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Abstract

Analysis of cell cycle entry/exit and progression can provide fundamental insights into stem cell 

propagation, maintenance, and differentiation. The neural crest is a unique stem cell population in 

vertebrate embryos that undergoes long-distance collective migration and differentiation into a 

wide variety of derivatives. Using traditional techniques such as immunohistochemistry to track 

cell cycle changes in such a dynamic population is challenging, as static time points provide an 

incomplete spatiotemporal picture. By contrast, the fluorescent, ubiquitination-based cell cycle 

indicator (Fucci) system provides in vivo readouts of cell cycle progression and has been 

previously adapted for use in zebrafish. The most commonly used Fucci systems are ubiquitously 

expressed, making tracking of a specific cell population challenging. Therefore, we generated a 

transgenic zebrafish line, Tg(−4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)), in which 

the Fucci system is specifically expressed in delaminating and migrating neural crest cells. Here, 

we demonstrate validation of this new tool and its use in live high-resolution tracking of cell cycle 

progression in the neural crest and derivative populations.
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1 INTRODUCTION

The neural crest is a unique population of highly migratory stem cells that contributes to the 

development and formation of multiple tissues in vertebrates (Bronner & LeDouarin, 2012; 

Gallik et al., 2017). Migrating neural crest cells (NCCs) progress through the cell cycle with 

variable timing, rates, and frequency, the details of which are likely critical for the initiation 

of migration and maintenance of migratory stream dynamics (Burstyn-Cohen and Kalcheim, 
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2002; Ridenour et al., 2014). Some of the most commonly used techniques to monitor NCC 

proliferation include immunostaining for pH3 or Ki-67 and incorporation of BrdU or EdU, 

all analyzed in fixed tissue samples (Gonsalvez et al., 2015; Ridenour et al., 2014). While 

these techniques can reveal many important aspects of cell cycle progression, they only 

allow for ‘snapshots’ of information. A cell population as dynamic, diverse, and migratory 

as the neural crest can benefit from a live readout of cell cycle dynamics over the course of 

delamination, migration, and differentiation.

The fluorescent, ubiquitination-based cell cycle indicator (Fucci) system was originally 

developed in human cell culture and mice to provide live readouts of G1 to S phase 

transition in actively dividing cells (Sakaue-Sawano et al., 2008). This innovative system 

uses chimeric proteins made of fluorophores fused to truncated forms of Cdt1 (marking G1 

phase) and Geminin (marking S/G2/M phases) that are targeted for ubiquitin tagging and 

degradation during cell cycle progression. Fucci has been previously adapted for use in 

zebrafish via two ubiquitously expressed transgenic constructs that separately express the 

chimeric proteins monomeric Azami Green (mAG)-zGem(1/100) and monomeric Kusabira 

Orange2-zCdt1(1/190) (Sugiyama et al., 2009). In order to remove the need for maintaining 

separate transgenic constructs in the same animal, the zebrafish Fucci system was more 

recently augmented to express Cerulean-zGem(1/100) and mCherry-zCdt1(1/190) from the 

same ubiquitous promoter (Bouldin & Kimelman, 2014). While ubiquitous Fucci systems 

are highly proficient at revealing global changes in cell cycle progression during vertebrate 

development, additional cell-specific markers are required to track a cell population such as 

the neural crest. This task is further complicated by the challenges of (1) separating out 

densely packed, ubiquitously labeled cells; (2) cell tracking and lineage tracing of a highly 

migratory population; (3) dedication of multiple channels to imaging the Fucci system. To 

alleviate these complications, we generated a zebrafish Fucci system to track cell cycle 

progression specifically in NCCs and their derivatives during embryonic development.

We used the previously described −4.9 kb promoter/enhancer region for Sox10 (Wada et al., 

2005), a transcription factor expressed specifically in NCCs at early developmental stages 

(Dutton et al., 2001), to drive the expression of a bicistronic construct of the fusion proteins 

mAG-zGem(1/100) and mCherry-zCdt1(1/190). We used this construct to create a stable 

transgenic zebrafish line, Tg(−4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)), here 

referred to for simplicity as Sox10:zFucci. We validated accurate marking of the cell cycle 

using immunofluorescence staining against pH3, a marker for G2/M phases (Hendzel et al., 

1997). Additionally, we compared the expression pattern of Sox10:zFucci to the 

Sox10:mRFP transgenic line (Tg(−7.2sox10:mRFP); Kucenas, Snell, & Appel, 2008) and 

the Sox10:eGFP transgenic line (Tg(−4.9sox10:eGFP); Wada et al., 2005) at several stages 

of development. Our data establish that Sox10:zFucci accurately follows cell cycle 

progression in NCCs early in development and subsequently in other cell types, including in 

NCC derivatives.

2 RESULTS AND DISCUSSION

In Sox10:zFucci zebrafish, the −4.9 kb Sox10 promoter/enhancer drives a bicistronic 

construct containing the fusion proteins mAG-zGem(1/100) and mCherry-zCdt1(1/190) 
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separated by a viral 2A peptide (Figure 1a). For clarity, cells expressing green nuclear mAG-

zGem(1/100) will be referred to here as Sox10:zFucci (S/G2/M), and cells expressing red 

nuclear mCherry-zCdt1(1/190) will be referred to as Sox10:zFucci (G1).

To determine if Sox10:zFucci is neural crest-specific while NCCs are delaminating and 

migrating, we crossed the Sox10:zFucci line with the Sox10:mRFP line, which is commonly 

used to label NCCs (Blasky, Pan, Moens, & Appel, 2014; Leigh et al., 2013). We performed 

time-lapse confocal microscopy of Sox10:zFucci; Sox10:mRFP-dual positive embryos from 

14 to 23 hours post-fertilization (hpf) or 13 to 28 hpf (Figure 1b–e; Movies 1–2). At 14 hpf, 

nearly all Sox10:zFucci-positive cells were positive for Sox10:mRFP (Figure 1b). Within the 

same embryos, we followed a subset of Sox10:zFucci-positive cells that were not initially 

Sox10:mRFP-postive and found that they expressed Sox10:mRFP by 15 hpf (Figure 1b,c; 

insets). Additionally, by 16 hpf, some Sox10:mRFP-positive cells were no longer 

Sox10:zFucci-positive (Figure 1d). Throughout the time-lapses, Sox10:zFucci; 

Sox10:mRFP-dual positive cells were seen migrating ventrolaterally, contributing to a 

continual decrease in the number of Sox10:zFucci-positive cells on the anterodorsal side of 

the developing embryo. Additionally, a few Sox10:zFucci; Sox10:mRFP-dual positive cells 

were seen transitioning from G1 to S phase as indicated by red nuclei turning yellow and 

then green (Figure 1b, arrowheads; e), providing a useful tool for tracking NCCs progressing 

through the G1/S checkpoint in vivo. To verify the dynamics of our cell cycle indicators, we 

tracked Sox10:zFucci-positive cells transitioning through cell division every 10’ (Movie 2; 

Figure 1e shows a subset of data every 20’) and quantified the mAG-zGem(1/100) and 

mCherry-zCdt1(1/190) fluorescence levels (Figure 1f) of the cell shown in Figure 1e. We 

observed an inverse correlation in fluorescence intensity of the two indicators before and 

during cell division (Figure 1f)that was consistent with previously reported zFucci dynamics 

(Sugiyama et al., 2009). These data indicate that Sox10:zFucci expression is regulated by 

ubiquitin-mediated degradation of mAG-zGem(1/100) and mCherry-zCdt1(1/190) at 

appropriate stages of the cell cycle. Importantly, all observed Sox10:zFucci-positive cells 

were eventually positive for Sox10:mRFP. Collectively, these observations indicate that 

Sox10:zFucci expression is neural crest-specific at early stages of development and 

regulated appropriately throughout the cell cycle.

To further verify that Sox10:zFucci accurately distinguishes between dividing and non-

dividing NCCs, we performed whole-mount immunohistochemistry against pH3 to detect 

cells that were in G2 or M phase (Hendzel et al., 1997) at 13, 17, 21, and 25 hpf in 

Sox10:zFucci-positive embryos (Figure 2). Previous studies in zebrafish have shown that at 

13 hpf, many NCCs are delaminating from the dorsal neuroepithelium, and at 17 hpf, large 

numbers of NCCs are migrating (Berndt, Clay, Langenberg, & Halloran, 2008; Jimenez et 

al., 2016). Therefore, we focused on the anterodorsal side of the embryo at 13 and 17 hpf 

and followed up with subsequent time points at 21 and 25 hpf to validate the continued 

expression of Sox10:zFucci in migrating NCCs. At 13 hpf, only 0.69 ± 0.39% of observed 

Sox10:zFucci (S/G2/M)-positive cells were positive for G2/M-specific pH3 (n = 680 

Sox10:zFucci (S/G2/M)-positive cells across 3 embryos; Figures 2a,a’; S1), suggesting that 

a large number of NCCs are in the S phase at this time point. These data are consistent with 

previous work in chicken embryos suggesting that many NCCs begin migrating while in S 

phase (Burstyn-Cohen & Kalcheim, 2002). Four hours later, at 17 hpf, 9.84 ± 1.46% of 
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observed Sox10:zFucci (S/G2/M)-positive cells were positive for pH3 (n = 347 

Sox10:zFucci (S/G2/M)-positive cells across 3 embryos; Figure 2b,b’; S1). At 21 hpf, 3.98 

± 1.71% of observed Sox10:zFucci (S/G2/M)-positive cells were pH3-positive (n = 165 

Sox10:zFucci (S/G2/M)-positive cells across 3 embryos; Figure 2c,c’; S1). At 25 hpf, none 

of the observed Sox10:zFucci (S/G2/M)-positive cells were positive for pH3 (n = 44 

Sox10:zFucci (S/G2/M)-positive cells across 3 embryos; Figure 2d,d’; S1). Importantly, at 

all observed time points, none of the observed Sox10:zFucci (G1)-positive cells were 

positive for pH3 (n = 1335 Sox10:zFucci (G1)-positive cells across 12 embryos; Figure 

2a”,b”,c”,d”). Cumulatively, these data suggest that Sox10:zFucci acts as a reliable indicator 

of cell cycle progression at multiple stages of development.

NCCs contribute to a wide variety of cell types in both the craniofacial and trunk regions of 

the developing embryo that often continue to express Sox10-driven transgenic lines (Carney 

et al., 2006; Rochard, Ling, Kong, & Liao, 2015; Saxena, Peng, & Bronner, 2013; 

Schweizer, Ayer-Le Lievre, & Le Douarin, 1983; Wada et al., 2005). To determine if 

Sox10:zFucci is similarly expressed in neural crest-derived craniofacial derivatives, we 

crossed the Sox10:zFucci line with the Sox10:eGFP line, imaged Sox10:zFucci; 

Sox10:eGFP-dual positive embryos, and used the image processing software Imaris 

(Bitplane, Inc.) to map out all cells expressing Sox10:zFucci (G1) and/or Sox10:eGFP. At 37 

hpf, 89.07 ± 1.72% of Sox10:eGFP-positive microvillous neurons in the olfactory 

epithelium were Sox10:zFucci (G1)-positive (n = 395 Sox10:eGFP-positive cells across 6 

embryos; Figure 3a–b”’; S2). At 96 hpf, 65.51 ± 2.07% of observed Sox10:eGFP-positive 

cartilage cells in the jaw were also Sox10:zFucci (G1)-positive (n = 4572 Sox10:eGFP-

positive cells across 6 embryos; Figure 3c–d”’; S2). In the trunk, we focused on the dorsal 

root ganglia (DRG), where 86.46 ± 3.31% of observed Sox10:eGFP-positive DRG neurons 

were Sox10:zFucci (G1)-positive at 37 hpf (n = 214 Sox10:eGFP-positive cells across 6 

embryos; Figure 3e–f”’; S2). Collectively, our results suggest that the majority of 

Sox10:eGFP-positive microvillous neurons and DRG neurons are dual positive for 

Sox10:zFucci (G1) (Figure S2), consistent with the known expression of zCdt1(1/190) in 

differentiated post-mitotic neurons (Sugiyama et al., 2009). The lower percentage (65.51%) 

of Sox10:zFucci (G1)-positive cells in the craniofacial cartilage (Figure S2) is consistent 

with previous studies that have shown the zebrafish craniofacial cartilage at 96 hpf to consist 

of a mixture of proliferating, growing, and differentiating chondrocytes (Rochard, Ling, 

Kong, & Liao, 2015). Additionally, Sox10:zFucci marked neural crest-derived Sox10:eGFP-

positive melanocytes (Figure S3). Taken together, our data indicate that Sox10:zFucci 

successfully marks multiple neural crest-derived populations of Sox10:eGFP-positive cells 

at several stages of embryogenesis.

While Sox10 is a robust marker for many neural crest lineages, Sox10-driven lines also label 

some other non-neural crest-derived cell populations at later time points. For example, 

multiple studies have used Sox10:eGFP and Sox10:mRFP to mark oligodendrocytes 

(Chung, Kim, Kim, Bae, & Park, 2011; Kucenas, Snell, & Appel, 2008) and otic epithelial 

cells (Carney et al., 2006; Kwak et al., 2013). To determine if Sox10:zFucci is also 

expressed in these cell types, we crossed the Sox10:zFucci line with either the Sox10:mRFP 

or Sox10:eGFP line. At 24 hpf, a subset of cells marked by Sox10:mRFP in the otic 

epithelium was Sox10:zFucci (S/G2/M)-positive (Figure 4a–a”). At both 36 hpf and 57 hpf, 
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oligodendrocyte progenitor cells in the hindbrain marked by Sox10:eGFP were 

Sox10:zFucci-positive (Figure 4b–c”). Sox10:eGFP-positive muscle cells (Rodrigues, 

Doughton, Yang, & Kelsh, 2012) were also Sox10:zFucci-positive (Figure 4b–b”). These 

data from multiple cell types show that Sox10:zFucci successfully labels some Sox10-

expressing non-neural crest-derived cell types.

In summary, we have created a new cell type-specific Fucci system, Sox10:zFucci, to track 

cell cycle progression at high spatiotemporal resolution in NCCs and other cell types during 

embryonic development. Sox10:zFucci faithfully indicates phases of the cell cycle and is 

expressed specifically in delaminating and migrating NCCs during early- to mid-

somitogenesis. Later in development, Sox10:zFucci recapitulates the expression of 

Sox10:eGFP and Sox10:mRFP in both neural crest-derived and non-neural crest-derived 

tissues. Studies of signaling pathways that alter the cell cycle in NCCs or particular 

derivatives will benefit from Sox10:zFucci’s live readout of cell cycle entry/exit and 

progression in vivo.

3 MATERIALS & METHODS

3.1 Zebrafish

Animals were treated and cared for in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory animals. All experiments were approved by the 

University of Illinois at Chicago Institutional Animal Care and Use Committee (IACUC). 

Embryos were grown, staged, and harvested as previously described (Kimmel, Ballard, 

Kimmel, Ullmann, & Schilling, 1995; Westerfield, 2000). All embryos to be used at time 

points older than 24 hours post-fertilization (hpf) were treated with 1-phenyl-2-thiourea 

(PTU) to prevent pigmentation from interfering with imaging. Transgenic lines used and 

their abbreviations here are: Tg(−4.9sox10:eGFP) (Wada et al., 2005) = Sox10:eGFP; 

Tg(−7.2sox10:mRFP) (Kucenas et al., 2008) = Sox10:mRFP; Tg(−4.9sox10:mAG-
gmnn(1/100)-2A-mCherry-cdt1(1/190)) = Sox10:zFucci.

3.2 Generation of Sox10:zFucci

Using the Gateway cloning system via LR Clonase II Plus enzyme (Invitrogen), mAG-

zGem(1/100) was cloned upstream of mCherry-zCdt1(1/190), separated by the viral T2A 

peptide, and placed downstream of the −4.9kb Sox10 promoter in a plasmid containing Tol2 

elements, creating −4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190). The following 

entry and destination vector plasmids were used: p5E-sox10 (Uribe, Hong, & Bronner, 

2018), pME-mAG-zGem(1/100) (Sugiyama et al., 2009), p3E-T2A-mCherry-

zCdt1(1/190)pA and pDest-Tol2pA2 (Kwan et al., 2007). One-cell stage embryos were 

injected with pDEST-4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)pA2 to generate 

a stable line as previously described (Kawakami, Shima, & Kawakami, 2000). The 

Sox10:zFucci line does not appear to cause any phenotypes in heterozygous and 

homozygous embryos. The line will be made freely available to the research community 

upon request.
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3.3 Live Confocal Imaging

Embryos were prepared for imaging as previously described (Kaufmann, Mickoleit, Weber, 

& Huisken, 2012; Saxena & Bronner, 2014). Confocal time-lapse microscopy was 

performed on a Zeiss LSM 800 microscope with a 40×/1.1 W objective. Collected data were 

processed and analyzed using Imaris (Bitplane, Inc.) and exported as TIFF images or AVI 

movies. The Imaris ‘Spots Analysis’ feature was used to track individual NCCs progressing 

through the cell cycle in Sox10:zFucci; Sox10:mRFP-dual positive embryos and measure 

Sox10:zFucci fluorescence intensity throughout the cell cycle. The ‘Colocalize Spots’ 

extension for Imaris was used to analyze confocal z-stacks for colocalization of 

Sox10:zFucci (G1) and Sox10:eGFP.

3.4 Immunofluorescence Staining

Sox10:zFucci-positive embryos were collected at 13, 17, 21, and 25 hpf, fixed with 4% PFA, 

and washed in PBS. Some embryos were incubated in acetone at −20°C for 20’. Embryos 

were then washed in PBDT (1% BSA, 1% DMSO, 0.1% Triton X-100 in PBS, pH 7.4), 

blocked in 10% normal donkey serum/PBDT, and incubated overnight at 4°C with MsαpH3 

(1:500; Abcam ab14955). Further PBDT washes and blocking were followed by overnight 

incubation at 4°C with Alexa Fluor DkαMs647 (1:1000; ThermoFisher A-31571) and 

Hoechst 34580 (1:2500). Secondary antibody incubation was followed with additional 

PBDT, PBST, and PBS washes. Embryos were prepared for confocal imaging as previously 

described (Saxena & Bronner, 2014). Both Sox10:zFucci fluorophores, Azami Green and 

mCherry, continued to fluoresce brightly after completion of our immunofluorescence 

protocol and were imaged directly. Confocal microscopy was performed on a Zeiss LSM 

800 microscope with a 40×/1.1 W objective. The ‘Colocalize Spots’ extension for Imaris 

was used to analyze confocal z-stacks for colocalization of pH3 with mAG-zGem(1/100) or 

mCherry-zCdt1(1/190). Data were exported as TIFF images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overlap of Sox10:zFucci and Sox10:mRFP expression in delaminating and migrating 
neural crest cells
(a) Schematic of the Tg(−4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)) 
(Sox10:zFucci) transgenic construct. (b–d) 3D projections of lateral views of a 

representative Sox10:zFucci; Sox10:mRFP-dual positive embryo at 14 (b), 15 (c), and 16 (d) 

hours post-fertilization (hpf). Insets (b,c,d) show optical slices (4.5 µm thick) of a subset of 

Sox10:zFucci-positive cells that become Sox10:mRFP-positive as the embryo develops. 

Arrowheads (b) indicate Sox10:zFucci (G1); Sox10:zFucci (S/G2/M)-dual positive cells. (e) 

Optical slices (4.4 µm thick) of a single Sox10:zFucci; Sox10:mRFP-dual positive neural 

crest cell from Movie 2 (10’ interval time-lapse) transitioning through the cell cycle (panels 

shown every 20’). At 40’, the cell is seen transitioning from G1 to S phase as indicated by a 

yellow nucleus and is then seen dividing at 180’ (asterisk). After division (200’), zFucci 

fluorescence quickly diminishes in daughter cells by 220’. (f) Fluorescence intensities 

(arbitrary units: A.U.) of Sox10:zFucci (G1) and Sox10:zFucci (S/G2/M) every 10’ over a 

period of 220’ in the cell shown in (e). Sox10:mRFP: red membranes; Sox10:zFucci (G1): 

red nuclei; Sox10:zFucci (S/G2/M): green nuclei. Orientation arrows: A: anterior; P: 

posterior; D: dorsal; V: ventral. Scale bars: 50 µm; insets: 12.5 µm.
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Figure 2. Sox10:zFucci accurately marks cell cycle progression
3D projections of anterodorsal views of Sox10:zFucci-positive embryos after whole mount 

immunofluorescence staining against pH3 (G2/M phase-specific) at 13 (a–a”), 17 (b–b”), 21 

(c–c”), and 25 (d–d”) hours post-fertilization (hpf). Insets (a’,b’,c’) show 1 µm thick optical 

slices of Sox10:zFucci (S/G2/M); anti-pH3-dual positive cells. (Inset in (c’) is slightly tilted 

from the 3D projection for clarity.) Arrowheads (b’) indicate Sox10:zFucci (G1); 

Sox10:zFucci (S/G2/M)-dual positive cells. (a”,b”,c”,d”) 3D projections of Sox10:zFucci 

(G1) and anti-pH3 (teal) at each time point demonstrate that none of the observed 

Sox10:zFucci (G1)-positive cells are positive for pH3. NK: neural keel; NR: neural rod; NT: 
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neural tube; HB: hindbrain. All nuclei: white; anti-pH3: magenta/teal; Sox10:zFucci (G1): 

red nuclei; Sox10:zFucci (S/G2/M): green nuclei. Orientation arrows: A: anterior; P: 

posterior; L: lateral. Scale bars: 50 µm; insets: 12.5 µm.
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Figure 3. Sox10:zFucci and Sox10:eGFP overlap in neural crest-derived tissues
3D projections of cranial neural crest-derived tissues (a–d”’) and trunk neural crest-derived 

cells (e–f”’) in Sox10:zFucci; Sox10:eGFP-dual positive embryos. (a–b”’) At 37 hours post-

fertilization (hpf), microvillous neurons in the olfactory epithelium (OE) are Sox10:zFucci; 

Sox10:eGFP-dual positive. (b–b”’) are magnified versions of the region marked by the white 

box in (a). (c–d”’) At 96 hpf, cartilage cells in the jaw are Sox10:zFucci; Sox10:eGFP-dual 

positive. (d–d”’) are magnified versions of the region marked by the white box in (c). (e–f”’) 

At 37 hpf, dorsal root ganglion neurons are Sox10:zFucci; Sox10:eGFP-dual positive. (f–

f”’) are magnified versions of the region marked by the white box in (e). (b”’,d”’,f”’) 
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Imaris’s ‘Spots Analysis’ was used to map out the overlap between Sox10:zFucci (G1)- (red 

spots) and Sox10:eGFP-positive cells. OB: olfactory bulb; OE: olfactory epithelium. 

Sox10:eGFP: green; Sox10:zFucci (G1): red nuclei; Sox10:zFucci (S/G2/M): green nuclei. 

Orientation arrows: A: anterior; P: posterior; D: dorsal; V: ventral; L: lateral. Scale bars: 

(a,c,e): 50 µm; (b–b”’,d–d”’,f–f”’): 12.5 µm.
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Figure 4. Sox10:zFucci marks several non-neural crest-derived tissues
3D projections of lateral views of Sox10:zFucci; Sox10:mRFP (a–a”) and Sox10:zFucci; 

Sox10:eGFP (b–b”)-dual positive embryos at 24 and 36 hours post-fertilization (hpf), 

respectively. (a–a”) At 24 hpf, a subset of otic epithelial cells are Sox10:zFucci (S/G2/M); 

Sox10:mRFP-dual positive. (b–b”) At 36 hpf, oligodendrocyte progenitor cells (OPCs) are 

Sox10:zFucci; Sox10:eGFP-dual positive. Insets (b–b”) show OPCs dual positive for 

Sox10:zFucci and Sox10:eGFP. (c–c”) Optical slices (2 µm thick) of OPCs at 57 hpf that are 

Sox10:zFucci; Sox10:eGFP-dual positive. OT: otic epithelium; OPCs: oligodendrocyte 

progenitor cells; M: muscle cells. Sox10:mRFP: red membranes; Sox10:eGFP: green; 

Sox10:zFucci (G1): red nuclei; Sox10:zFucci (S/G2/M): green nuclei. Orientation arrows: 

A: anterior; P: posterior; D: dorsal; V: ventral. Scale bars: 50 µm; insets: 12.5 µm.
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