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Robotic Herding of a Flock of Birds Using
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Abstract—In this paper, we derive an algorithm for enabling
a single robotic unmanned aerial vehicle to herd a flock of birds
away from a designated volume of space, such as the air space
around an airport. The herding algorithm, referred to as the m-
waypoint algorithm, is designed using a dynamic model of bird
flocking based on Reynolds’ rules. We derive bounds on its per-
formance using a combination of reduced-order modeling of the
flock’s motion, heuristics, and rigorous analysis. A unique contri-
bution of the paper is the experimental demonstration of several
facets of the herding algorithm on flocks of live birds reacting to
a robotic pursuer. The experiments allow us to estimate several
parameters of the flocking model, and especially the interaction
between the pursuer and the flock. The herding algorithm is also
demonstrated using numerical simulations.

Index Terms—Aerial robotics, biologically inspired robots, field
robots, motion control.

I. INTRODUCTION

B IRD AND OTHER wildlife collisions with aircraft cause
well over $1.2 billion in damages to the aviation industry

worldwide [1], [2]. The Federal Aviation Administration (FAA)
documented 142 000 wild-life strikes at U.S. airports between
1990 and 2013, with birds being involved in 97% of the re-
ported cases [3]. A large number of passive and active methods
are currently used for deterring birds from entering the airspace
around airports [1], [4], [5], which depend on the type of birds
encountered at the airport. Passive techniques typically work
by curtailing the food and water resources around the airfield
or laying bird-repellent grass swards. On the other hand, active
techniques include the use of live ammunition and flares at air-
ports. Usually, a combination of the aforementioned techniques
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Fig. 1. Setting for the problem addressed in the paper.

is required for effective bird control, and even that effectiveness
is known to be limited [4]. The only proven lasting way is to
use birds of prey [5], but it is considerably difficult to train and
control real birds. Further, the most effective performers (e.g.,
peregrine falcons) are endangered species. As an alternative,
remote-controlled airplanes resembling birds of prey have been
tested using skilled human pilots [6].

In this paper, we develop a novel robotic herding algorithm
for birds flying near airports using unmanned aerial vehicles
(UAVs). The present paper is based on the preliminary work
reported in [7], [8], and differs in its analysis of the stability of
flocks, the analysis of the performance of herding algorithms,
and the experimental demonstration of the principles underly-
ing the herding algorithm. A graphical prelude to this paper is
depicted in Fig. 1.

A. Overview of the Literature

Modeling the behavior of flocks is the starting point for the
development of herding algorithms. Reynolds [9] formulated
simple motion behaviors (collision avoidance, velocity match-
ing, and flock centering) for creating computer animations of
bird flocks and simulating the stable collective motion seen
therein. Reynolds’ model has formed the basis for other flocking
models such as the self-propelled particle model [10], [11] and
a leader-based modification of Reynolds’ model [12]. Along-
side theoretical modeling, attempts have been made to extract
flocking rules, aggregate patterns, and ordering from empirical
studies on large flocks of birds and fish [13], [14]. The reader
is referred to [15] for a detailed review of collective animal
behavior.
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Over the years, several distributed, scalable coordination
algorithms have been developed while trying to obtain
mathematical guarantees on the stability of the formation
[16]–[22]. This has been accompanied by parallel work on un-
derstanding the presence of order and phase transitions in flocks
[23], building upon analogies between flocks on the one hand,
and fluid and magnetic systems on the other. Flocking dynamics
described by Reynolds’ rule are known to be asymptotically
stable under fairly weak conditions on the topology of the
underlying graph [17], [18], [24], [25]. Stronger results, such as
exponential stability, have been found for linear time-varying
consensus protocol for single integrator systems [26], in the
context of synchronization for second-order Euler–Lagrange
systems [20]–[22], and using tools from dynamical systems
theory for time-invariant, undirected graph topologies in
second-order, two-dimensional (2-D) flocking dynamics [27].
Preliminary results on exponential stability of flocks under tree
and star topology constraints are presented in [8].

Modeling the response of a flock to external pursuers is es-
sential for developing herding models and strategies. Evasive
strategies used by flocks against one or more predators are pre-
sented in [28], [29]. Escape waves, as a means for formulating
the evasive response, have been examined for starling flocks [30]
and fish schools [31]. A simulation study of agitation waves in
starling flocks is presented in [32]. The dynamics between a
school of fish and a pursuer are shown to depend on local, fast-
time scale predator–prey interactions [33]. The expected size
of flocks is correlated with the likelihood of predation: Com-
pact and large flocks occur in areas with higher predation, and
vice-versa [34].

Early work on herding algorithms used geometric principles
to identify the relative position and posture of the shepherd with
respect to the flock [35]–[37], in order to first confine the flock
within a well-defined spatial zone and then impose trajectory
tracking on the confined flock [38], [39]. It is generally well
known that these algorithms may perform poorly when a single
shepherd is employed [37]. Heuristic herding strategies used by
solitary sheep dogs were modeled in [40] and used to design a
strategy that enforces confinement to achieve herding. However,
the design was not analyzed rigorously, which leaves open the
question of its limitations and performance guarantees.

B. Objectives and Contributions

The primary objective of this paper is to design a strategy
for diverting and herding a flock of birds away from a specified
region. This region is modeled conservatively as a cylindrical
volume around an airport located on the ground. Our algorithm
can be extended readily to the case where the specified region
is spherical, as depicted in Fig. 1, rather than cylindrical.

We present a novel herding technique, called the m-waypoint
herding algorithm. The robotic UAV interacts with the flock
by positioning itself sequentially at a periodically refreshed set
of m points. It relies on the inherent stability of the flocking
dynamics to prevent fragmentation of the flock, and the m points
are chosen to maximise the deflection of the flock’s flight path.
We demonstrate that the algorithm also leads to a reduction in

the physical space occupied by the flock, measured in terms of
its radius. Importantly, the technique works effectively with a
single robotic UAV, and can be generalized readily for multiple
UAVs.

An important contribution of the paper is the series of ex-
periments performed on live birds in order to identify some
of the parameters of the flocking dynamic model and identify
the nature of the evasive action taken by birds in response to
a robotic pursuer. These are important steps in validating the
design premise of the m-waypoint herding algorithm. The herd-
ing algorithm is demonstrated through simulations on a flocking
model similar to that estimated from the experiments.

The problem addressed in the paper is similar to [36]. A ma-
jor difference, though, is a combination of the rigorous analysis
accompanying the algorithm and the experimental demonstra-
tion on live birds. Another difference is the non-zero minimum
speed of the flock, which is a consequence of the birds needing
a certain minimum speed to stay aloft.

We use a standard flocking model, similar to Reynolds [9],
[17], augmented with evasion laws similar to [28], [29]. It is
assumed that the pursuer has access to real-time data about the
flock, such as that provided by avian radars [41].

C. Organization

The paper is organized as follows. In Section II, we present
the problem formulation. Conditions for exponential stability of
flocks are derived in Section III. The pursuer–flock interaction is
studied analytically in Section IV, and the m-waypoint herding
algorithm is presented in Section V. The performance of the
algorithm is analyzed rigorously in Section VI. Experiments
conducted on live flocks are reported in Section VII, while
numerical simulations are described in Section VIII.

II. PROBLEM FORMULATION

A. Preliminaries

Consider a flock of n (usually � 1) birds. We denote the
position and the velocity of the ith bird by xi ∈ R3 and vi ∈ R3 ,
respectively. The vector between the ith and jth birds is denoted
by rij = xj − xi . We use the subscript “p” for the pursuer, so
that xp denotes its position vector, and rpi = xi − xp is the
vector from the pursuer to the ith bird. Given a vector r, we
denote unit vector along r by r̂.

Let Rcom denote the communication range for the interaction
between two birds. The neighborhood of the ith bird is defined
using the standard Euclidean distance as

Ni = {j ≤ n : | ‖xi − xj‖ ≤ Rcom} (1)

and it is assumed that two birds interact only if their distance is
less than or equal to Rcom. The set of birds (V), thus, forms a
graph G = (V, E) where

V = {1, 2, . . . , n}
E = {(i, j) ∈ V × V | j ∈ Ji ⊆ Ni}, card(E) = p. (2)

Note that ifJi = Ni for all i, the graph is undirected. Otherwise,
it is directed. The incidence matrix of the graph is denoted as
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Fig. 2. Important distance variables in the flocking model. Green dashed lines
are distances related to neighboring birds and red dash-dot lines are distances
related to the pursuer. Note that Rcom and Rfear are unrelated. Ragg is smaller
than Rfear.

Bc ∈ Rn×p . Recall that the (i, j)th entry of Bc is 1 if the jth
edge is incoming at i, −1 if outgoing at i, and 0 otherwise.
An undirected edge is treated as two separate directed edges in
this formulation of Bc . We denote by Δ(ν) the diagonal matrix
formed by the elements of the tuple ν. Finally, we define the
centroid and the radius of the flock as follows:

xcg =
1
n

n∑

i=1

xi , RF � max
i
‖xi − xcg‖. (3)

B. Flock Dynamics

The dynamics of an individual (ith) bird are described
by a nonlinear, second-order differential equation based on
Reynolds’ rules [9] and augmented with an evasive response

ẋi = vi

v̇i = ks

∑

j∈Ji

(
1− R3

safe

‖rij‖3
)

rij + ka

∑

j∈Ji

(vj − vi)

+ kg (vd − vi) + kpH(rpi) (4)

where Rsafe denotes the steady-state distance between two adja-
cent members of the flock; vd denotes the preselected, steady ve-
locity of each member of the flock; and H(rpi) = H(xi − xp)
denotes the evasive response to the pursuer. We assume that vd

lies in the horizontal plane.
Fig. 2 summarizes the important distance variables that ap-

pear in the model. The terms Rsafe and Rcom have been defined
already. The terms Rfear and Ragg (<Rfear) refer to critical dis-
tances in the bird–pursuer interaction, and we assume that both
of these quantities are known for a given flock. The flock re-
sponds to a pursuer only when the pursuer is within a radius
Rfear of a member of the flock. Within Rfear, the evasive behav-
ior takes two different forms.

1) If the pursuer is within [Ragg, Rfear], the bird tries to ac-
celerate radially away from the pursuer.

2) If the pursuer is within Ragg, the bird tries to out-maneuver
the pursuer by turning and/or climbing rapidly.

Fig. 3. Example showing the two loci of candidate target points, and the
chosen target point xdiv. Being vertical lines, the loci appear as points in this
top view.

The behavior detailed above was observed in experiments
with live birds, which are described in Section VII. Since the
out-turning or 3-D behavior can have adverse implications for
the stability of the flock, we treat Ragg as a lower bound for
the permissible distance between the pursuer and the flock. We
model H(·) as follows:

H(rpi) =

{
rp i

‖rp i ‖3 , if ‖rpi‖ < Rfear and r�pi ṙpi < 0
0 otherwise

(5)

and we impose the restriction that ‖rpi‖ ≥ Ragg + ε for all i,
where ε > 0 is an arbitrarily chosen constant.

C. Herding Objectives

The spatial volume that needs to be kept free of birds is
referred to, hereafter, as the protected zone (PZ). We assume that
PZ is cylindrical with radius RPZ. We assume that the birds fly
along a constant, preselected heading, v̂d , when not disturbed by
a pursuer. This is true, for instance, for flocks flying to migration
grounds considerably far from PZ. It is clear that the pursuer
only needs to move the flock to a point from which its flight
path (along v̂d ) would no longer cross PZ. We denote this target
point as xdiv(t), noting that its exact position may change with
time as described presently.

We define the global coordinate frame with its origin placed
at the centre of PZ, and its axes pointing north, east, and up,
respectively. Let h(t) denote the instantaneous altitude of the
flock. We start by constructing two vertical lines (in the global
frame), which serve as loci for all possible target points. Recall
that vd in (4) is the predetermined nominal flock velocity, which
satisfies k̂�vd = 0 where k̂ is the unit vector pointing upwards
in the global frame. We define the unit vector v̂⊥d , which satisfies
v�d v̂⊥d = k̂�v̂⊥d = 0. The two candidate loci are then given by
l̄cand,±(a) = ±(RPZ + s)v̂⊥d + ak̂ where a ∈ R, and s > RF

is a suitably chosen constant. We denote Rdiv � RPZ + s. Of
these candidate loci, we select the one closest to xcg at t = 0
(the moment at which the herding commences), as illustrated in
Fig. 3. Finally, at each t, we set the instantaneous target waypoint
on the chosen locus as xdiv = (+/−)Rdivv̂

⊥
d + h(t) k̂. If the two

loci are equidistant from xcg , then any of the two loci can be
chosen. However, this choice persists for the remainder of the
herding operation. This selection of herding target points is a
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logical extension from 2-D to 3-D when the herding algorithm
does not seek to control the altitude of the flock.

The objective of the herding algorithm is to prescribe a trajec-
tory xp(t) for the pursuer, which enables it to do the following
functions.

1) Move the center of gravity (CG) of the flock to xdiv in
finite time.

2) Avoid fragmentation of the flock.
3) Keep the flock outside the PZ during the course of herding.

III. STABILITY ANALYSIS OF THE FLOCK

In this section, we determine the conditions for exponential
stability of the flocking dynamics. These conditions can be used
to select the gains and the underlying graph in (4) for analyti-
cal investigation when sufficient empirical data is not available
to determine these parameters. The resulting robustness of the
flock implies that the pursuer is free to approach the flock from
any direction. As long as it maintains a certain minimum dis-
tance between itself and the flock (see Section IV), the flock
will not undergo fragmentation.

A. Snapshot Dynamics, Steady States, and Linearization

We define two column vectors x, v ∈ R3n , formed by per-
muting the components of xi and vi , respectively, ∀ i

x = [x11 , . . . ,xn1 ,x12 , . . . ,xn2 ,x13 , . . . ,xn3 ]
�

and v is constructed in a similar manner. There exists a permu-
tation matrix, denoted by P3n ∈ R3n×3n , such that

x = P3n

⎡

⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤

⎥⎥⎥⎥⎦
= P−1

3n x.

Ignoring the pursuer-dependent terms, the flocking dynamics
(4) can be written as

ẋ = v

v̇ = − ka

(
I3 ⊗DcB

�
c

)
v + kg (vd ⊗ 1n − v)

− ks

(
I3 ⊗DcQ(x)B�c

)
x (6)

where Dc(i, j) = −1 if the jth edge is incoming at i, and
Dc(i, j) = 0 otherwise. Here, I3 the 3× 3 identity matrix, while
⊗ denotes the Kronecker product. We can replace Dc with Bc/2
if the graph is undirected. The matrix Q(x) ∈ Rp×p is a diagonal
matrix satisfying Q(j, j) = 1−R3

safe/‖ej‖3 .
In order to analyze the stability of the flock, we will make a

change of coordinates: x̃i(t) = xi(t)− vd t, ṽi(t) = vi(t)−
vd . Since Q(x) = Q(x̃), we write the flocking dynamics as
follows:

˙̃x = ṽ

˙̃v = −ks

(
I3 ⊗DcQ(x̃)B�c

)
x̃− ka

(
I3 ⊗DcB

�
c

)
ṽ − kg ṽ.

(7)

This is a nonlinear, autonomous system whose equilibrium so-
lutions are given by [x̃0 ,1n ⊗ 03], where x̃0 satisfies (I3 ⊗

DcQ(x̃0)B�c )x̃0 = 0. Given an equilibrium configuration x̃0 ,
we define the family of equilibrium solutions obtained by rigid-
body translation and rotation of the flock by

S (x̃0) =
{
x̃ | x̃ = b⊗ 1n + αP3n (In ⊗ J) P−1

3n x̃0} (8)

where b ∈ R3 , J ∈ so(3), and α ∈ R.
Let δ· denotes a small perturbation in the corresponding vari-

able, and e0
i is the steady-state ith edge vector. Then, the lin-

earization of (7) about an equilibrium point is given by

δẋ = δv

δv̇ = − 3
R2

(
I3 ⊗DcΔ

(
e0�

1 δe1 , . . . , e0�
p δep

)
B�c
)

x̃0

− (ka

(
I3 ⊗DcB

�
c

)
+ kg I3n

)
δv.

These equations can be written compactly as [ δ ẋ
δ v̇ ] = G[ δx

δv ],
where the Jacobian G is given by

G =

[
03n I3n

−ksA −B

]
(9)

and

B = ka

(
I3 ⊗DcB

�
c

)
+ kg I3n

Aδx =
3

R2

(
I3 ⊗DcΔ

(
e0�

1 δe1 , . . . , e0�
p δep

)
B�c
)

x̃0 .

(10)

B. Spectral Properties of A and G

Lemma 1: The null space of A defined in (10) is a superset
of eigenvectors, which correspond to a rigid body translation
and rotation of the flock; i.e.,

N (A) ⊇ Nu � span
(
[1, 0, 0]� ⊗ 1n , [0, 1, 0]� ⊗ 1n ,

[0, 0, 1]� ⊗ 1n , P3n (In ⊗ J1)P−1
3n x̃0 , P3n (In ⊗ J2)P−1

3n x̃0 ,

P3n (In ⊗ J3)P−1
3n x̃0)

where J1 , J2 , J3 form a basis for so(3).
Proof: It is evident from (10) that N (A) is a su-

perset of the vectors δx, which satisfy (In ⊗B�c )δx =
0 or e0�

i δei = 0∀ i = {1, . . . , p}. The former condition
implies that δx = k1 [1, 0, 0]� ⊗ 1n + k2 [0, 1, 0]� ⊗ 1n +
k3 [0, 0, 1]� ⊗ 1n , where k1 , k2 , and k3 are arbitrary constants.
The latter condition is satisfied by δxi =

∑3
j=1 k′j Jjxi for all

constants k′j . �
Assumption 1: The matrix A has exactly six eigenvalues,

which are equal to 0. Therefore, Nu (A) = N (A).
Assumption 1 is satisfied by connected undirected graphs [27]

and by strongly connected and balanced digraphs [16].
Assumption 2: The Jacobian G has the following properties.
1) All eigenvalues of G have nonpositive real parts.
2) The algebraic and geometric multipicities of the zero

eigenvalue are equal to each other.
3) The null space N (G) = [n�, 01×3n ]�, where n ∈
N (A) = Nu (A).

The reader should note that Assumption 2 always holds for
an undirected graph satisfying Assumption 1 [27].
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C. Stability Analysis

In this section, we use the center manifold theorem [42, Th. 1]
to show that trajectories which start away from S(x̃0), at least
locally, converge to S(x̃0) at an exponential rate. The proof
proceeds in two steps. First, we show that there exists a center
manifold when Assumption 2 is satisfied. We note that the set
S(x̃0) is also a center manifold. In the second step, we use the
property that center manifolds are arbitrarily close to each other
to complete the proof.

Lemma 2: Suppose that the flocking dynamics satisfy
Assumption 2. Then, for every steady state x̃0 , there exists an in-
variant manifold Ec � Ec(x̃0), such that any trajectory starting
around Ec converges at an exponential rate to Ec .

Proof: From Assumption 2, we know that the Jacobian G,
evaluated at x̃0 , has six zero eigenvalues and the other eigen-
values are negative. Thus, it follows from the center manifold
theorem [42, Th. 1] that there exists a 6-D center manifold Ec

such that trajectories starting outside Ec converge at an expo-
nential rate to Ec . �

Theorem 1: The set S(x̃0) is exponentially stable.
Proof: We note that S(x̃0) is itself a center manifold of the

dynamics. From Lemma 2, we know that trajectories starting
in a neighborhood of x0 converge at an exponential rate to the
center manifold Ec(x̃0). We recall that any two center manifolds
about an equilibrium point x̃0 differ by transcendentally small
terms, and every equilibrium point in the vicinity of x̃0 lies on
every center manifold Ec(x̃0) [42, Sec. 4.6]. Thus, a trajectory
starting in a neighborhood of x̃0 converges exponentially fast
to S(x̃0). �

The discussion above shows that S(x̃0) is exponentially sta-
ble, and therefore, robust to small perturbations. In the context
of herding, this implies that, for every direction in relation to
the flock (or its center), there exists a nontrivial set of pursuer
positions for which the underlying graph of the flock is pre-
served. In the next section, we present analytical formulae for
estimating a set of permissible pursuer positions based purely
on local topological considerations.

In addition to stability, for the purpose of herding, it is use-
ful to have the property of time-scale separation between the
synchronization of the flocking dynamics to S(x̃0) on the one
hand, and the translational dynamics of the center of gravity of
the flock (whose time constant, as shown in Section V, is 1/kg )
on the other [21], [22]. This can be achieved by a suitable choice
of ks and ka for a given graph topology.

IV. ANALYTICAL ESTIMATION OF THE PERMISSIBLE SET OF

PURSUER POSITIONS

The objective of this section is to derive approximations for
the approach distance between a pursuer and the flock, based
purely on the local interaction between the pursuer and the birds
in a flock. This estimate supersedes the distance Ragg in Fig. 2
from the point of view of preserving the local topology of the
flock, and is used in Section V to determine the feasible positions
for the pursuer in relation to the flock.

The influence exerted by the pursuer can cause one of the
two effects in extreme circumstances. In one case, the pursuer

Fig. 4. Typical subgraph in a dense flock, and a subgraph with two birds
collinear with the pursuer. Note cRsafe < Rsafe. (a) Dense flock. (b) Local
neighborhood.

Fig. 5. Model with a single edge and the pursuer. The pursuer approaches
along the perpendicular bisector of the edge and rp1 = rp2 . (a) Sparse flock.
(b) Local neighborhood.

can push a bird to within an unacceptable distance of its neigh-
bor. This scenario is likely in dense flocks, as shown in Fig. 4.
In the second case, the pursuer can cause the link between two
neighbors to be broken by pushing them beyond their communi-
cation distance Rcom. This scenario, illustrated in Fig. 5, is more
plausible in sparse flocks. We write the minimum permissible
distance between two birds as cRsafe, where c < 1 is a constant
that depends on the species of birds and the pursuing UAV.

A. Maintaining Minimum Allowable Distance Between
Neighbors

Consider the situation wherein a bird on the boundary of the
flock (labeled “1”) is engaged by the pursuer. The bird tries to
move away radially from the pursuer, and into the flock. In the
worst case, the bird’s evasive path points in the direction of a
neighboring bird (“2”) and there is force from other neighboring
birds pulling 1 away from 2. This is depicted in Fig. 4.

A conservative estimate for the minimum approach distance
between the pursuer and the bird 1 is found from Fig. 4(b). This is
a repelling, “outward-pointing” (with respect to the flock) force
on 1 due to 2 is countered by the inward-pointing force on 1
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arising as a consequence of repulsion by the pursuer. Balancing
these two forces when the distance between 1 and 2 is cRsafe

(thereby, ensuring that the minimum approach distance is no
less than Rsafe) gives the minimum approach distance ‖rp1‖min

kp

‖rp1‖2min
= ks

∣∣∣∣cRsafe

(
1− R3

safe

(cRsafe)3

)∣∣∣∣

⇒ ‖rp1‖min =

√
c2kp

(1− c3)ksRsafe
. (11)

B. Preserving Communication Between Neighboring Birds

In sparse flocks, it is a commonplace to find a linear topology,
involving two or three agents forming an angle or a straight
line with no other common neighbors. Consider a single edge,
as shown in Fig. 5, involving just two birds, and assume that
the pursuer approaches along the perpendicular bisector of the
edge. If Rcom is the maximum permissible distance between two
boundary agents for the underlying graph to be preserved, we
get the following condition for the minimum permissible ‖rp1‖

kp

‖rp1‖2 ×
Rcom

2‖rp1‖ = ks

(
1− R3

safe

R3
com

)
Rcom

⇒ ‖rp1‖min =

⎛

⎝ kp

2ks

(
1− R3

safe
R3

com

)

⎞

⎠
1/3

. (12)

We will provide a numerical example for ‖rp1‖min in
Section VIII. In Section V, the estimates for ‖rp1‖min are used
as part of the motion planning strategy for the pursuer.

Definition 1: We define a set Xp of permissible pursuer po-
sitions in relation to the flock

Xp =
{

xp |Rmin ≤ min
i∈V
‖xp − xi‖ ≤ Rfear

}
(13)

where Rmin is the maximum of Ragg and either (11) or (12)
depending on the topology of the flock.

V. m-WAYPOINT HERDING ALGORITHM

In Sections III and IV, we established conditions for stability
and robustness of the flock, and derived approximations for the
approach distance between the flock and the pursuer. In this sec-
tion, we solve the problem of herding, described in Section II-C,
by modeling the ensemble behavior of the flock. We first de-
rive a set of objectives that the pursuer’s trajectory, xp(t), must
satisfy in order to herd the flock successfully. The m-waypoint
algorithm is obtained as an approximate, but efficient, solution
to the problem of ensuring that xp(t) meets these objectives.

A. Formulation of the Herding Problem

The coordinates of the flock’s centroid and its velocity are
given by xcg = 1

n

∑n
i=1 xi , vcg = 1

n

∑n
i=1 vi . Using (4) and

(5), we get

ẋcg = vcg

v̇cg = kg (vd − vcg ) + Fp(xp) + f(x,v)

Fp(xp) � kp

n

∑

i∈Np

H(rpi)

ẋp = up (14)

whereNp denotes the subset of the flock that lies within Rfear of
the pursuer; the pursuer’s velocity, up , is a control variable for
the herding algorithm. The term f(x,v) is zero when the graph
is undirected (since 1�n Bc = 0) or if it has synchronized to a
steady state configuration from Section III. This would occur
naturally when the flock synchronizes on a faster time scale than
the dynamics of its CG [21], [22]. Since we need the flock to
point in the direction of the herding target point, it suffices to
ensure that its velocity normal to an axis pointing towards xdiv

is driven to zero. We define

rdc(t) � xdiv(t)− xcg (t), q � rdc × vcg . (15)

Recall, from Section II-C, that k̂�xdiv(t) = k̂�xcg (t) = h(t)
(the altitude of the flock). Since xdiv(t) lies on a fixed ver-
tical line for all t, we also have that k̂× ẋdiv(t) = 0. Since
ṙdc(t) = ẋdiv(t)− vcg (t), we get the following expression for
the dynamics of q:

q̇ = rdc × v̇cg + ẋdiv × vcg

= − kgq + kg (rdc × vd) + rdc × Fp(xp) + rdc × f(x, v)

+ ẋdiv × vcg .

Next, we define qk � k̂�q. Note that k̂�(ẋdiv × vcg ) =
v�cg (k̂× ẋdiv) = 0. Thus, the dynamics of qk are given by

q̇k + kg qk = k̂� (rdc × (kgvd + f(x, v)) + rdc × Fp(xp)) .
(16)

We denote the amount of deviation that can be produced by
placing the pursuer at xp using the right hand-side of (16):

ρ(xp) � k̂� (rdc × (kgvd + f(x, v)) + rdc × Fp(xp))
(17)

If ρ(xp) = 0 for all t, we deduce from (16) that qk → 0 and the
CG of the flock moves in a straight line (solid line in Fig. 6)
towards xdiv (from the definition of qk ). We also note that the
distance and the time required for herding could be reduced, as
compared to moving the flock along the solid line, by pushing
it rapidly towards the dashed line passing through xdiv in Fig. 6.
The dashed line is parallel to vd , and once the flock’s CG reaches
it, the herding algorithm can safely terminate. This requires that
qk ≥ 0 uniformly (or qk ≤ 0 uniformly, depending on the choice
of xdiv) during the course of herding. Without loss of generality,
we assume that xdiv is chosen, such that sign(k̂�(vd × rdc)) > 0
while commencing herding and set the control objective to max-
imizing ρ(xp) ≥ 0 while sign(k̂�(vd × rdc)) > 0 (see Fig. 6).
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Fig. 6. Two canonical scenarios, with different signs of qk , that correspond to
the flock reaching the dashed line faster than by moving along the solid line to
xdiv (which corresponds to qk = 0). Once on the dashed line, which is parallel
to vd , the flock is guaranteed to stay outside PZ. (a) qk > 0, (b) qk < 0.

B. Determination of m Waypoints

An ideal solution to the aforementioned control problem is
to compute the trajectory of xp(t) which maximizes ρ(xp), and
get the pursuer to track it. It is well known that a flock tends to
deform into a concave shape locally under persistent pressure
from a pursuer, which is known to dent the effectiveness of
the pursuit [29]. Furthermore, over stressing one or more birds
continuously over an extended period of time carries the risk
of the distressed birds attempting aggressive evasive maneuvers
and fragmenting the flock. To avoid these problems, we use
a sub optimal approach wherein the flock is engaged through
different waypoints in a given time frame.

The waypoints are chosen by sampling the set Xp from
Definition 1. Sampling is preferred to statically defined way-
points because it allows the algorithm to be agnostic to the
exact geometry of the flock. This is useful when the flock is
not necessarily best represented as a convex shape, for instance,
star-shaped flocks and flocks with a curvilinear geometry. We
formally identify the set of m waypoints as follows.

Definition 2: The set Xm
p is defined by construction. The

waypoint selection algorithm, described in Algorithm 2, sam-
ples Xp uniformly. Next, up to m waypoints with the highest
deviation are identified such that no two waypoints are within a
prescribed distance, denoted δw , of each other. These waypoints
constitute the set Xm

p .
Fig. 7 shows an example of the set Xm

p for an arbitrarily
chosen flock and deterministically chosen sample points. It il-
lustrates that even for a convex shaped flock, the set Xm

p need
not be connected. This is one of the reasons why we use random
sampling to construct it.

C. Motion Planning for the Pursuer

The motion planner solves for the pursuer’s velocity up(t)
by commanding one of two motions, as follows.

1) FLY: the pursuer takes the fastest path to the commanded
node. Collision avoidance is achieved using artificial po-
tential fields, an alternative to which is the real time, online
motion planner based on [43].

2) ENGAGE: using a virtual leader-based approach, the pur-
suer commands up(t) to maintain its position at the chosen

Fig. 7. For an example scenario where the force is to be applied along the +y
direction, the candidate waypoints in Xp , defined in (13), are grouped into two
categories. Points marked in green circles satisfy ρ(xp ) > 0 and contain the
set Xm

p (see Definition 2). Points marked by red × do not satisfy ρ(xp ) > 0.
Here, blue and black triangles denote birds in the interior of the flock and its
convex hull, respectively.

Algorithm 1: m-Waypoint Herding Algorithm.
1: Input: t; τe ; small ε1 , ε2 > 0; locus of xdiv

2: updateWaypoinstSet = TRUE
3: while ‖xcg − xdiv‖ > ε1 OR sign(k̂�(vd ×

rdc)) > −ε2 do
4: if updateWaypointSet = TRUE then
5: Xm

p = CALL(Algorithm 2) {Waypoint selection}
6: tlast = t; updateWaypointSet = FALSE; node = 1
7: end if
8: while updateWaypointSet = FALSE do
9: if ‖xp(t)−Xm

p (node)‖ ≥ ε then
10: up(t) = FLY(Xm

p (node))
11: else
12: up(t) = ENGAGE(Xm

p (node); τe )
13: end if
14: if node = card(Xm

p ) OR t− tlast > tsamp, max

then
15: updateWaypointSet = TRUE
16: end if
17: node = node + 1
18: end while
19: end while

waypoint in relation to the flock’s centroid for a predeter-
mined duration τe . The engagement is terminated if the
distance between two neighboring birds inNp approaches
the communication radius, Rcom.

VI. ANALYSIS OF THE HERDING ALGORITHM

In this section, we derive a condition for successful herding,
in the form of the minimum allowable distance from the PZ
at which the herding must begin. If the herding commences
beyond this distance, it will almost surely succeed. We assume
that f(x, v) = 0, i.e., the underlying graph is undirected or the
flock has synchronized to a steady state.

We start by ignoring the dynamics of the pursuer, and recall
that the control objective is to maximize ρ(xp) ≥ 0. We consider
the conservative case ρ(xp) = 0 for all t during the course of
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Fig. 8. One half of the cone outside which the herding must start; the other
half is the mirror image of the shown half.

Algorithm 2: Selection of m Waypoints.

1: Input: Xp , r̂, vd , Δts ; MaxSampleNumber
2: Output: Xm

p {set of waypoints}
3: INITIALIZE: Xm

p = {}, Γp = {}, counter = 0
4: while counter < MaxSampleNumber do
5: x = Us(Xp) {Uniform sample in Xp}
6: if ρ(x) > 0 AND ‖x−Xm

p ‖ > δw then
7: Xm

p ← {Xm
p , x}

8: Γp ← {Γp , ρ(x)}
9: end if

10: counter = counter + 1
11: end while
12: (Xm

p ,Γp)← SORT(Xm
p ; Γp ) {Descending order

of ρ(·)}
13: if card(Xm

p ) > m then
14: Xm

p ← Xm
p (1 : m)

15: end if

herding. This case is limiting in that the distance at which the
herding needs to be commenced can be lesser when larger values
of ρ(xp) are attainable (see Section V-A).

In order to achieve ρ(xp) = 0, we set xp = x∗p
where Fp(x∗p) = −kg (k̂�(r̂dc × vd))(k̂× r̂dc). Since r̂dc =
rdc/‖rdc‖, and vd lie in the horizontal plane, it follows that
‖Fp‖ = kg‖r̂dc × vd‖. Let ρF denote the upper bound on ‖Fp‖,
which is known from the analysis in Section IV. It is clear
then that the flock should be made to satisfy ‖r̂dc × vd‖ <
ρF /kg ∀ t, which, in turn, means that the flock must be kept
outside the cone shown in Fig. 8. This is an important insight:
it shows that the herding is successful only if it begins when
the horizontal distance between the center of the flock and the
center of PZ is greater than or equal to

Dp,min � Rdiv

tan θmax
, θmax = sin−1

(
ρF

kg‖vd‖
)

(18)

where Rdiv was defined in Section II-C.
While the solution x∗p appears to solve the problem in prin-

ciple, there is the possibility that the trajectory x∗p may not be
feasible. Furthermore, the motion planning algorithm adopted
here requires that the pursuer engage with an entire “front” of the
flock rather than specific individual birds. In particular, it means
that the engagement between the pursuer and the flock takes

Fig. 9. Vector diagram showing v
‖
d

and θ for push (a) from the aft and (b)
from the front, respectively.

Fig. 10. Refining the estimate of Dp,m in assuming a bimodal herding model.
The solid blue segments denote the motion of the flock when the pursuer engages
it actively; the dashed red segments denote the worst-case motion in the absence
of any pursuer engagement.

place in pulses. We refine the necessary condition to account for
this pulsed interaction.

Let τe denote the duration of any given engagement between
the pursuer and the flock, and let τf denote the time taken by
the bird to fly between two waypoints. During the time τf , the
flock receives no external stimulus and its velocity tends to
align to vd . Assuming that an engagement begins at time t0 , the
dynamics of the flock in the time interval [t0 , t0 + τe + τf ] can
be described via the switching dynamics

v̇cg + kgvcg =

{
kgv

‖
d , t ∈ [t0 , t0 + τe)

kgvd , t ∈ [t0 + τe , t0 + τe + τf ]
(19)

where v
‖
d = vd + Fp/kg (see Fig. 9). When xp = x∗p , v

‖
d is

along rdc at every instant in time, which is why the superscript
|| is used here. We will assume that the flock switches instanta-
neously between two states. During the engagement phase, the
flock moves at an angle θ to the original direction coinciding
with vd . When the pursuer does not engage the flock, it moves
along vd . This is depicted in Fig. 10.

The terms ‖v‖d‖ and θ should ideally be estimated empirically,
as in Section VII-A, since the precise interaction between the
flock and the pursuer is highly case-specific. The magnitude of
v
‖
d depends on whether the flock is driven from the front or from

the rear. Since we intend for the net motion to be perpendicular
to vd , it is reasonable to assume that the average force also acts
perpendicular to vd . Thus, we get

∥∥∥v‖d
∥∥∥ =

√
‖vd‖2 +

‖Fp‖2
k2

g

, θ = cos−1
(
‖vd‖/

∥∥v‖d
∥∥
)

.

We now state the main result of this section.
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Theorem 2: Given the approximate values of ‖v‖d‖ and θ, the
refined value of Dp,min is given by

Dp,min = Rdiv cot θ

(
1 +

τf

τe

)
. (20)

Proof: Let ns denote the number of engagement pulses.
From Fig. 10, it is apparent that we can have at most ns

pulses wherein the flock is not engaged with the pursuer. During
each engagement pulse, referring to the geometric convention of
Fig. 10, the flock shifts through a distance ‖v‖d‖τe sin θ. Thus,

ns =
Rdiv∥∥v‖d
∥∥τe sin θ

.

Furthermore, during each engagement phase, the flock translates
horizontally through a distance ‖v‖d‖τe cos θ. During the nonen-
gagement phase, the horizontal translation is at most ‖vd‖τf .
Thus, the minimum horizontal translation is given by

Dp,min = ns(‖vd‖τf +
∥∥v‖d

∥∥τe cos θ)

= Rdiv

(
‖vd‖∥∥v‖d
∥∥

τf

τe

1
sin θ

+ cot θ

)
.

Setting cos θ = ‖vd‖/‖v‖d‖ yields Dp,min = Rdiv cot θ(1 +
τ f
τ e

). Notice that we recover (18) if we set τf = 0 and θ = θmax .
This completes the proof. �

Remark 1: We note two extreme cases that give further in-
sight on the variation of Dp,min with the size of the flock. When
n is small, it is reasonable to expect that the pursuer simulta-
neously affects all members of the flock. In such cases, θ, and
subsequently, Dp,min are independent of n (the size of the flock).
When n is large, it is reasonable to assume that the pursuer en-
gages a fixed number of boundary agents, and this number is
also independent of n. Furthermore, we expect that θ is small,
so that cot θ ≈ 1/θ, and θ ≈ ‖Fp‖/(kg‖vd‖). Since the num-
ber of birds engaged by the pursuer is a constant, ‖Fp‖ ∝ kf /n,
where kf is a constant. Assuming that τf /τe is not a function of
n, it follows that Dp,min ∝ n; i.e., the minimum distance grows
linearly with the flock size for large flocks.

Remark 2: In [7], we considered several cases wherein the
total number of waypoints was fixed; for each case, a different
fraction of waypoints was used in a manner consistent with
this paper, while the rest were used for pushing the flock from
the rear. This is analogous, in the framework of this paper, to
changing the value of m. Therefore, we do not analyze the
effect of changing m in this sequel. We note, however, that
the choice of the number of waypoints depends on the inherent
cohesiveness of the flock. A larger number of waypoints may
be needed to ensure containment in a loosely bound flock.

In Section VII, we will demonstrate how (19) can be used to
extract a set of flocking model parameters from experimental
data. The model for the minimum distance will be revisited in
Section VIII (numerical simulations), with the objective of de-
riving an empirical relationship between the minimum distance
and the size of the flock.

VII. EXPERIMENTS ON A LIVE FLOCK OF BIRDS

In this section, we describe the results of experiments carried
out on live birds in Daejeon, South Korea. The objective of
the experiments was to validate the flocking model described
earlier, and estimate the values of the parameters in the flocking
model. The experiments were carried out in two rounds on two
families of birds.

The experiments involved flying a quadrotor drone in the
vicinity of flocks. Two rounds of experiments were conducted
during two different seasons—the first involved egrets, while the
second involved loons. For this study, two drones were deployed:
One drone performed various types of maneuvers around the
flocks as a pursuer (herding drone), while a surveillance drone
hovered at a high altitude with a camera pointing directly down
to the ground for recording the trajectories of the pursuer drone
and the birds. Videos recorded during the experiments are avail-
able as part of the supplementary material, accompanying the
paper.

A. Experiments on Egrets

Egrets are migratory birds, and at the time of conducting
the experiments, they had settled in their nesting grounds in the
vicinity of the KAIST campus. The birds make frequent visits to
a hunting area nearby, and a large number of egrets are found
to return to their nests at sunset. During this time, we attempted
to fly the herding drone in various directions with respect to the
flock.

In Figs. 11 and 12, two cases are closely studied. In Fig. 11, the
drone approaches the flock horizontally at a sufficient distance.
Initially, the birds fly along the −x direction and the drone
approaches from the left with about 30 m of clearance. As the
birds discover the drone, they divert from their original paths
and fly at a 45◦ angle to their right. Meanwhile, the drone moves
only a few meters, but drives the birds away from the PZ (left
of the drone). When the birds discover the drone at a sufficient
distance, they adjust their paths horizontally and make smaller
changes in the vertical direction. If the drone were able to fly
along the flock, it would be possible to herd the birds away from
the PZ without breaking the flock.

In Fig. 12, the drone approaches the flock from a shorter
distance at a higher speed. In this case, the birds continue to fly
to their destination without much horizontal deviation but with
large vertical deviation. As the birds discover the approaching
drone, they make sudden vertical adjustments to their paths:
they rapidly descend by making a very large bank angle with
strong flapping motions of their wings. Therefore, if the drone
approaches the flock suddenly, the objective of herding may not
be satisfied and the flock still continues to fly to the PZ.

From the observations made from Figs. 11 and 12, we can
identify the important distance variables shown in Fig. 2. From
Fig. 11, Rfear is more than 20 m, which corresponds to the dis-
tance at which the egrets make horizontal corrections of their
paths. From Fig. 12, Ragg is around 10 m or less. When the
birds discover the drone, they choose to make vertical path
corrections since they do not have sufficient time to make hor-
izontal corrections by banking. It is also evident from the early
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Fig. 11. Stills and data extracted from a video recording of an experiment on live birds. In this experiment, the drone approaches the flock of egrets at a sufficient
distance to induce horizontal deviation. The video recording is available as a part of the supplementary material.

Fig. 12. Stills and data from a video recording of an experiment. The drone approaches the flock of egrets close enough to induce vertical deviation.

moments of Fig. 11 that Rsafe is approximately equal to 10 m.
The distance between the birds reduces during the engagement
with the pursuer, and this behavior is also observed during the
simulations described in Section VIII.

The time histories of the position and the velocity of the CG
of the flock, corresponding to Fig. 11, are shown in Fig. 13. The
time histories of the velocity are estimated from the position

data using finite differencing, which explains their coarseness.
The velocity profile of the CG is as follows:

1) until approximately 2.5 s (pre-engagement): ‖vcg (1)‖ =
|ẋ| = 9 m/s; ‖vcg (2)‖ = ẏ = 2.5 m/s;

2) after 2.5 s (engagement): |ẋ| = 7.5 m/s; ẏ = 7.5 m/s.
It follows from this data that vd = [−9, 2.5, 0]. We recall the

dynamics of the velocity of the CG during the engagement
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Fig. 13. Time histories of the position and velocity of the CG of the flock,
corresponding to Fig. 11. (a) Position. (b) Velocity.

phase from (19): v̇cg + kgvcg = kgv
‖
d , where v

‖
d = vd +

Fp/kg . From the above observation for the velocity of the CG,

v
‖
d = [−7.5, 7.5, 0]. Therefore, we get

Fp

kg
= [1.5, 5, 0]. (21)

From the time history for the velocity component vcg (2) (=ẏ),
we observe that the time to increase the amplitude by 50% (from
2.5 m/s to 5 m/s) is approximately 1 s. We note that the dynamics
of vcg are first-order, and recall a well-known property of the
step response of first-order systems that the time to reach 50%
of the amplitude is ln(2) times the time constant of the system.
This allows us to estimate the value of kg as 1.5. Substituting
into (21), it follows that ‖Fp‖ = 7.8.

In order to estimate the gain kp , we assume that all five birds
are engaged by the pursuer. From the plots, the approximate
distance between the pursuer and the flock is 15 m. Using this
data and (14), we get kp

152 = 7.8⇒ kp = 1755. Since kg = 1.5
(from the previous paragraph), we get kp/kg = 1170.

B. Experiments on Loons

In the second round of experiments, the drone was required
to fly almost parallel to the flight path of a flock of birds, starting
from an initial position located just off the nominal flight path.
The birds available for this round of experiments had a nominal
flight speed that was considerably higher than that of the drone,
as a result of which the interaction took place over a relatively
short period of time.

Fig. 14 shows the flight paths of several birds and that of the
drone. The flight paths shown here were obtained manually from
an overhead video (cf., the multimedia supplement), and the
coordinates plotted here are measured starting from the top left
corner of the video. Upon closer inspection, it was inferred that

the birds seen in the video actually comprise several individual
flocks (in the sense of connectivity) rather than a single flock.
Figure 15 shows three flocks which are clearly discernible, based
on the plotted data, together with a phase plot of their mean
velocities. The plots in Fig. 15 show only those time instants
where the drone was clearly able to interact with the birds.

The data clearly shows the flocks being deflected away from
their original flight path as they approach the drone. However,
the flight speed of flock 3 changes quite drastically and this
variation cannot be captured using the model developed in the
paper. Therefore, we confine our analysis to flocks 1 and 2.

The data obtained from the video does not show the birds
returning to their original heading after they cease interacting
with the drone. As a result, the gain kg cannot be estimated
using the procedure adopted in Section VII-A. As an alternative,
we start by estimating the time history of the birds’ velocities
and accelerations from the data by finite differencing. Next, we
employ (14), while assuming that the underlying graph has only
bidirectional edges to construct a family of linear equations with
kp and kg as unknowns, and solve for them using the linear least
squares method.

It turns out that kg ≈ 0 for both flocks, i.e., they do not show
any preferred, predetermined direction of flight. For the flocks
labeled 1 and 2, we get kp ≈ 7000 and kp ≈ 48 000, respec-
tively. For these two flocks, even if we assume that the under-
lying graph is directed, the values of kg and kp do not change
significantly (although estimates for ks and ka are obtained in
the process). This variation across the flocks suggests that the
flocking parameters are perhaps a strong function of the flock
itself rather than its constituent species or its topology. It is also
likely that the evasive response modeled in the paper might be
overly simplistic: For instance, the effect of the relative velocity
of the drone with respect to the flock or its leader, and the effect
of the position of the drone in relation to the flock’s velocity vec-
tor have been ignored here. It must be noted that flock 2, which
demonstrates a larger kp , has the drone more or less directly
along its flight path in the horizontal plane.

C. Summary of the Experimental Results

Combining the observations in this section with the herding
algorithm proposed in Section V, we conclude that the drone
should be initially stationed somewhere between the PZ and the
approaching flock. If the birds continue to fly toward the PZ,
the drone should fly to the flock until it reaches Rfear with a
suitable margin. As the birds start to deviate horizontally from
the PZ, the drone should follow the flock while maintaining a
distance between Rfear and Ragg. If the drone approaches the
flock within Ragg, the birds may start making vertical path cor-
rections, thereby, causing the birds to fly along their original
paths with only vertical deviation. The drone should fly toward
the flock at a sufficient distance so that the birds can make hor-
izontal deviation from the original course well in advance. If
the drone approaches the flock too abruptly violating Ragg, the
flock may break or make a sudden vertical adjustment, but still
fly towards its original destination and intrude into the PZ.
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Fig. 14. Stills and data extracted from a video recording of an experiment on live birds. The yellow and red circles denote the drone and the loons, respectively.

Fig. 15. Three discernible individual flocks from within the dataset of Fig. 14,
and a phase plot of their mean flight velocities. The dotted black curve in the
phase plot is a circular arc of radius 14 m/s. (a) Individual flocks. (b) Velocity
phase plot.

VIII. SIMULATIONS

Numerical simulations are performed to demonstrate the
herding algorithm described in Section V. We consider two
cases here: a flock with a regular, dense structure and one with a

TABLE I
FLOCKING MODEL USED FOR SIMULATIONS

sparse, linear structure. The numbers used to model the flock are
listed in Table I. Recall that we derived alternate lower bounds
for the minimum approach distance between the pursuer and the
flock in Section IV. For the values listed in Table I, the minimum
approach distances in (11) and (12) turn out to be 5.34 m and
6.4 m, respectively, both of which are (slightly) larger than Ragg

of 5 m. We initially use a conservative value of 8 m as the lower
bound for the approach distance, and m = 5 waypoints for the
herding algorithm.

Fig. 16 shows the herding of a flock of 16 birds. It is clear
that all of the herding objectives are met: the flock is diverted
successfully from the airport and the flock radius is bounded at
all times. In fact, the flock shrinks slightly during the herding
process, as observed in the experiments as well. A minor point
of interest is that, while the flock is successfully steered away
from PZ, the pursuer itself may end up intruding into PZ with the
current algorithm. A straight-forward solution to this problem is
to adjust the distance at which the herding is commenced, since
the pursuer needs to be loosely between the flock and the PZ
throughout the duration of the herding.

The use of 8 m as the minimum approach distance turns out to
be quite conservative as expected, and we conduct simulations
with the minimum distance reduced to Ragg = 5 m. Figures 17
and 18 show the herding of flocks of 16 and 5 birds, respectively,
with the reduced approach distance. Notice that the herding
distance is reduced by a factor of nearly 2.5 to 270 m from the
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Fig. 16. Simulation showing the herding of a flock with 16 birds and minimum
approach distance of 8 m. (a) Snapshots and CG track (dashed curve). (b) Time
history of flock radius.

Fig. 17. Simulation showing the herding of a flock with 16 birds with reduced
approach distance.

Fig. 18. Simulation showing the herding of a flock with 5 birds with reduced
approach distance.

initial value of 700 m seen in Fig. 16. Furthermore, the flock
radius changes very little during the herding of 16 birds. For
the case of 5 birds, we start the simulation with a flock which
is almost linear at the outset. Notice that the flock converges
to an approximate pentagon as the herding proceeds, which is
accompanied by a marked reduction in the flock radius.

Using the plots shown here, we can estimate, for the mod-
eling parameters in Table I, the minimum distance required to
achieve a 30 m lateral shift in flocks of sizes different than those
considered here. Since the distance is almost 270 m for a flock
of 16 birds, we use the approximation of Remark 1 to estimate
that Dp,min(n) ≈ 17n for large n. On the other hand, since
the pursuer needs 150 m for a flock of 5 birds, it is reasonable
to expect 150 m as the minimum herding distance for a small
flock. These calculations also suggest that a flock size of 9 forms
a threshold between small and large flocks for the purpose of
estimating the herding distances.

IX. CONCLUDING DISCUSSION

We investigated the problem of diverting a flock of birds away
from a prescribed area, such as an airport, using a robotic UAV.
A novel boundary control strategy, called the m-waypoint algo-
rithm, was introduced in the paper for enabling a single pursuer
UAV to safely herd the flock without fragmenting it. We derived
conditions under which flocks are exponentially stable to ex-
ternal perturbations. Using geometric techniques, approximate
analytical expressions were derived for the safe approach dis-
tance between a pursuer and a flock. The performance of the
herding algorithm was examined systematically to obtain an ex-
pression for the minimum distance from the airport at which
the herding needs to be commenced. An important contribution
of the paper is the reporting of experiments, conducted on live
birds, to estimate the parameters of the flocking model and ver-
ify the potential of the herding algorithm. Numerical simulation
results were performed to demonstrate the herding algorithm on
representative flocks.

The flocking model, described by (4) and (5), is based on well-
known models in the literature. To the best of our knowledge, the
work reported in Section VII is the first instance of parameter
identification in a flocking model using experimental data. The
identification of the parameters ks and ka in (4), and the factors
that determine them, is an open problem.

The herding algorithm in this paper was developed on the ba-
sis of certain macroscopic properties of the flocking model (14)
and a known model for the evasive response of the flock. Results
from Section VII-B suggest that (5) needs to be refined before
it can be deemed as an accurate representation for a flock’s re-
sponse. More specifically, we need to determine the factors that
determine the gain kp , and further experiments on live birds are
needed for that purpose and for a conclusive validation of the
herding algorithm.
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