence d(i, j) 6= ⋆ that satisfies (44)

and

A
(e)
i,j = ae , fe(c)−

n−3
∑

k=1

m
(e)
k 110(d)k mod ne, (45)

where ae is the target value to be found in matrix A(e). Eq. (45) implies that d(i, j) satisfies the f redundancy.

The procedure to find such d(i, j) is given in Algorithm 2. We search for all sequences d(i, j) 6= ⋆ with no adjacent

1’s (satisfies (44)) such that A
(0)
i,j = a0. This clearly amounts to a binary search in a sorted matrix3. We start from

the bottom left corner of the matrix, proceed to the right in each step until reaching the rightmost entry such

that A
(0)
i,j ≤ a0, and then go one step up. Figure 4 illustrates an example of how Algorithm 2 runs on matrix A(0).

To avoid the computation of the entire matrix, that would require O(n2) time, each entry is computed from

previously seen ones only upon its discovery. To this end we prove the following lemma, that alongside Proposition 1,

provides a way of computing a newly discovered entry.

3The two ⋆ entries in each row or column can simply be ignored.



19

*

*

*

*

*

*

*

*

*

*

1010

10

10

10

*10

10

10

11 11

11 12

11 12 13

1311 12

12 13 1411

9

9

9

9

8

8

8

9

9

7

7

8

8 9

0

1 9

9

2n − 2

2n − 3

2n − 4

2n − 5

2n − 6

2n − 7

2

i = 1

j = 1 2 3 4 5 6 7 2n − 2

......

...

Fig. 4. The path of Algorithm 2 on the matrix A(0). The algorithm searches for all i, j pairs such that A
(0)
i,j = 10 that appear in the lowest

position (with maximum i) of each column. The algorithm proceeds right until the next term A
(0)
i,j is greater than 10. Then, it proceeds up

one step and repeats the process in the same manner.

Lemma 11. Whenever the (i, j)-th and (i+ 1, j)-th (resp. (i, j + 1)) entries of A(e) are not ⋆, we have that

A
(e)
i,j −A

(e)
i+1,j = bim

(e)
pi

− bi+1m
(e)
pi+1

+

min{p1,pi+1}
∑

k=min{pi,pi+1}−1

110(d)k[(k + 1)e(δ(min{pi, pj} < k + 1)− δ(min{pi+1, pj} < k + 1))

+ (k + 2)e(δ(max{pi, pj} < k + 2)− δ(max{pi+1, pj} < k + 2))], and (46)

A
(e)
i,j −A

(e)
i,j+1 = bjm

(e)
pj

− bj+1m
(e)
pj+1

+

min{pj ,pj+1}
∑

k=min{pj ,pj+1}−1

110(d)k[(k + 1)e(δ(min{pi, pj} < k + 1)− δ(min{pi, pj+1} < k + 1))

+ (k + 2)e(δ(max{pi, pj} < k + 2)− δ(max{pi, pj+1} < k + 2))] (47)

Proof. Note that if i increases by 1 or if j decreases by 1, then pi or pj changes by at most 1 (See (36)). Hence,

δ(min{pi, pj} < k + 1) = δ(min{pi+1, pj} < k + 1),

δ(max{pi, pj} < k + 2) = δ(max{pi+1, pj} < k + 2)

for k ≤ min{pj, pi+1}−2 and k ≥ min{pi, pi+1}+1. According to (38), we have that (46) holds, and similarly, (47)

holds as well.

We first show that Algorithm 2 outputs the (i, j) pair such that d(i, j) = 110(c). Note that by Lemma 4 there

exists a unique sequence d(i, j) = 110(c) for which d(i, j) satisfies Eq. (44) and for which (i, j) satisfies Eq.



20

Algorithm 2: Finding 110(c).

Input: Subsequence d ∈ {0, 1}n−2 of c, and f(c)
Output: i and j such that d(i, j) = 110(c)
Initialization: i = 2n− 2, j = 1;

xe = A
(e)
1,2n−2 for e ∈ {0, 1, 2};

ae = fe(c) −
∑n−3

k=1 m
(e)
k 110(d)k mod ne for e ∈ {0, 1, 2};

while i ≥ 0 do

if xe = ae for every e ∈ {0, 1, 2} and d(i, j) 6= ⋆ and has no adjacent 1s’ (satisfies (44)) then

return i, j;

else

Find the maximum j for which A
(0)
i,j ≤ a0.

if pi = pj or (x0 > a0) then

temp xe = xe +A
(e)
i,j−1 −A

(e)
i,j (using (47)), for e ∈ {0, 1, 2};

temp j = j − 1;

while ptemp j = pi do

temp xe = xe +A
(e)
i,temp j−1 −A

(e)
i,temp j (using (47)) for e ∈ {0, 1, 2};

temp j = temp j − 1;

if temp j ≥ 1 then

j = temp j;

xe = temp xe for e ∈ {0, 1, 2, };

else

temp xe = xe +A
(e)
i,j+1 −A

(e)
i,j (using (47)), for e ∈ {0, 1, 2};

temp j = j + 1;

while ptemp j = pi do

temp xe = xe +A
(e)
i,temp j+1 −A

(e)
i,temp j (using (47)) for e ∈ {0, 1, 2};

temp j = temp j + 1;

if temp x0 ≤ a0 then

j = temp j;

xe = temp xe for e ∈ {0, 1, 2, };

else

xe = xe +A
(e)
i−1,j −A

(e)
i,j (using (46));

i = i− 1;

return (0, 0);

(45). Since the algorithm terminates either when such a sequence d(i, j) = 110(c) is found or no such sequence

is found and i reaches 0, it suffices to show that the latter case does not occur. We prove this by contradiction.

Assuming that the latter case occurs, we show that d(i, j) 6= 110(c) for all (i, j) pairs, which is a contradiction. For

each i ∈ {1, 2, . . . , 2n− 2}, let ji be the maximum j = ji for which A
(0)
i,ji

≤ a0. If A
(0)
i,j > a0 for all j, then ji = 1.

Note that each pair (i, ji) is visited in Algorithm 2 and by assumption we have that d(i, ji) 6= 110(c). We consider

the following two cases

(1). j > ji
(2). j < ji

and conclude that no (i, j) pairs in these cases result in d(i, j) = 110(c). For j > ji, by Proposition 2 we have

that A
(0)
i,j ≥ A

(0)
i,ji

or that d(i, j) = ⋆. Hence by definition of ji we have that A
(0)
i,j > a0 or that d(i, j) = ⋆ and

hence d(i, j) 6= 110(c). For j < ji, by Proposition 2 we have that A
(0)
i,j ≤ A

(0)
i,ji

or that d(i, j) = ⋆. If A
(0)
i,j < A

(0)
i,ji

,



21

then A
(0)
i,j 6= a0. If A

(0)
i,j = A

(0)
i,ji

, then according to Proposition 2, we have that d(i, j) = d(i, ji) 6= 110(c).

We now show that Algorithm 2 terminates in O(n) time. From (46) and (47) the (i, j)-th entry of A(e), e ∈

{0, 1, 2}, can be computed by using the update rule xe +A
(e)
i−1,j −A

(e)
i,j and xe +A

(e)
i,j±1 −A

(e)
i,j (see Algorithm 2),

that can be computed in constant time. In addition, one can verify in constant time that (44) holds.

Note that in each round, either i decreases by 1 or j increases by 1, with the exception that j decreases

when A
(0)
i,j = ⋆ or A

(0)
i,j > a0. We prove by contradiction that the latter case, in which A

(0)
i,j > a0 and j > 1

is impossible. Notice that for each current pair (i, j), the value of next pair (i∗, j∗) falls into either one of the

following three case:

(1). (i∗, j∗) = (i, j′) for some j′ > j with A
(0)
i∗,j∗ ≤ a0

(2). (i∗, j∗) = (i− 1, j)

(3). (i∗, j∗) = (i− 1, j′) for some j′ < j when A
(0)
i−1,j = ⋆.

Assume by contradiction that A
(0)
i∗,j∗ > a0 and j∗ > 1, and (i∗, j∗) is the first pair for which this statement is

true. In Case (1), we have that A
(0)
i∗,j∗ ≤ a0, in contradiction to A

(0)
i∗,j∗ > a0. In Case (2) or Case (3), Proposition 2

implies that a0 < A
(0)
i∗,j∗ ≤ A

(0)
i,j , contradicting the assumption that (i∗, j∗) is the first visited pair which satisfies

A
(0)
i∗,j∗ > a0.

Having proved that A
(0)
i,j ≤ a0 whenever j > 1, we have the Algorithm 2 proceeds to left only when it encounters

a ⋆-entry. We now show that the algorithm terminates in O(n) time. Notice that unless Algorithm 2 encounters

a ⋆-entry, it proceeds either up or to the right, for which case, it is clear that only O(n) many steps occur. In

cases where Algorithm 2 encounters a ⋆-entry, it proceeds to the left until a non ⋆-entry is found. Since the number

of ⋆-entries is 4n−4, the number of left strides of the algorithm is at most this quantity, and therefore the algorithm

terminates in at most O(n) time. In the following, we provide a running example of Algorithm 2.

Example 1. Consider a sequence c = (1, 1, 0, 0, 1, 0, 1, 0), where the first and the 6-th bits are deleted, resulting

in d = (1, 0, 0, 1, 1, 0). Then n = 8, 110(c) = (0, 1, 0, 0, 1, 0, 1), f(c) = (14, 46, 200), and 110(d) = (1, 0, 0, 0, 1).
Hence a0 = 8, a1 = 30, a2 = 144.

Then, Algorithm 2 proceeds in the following manner.

i = 1, j = 14, pi = pj , x0 = 7, x1 = 28, x2 = 140

→i = 2, j = 14,d(i, j) = (1, 0, 0, 0, 1, 0, 1), x0 = 7, x1 = 28, x2 = 140

→i = 3, j = 14,d(i, j) = (1, 0, 0, 0, 0, 1, 1), x0 = 8, x1 = 34, x2 = 176,

→i = 4, j = 14,d(i, j) = (1, 0, 0, 0, 0, 1, 1), x0 = 8, x1 = 34, x2 = 176,

→i = 5, j = 14,d(i, j) = (1, 0, 0, 0, 0, 1, 1), x0 = 8, x1 = 34, x2 = 176,

→i = 6, j = 14,d(i, j) = (1, 0, 0, 0, 0, 1, 1), x0 = 8, x1 = 34, x2 = 176,

→i = 7, j = 14,d(i, j) = (0, 1, 0, 0, 0, 1, 1), x0 = 9, x1 = 36, x2 = 180

→i = 7, j = 13,d(i, j) = (0, 1, 0, 0, 0, 1, 1), x0 = 9, x1 = 36, x2 = 180

→i = 7, j = 12,d(i, j) = (0, 1, 0, 0, 1, 0, 1), x0 = 8, x1 = 30, x2 = 144

B. Recover the original sequence c

Let (i, j) be the output of Algorithm 2, for which we have that d(i, j) = 110(c). Let c′ be a length n supersequence

after two insertions to d such that 110(c
′) = 110(c). If bi = 1, then inserting bi to 110(d) corresponds to either

inserting a 0 to d as the pi + 1-th bit in c′ or inserting a 1 to d as the pi-th bit in c′ (see Table I). If bi = 0, then

inserting bi to 110(d) corresponds to inserting a 0 or 1 in the first 0 run or 1 run respectively after the k′-th bit

in c′, where k′ = maxk{d(i, j)k = 1, k < pi}. The same arguments hold for the insertion of bj .
Therefore, given the (i, j) pair that Algorithm 2 returns, there are at most four possible c′ supersequences of d

such that 110(c
′) = 110(c). One can check if the c′ sequences satisfy h(c). According to Theorem 2, there is a

unique such sequence, the original sequence c that satisfies both f(c) and h(c) simultaneously.



22

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8,

1966, pp. 707–710.

[2] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric errors,” in Autom. Remote Control, vol. 26, no. 2,

1965, pp. 286–290.

[3] A. S. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting codes,” IEEE Trans. on Inf. Th., vol. 48, no. 1, pp. 305–308,

2002.

[4] F. Paluncic, K. A. Abdel-Ghaffar, H. C. Ferreira, and W. A. Clarke, “A multiple insertion/deletion correcting code for run-length limited

sequences,” IEEE Trans. on Inf. Th., vol. 58, no. 3, pp. 1809–1824, 2012.

[5] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting multiple deletions,” in Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1884–1892. 2016

[6] R. Gabrys and F. Sala, “Codes correcting two deletions.” arXiv:1712.07222 [cs.IT], 2017.

APPENDIX

Proof of (15) (Case (a)):

(110(c) − 110(c
′)) ·m(e)

=

ℓ2
∑

t=ℓ1

(

110(c)t − 110(c
′)t
)

· (m(e))t +

k1
∑

t=k2

(

110(c)t − 110(c
′)t
)

· (m(e))t

= (110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k1
− 110(c

′)k1
) · (m(e))k1

+

ℓ2−1
∑

t=ℓ1

(110(c)t − 110(c)t+1) · (m
(e))t +

k1−1
∑

t=k2

(

110(c
′)t+1 − 110(c

′)t
)

· (m(e))t

= (110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k1
− 110(c

′)k1
) · (m(e))k1

+

ℓ2−1
∑

t=ℓ1

110(c)t · (m
(e))t −

ℓ2
∑

ℓ1+1

110(c)t · (m
(e))t−1

+

k1
∑

t=k2+1

110(c
′)t · (m

(e))t−1 −

k1−1
∑

t=k2

110(c
′)t · (m

(e))t

= (110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k1
− 110(c

′)k1
) · (m(e))k1

+

110(c)ℓ1 · (m
(e))ℓ1 − 110(c)ℓ2 · (m

(e))ℓ2−1 +

ℓ2−1
∑

t=ℓ1+1

110(c)t · t
e+

110(c
′)k1

· (m(e))k1−1 − 110(c
′)k2

· (m(e))k2
−

k1−1
∑

t=k2+1

110(c
′)t · t

e

= (−110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k1
) · (m(e))k1

+

110(c)ℓ1 · (m
(e))ℓ1 +

ℓ2
∑

t=ℓ1+1

110(c)t · t
e − 110(c

′)k2
· (m(e))k2

−

k1
∑

t=k2+1

110(c
′)t · t

e

= 110(c)ℓ1 · (m
(e))ℓ1 + 110(c)k1

· (m(e))k1
+

ℓ2
∑

t=ℓ1+1

110(c)t · t
e

−

k1
∑

t=k2+1

110(c
′)t · t

e −
(

110(c
′)ℓ2 · (m

(e))ℓ2 + 110(c
′)k2

· (m(e))k2

)

= g
m

(e),ℓ1(110(c)ℓ1 , . . . ,110(c)ℓ2 ,110(c
′)ℓ2)− g

m
(e),k2

(110(c
′)k2

, . . . ,110(c
′)k1

,110(c)k1
)



23

Proof of (16) (Case (b)):

(110(c)− 110(c
′)) ·m(e)

=

ℓ2
∑

t=ℓ1

(

110(c)t − 110(c
′)t
)

· (m(e))t +

k2
∑

t=k1

(

110(c)t − 110(c
′)t
)

· (m(e))t

= (110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k2
− 110(c

′)k2
) · (m(e))k2

+

ℓ2−1
∑

t=ℓ1

(110(c)t − 110(c)t+1) · (m
(e))t +

k2−1
∑

t=k1

(110(c)t − 110(c)t+1) · (m
(e))t

= (110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k2
− 110(c

′)k2
) · (m(e))k2

+

ℓ2−1
∑

t=ℓ1

110(c)t · (m
(e))t −

ℓ2
∑

ℓ1+1

110(c)t · (m
(e))t−1 +

k2−1
∑

t=k1

110(c)t · (m
(e))t

−

k2
∑

t=k1+1

110(c)t · (m
(e))t−1

= (110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k2
− 110(c

′)k2
) · (m(e))k2

+

110(c)ℓ1 · (m
(e))ℓ1 − 110(c)ℓ2 · (m

(e))ℓ2−1 +

ℓ2−1
∑

t=ℓ1+1

110(c)t · t
e+

110(c)k1
· (m(e))k1

− 110(c)k2
· (m(e))k2−1 +

k2−1
∑

t=k1+1

110(c)t · t
e

= (−110(c
′)ℓ2) · (m

(e))ℓ2 + (−110(c
′)k2

) · (m(e))k2
+

110(c)ℓ1 · (m
(e))ℓ1 +

ℓ2
∑

t=ℓ1+1

110(c)t · t
e + 110(c)k1

· (m(e))k1
+

k2
∑

t=k1+1

110(c)t · t
e

= 110(c)ℓ1 · (m
(e))ℓ1 + 110(c)k1

· (m(e))k1
−
(

110(c
′)ℓ2 · (m

(e))ℓ2 + 110(c
′)k2

· (m(e))k2

)

+

ℓ2
∑

t=ℓ1+1

110(c)t · t
e +

k2
∑

t=k1+1

110(c)t · t
e

= g
m

(e),ℓ1(110(c)ℓ1 , . . . ,110(c)ℓ2 ,110(c
′)ℓ2) + g

m
(e),k1

(110(c)k1
, . . . ,110(c)k2

,110(c
′)k2

)



24

Proof of (17) (Case (c)):

(110(c) − 110(c
′)) ·m(e)

=

k1−2
∑

t=ℓ1

(110(c)t − 110(c
′)t) · (m

(e))t +

ℓ2−1
∑

t=k1−1

(110(c)t − 110(c
′)t) · (m

(e))t

+

k2
∑

t=ℓ2

(110(c)t − 110(c
′)t) · (m

(e))t

=

k1−2
∑

t=ℓ1

(110(c)t − 110(c)t+1) · (m
(e))t +

ℓ2−1
∑

t=k1−1

(110(c)t − 110(c)t+2) · (m
(e))t+

(110(c)ℓ2 − 110(c
′)ℓ2) · (m

(e))ℓ2 + (110(c)k2
− 110(c

′)k2
) · (m(e))k2

+

k2−1
∑

t=ℓ2+1

(110(c)t − 110(c)t+1) · (m
(e))t

=

k1−2
∑

t=ℓ1

110(c)t · (m
(e))t −

k1−1
∑

t=ℓ1+1

110(c)t · (m
(e))t−1 +

ℓ2
∑

t=k1−1

110(c)t · (m
(e))t

−

ℓ2+1
∑

t=k1+1

110(c)t · (m
(e))t−2 + (−110(c

′)ℓ2) · (m
(e))ℓ2 + (−110(c

′)k2
) · (m(e))k2

+

k2
∑

t=ℓ2+1

110(c)t · (m
(e))t −

k2
∑

t=ℓ2+2

110(c)t · (m
(e))t−1

= 110(c)ℓ1(m
(e))ℓ1 − 110(c)k1−1(m

(e))k1−2 +

k1−2
∑

t=ℓ1+1

110(c)t · t
e+

110(c)k1−1(m
(e))k1−1 + 110(c)k1

(m(e))k1
− 110(c)ℓ2+1(m

(e))ℓ2−1

+

ℓ2
∑

t=k1+1

110(c)t(t
e + (t− 1)e) + (−110(c

′)ℓ2) · (m
(e))ℓ2 + (−110(c

′)k2
) · (m(e))k2

+

110(c)ℓ2+1(m
(e))ℓ2+1 +

k2
∑

t=ℓ2+2

110(c)tt
e

= 110(c)ℓ1(m
(e))ℓ1 + 110(c)k1

(m(e))k1
− (110(c

′)ℓ2 · (m
(e))ℓ2 + 110(c

′)k2
· (m(e))k2

)+

k1−1
∑

t=ℓ1+1

110(c)t · t
e +

ℓ2+1
∑

t=k1+1

110(c)t(t
e + (t− 1)e) +

k2
∑

t=ℓ2+2

110(c)tt
e

= 110(c)ℓ1(m
(e))ℓ1 + 110(c)k1

(m(e))k1
− (110(c

′)ℓ2 · (m
(e))ℓ2 + 110(c

′)k2
· (m(e))k2

)+

k1−1
∑

t=ℓ1+1

110(c)t · t
e +

ℓ2
∑

t=k1

110(c)t+1t
e +

k2
∑

t=k1+1

110(c)tt
e

= g
m

(e),ℓ1(110(c)ℓ1 , . . . ,110(c)k1−1,110(c)k1+1, . . . ,110(c)ℓ2+1,110(c
′)ℓ2)+

g
m

(e),k1
(110(c)k1

, . . . ,110(c)k2
,110(c

′)k2
)


	I Introduction
	II Outline
	III Proof of Lemma ??
	IV Proof of Lemma ??
	V Proofs of g-lemmas
	VI Encoding and Decoding Algorithms
	VI-A Recovering H(c)
	VI-B Recover the original sequence c

	References

