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ABSTRACT

We investigate a new metric, Normalized Point Source Sensitivity (PSSN), for characterizing the seeing limited
performance of the Thirty Meter Telescope. As the PSSN metric is directly related to the photometric error of
background limited observations, it truly represents the efficiency loss in telescope observing time. The PSSN
metric properly accounts for the optical consequences of wavefront spatial frequency distributions due to different
error sources, which makes it superior to traditional metrics such as the 80% encircled energy diameter. We
analytically show that multiplication of individual PSSN values due to individual errors is a good approximation
for the total PSSN when various errors are considered simultaneously. We also numerically confirm this feature
for Zernike aberrations, as well as for the numerous error sources considered in the TMT error budget using a
ray optics simulator, Modeling and Analysis for Controlled Optical Systems. We also discuss other pertinent
features of the PSSN including its relations to Zernike aberration and RMS wavefront error.

Keywords: Point Source Sensitivity, Optical Modeling, Image Plane Metric, MACOS, Thirty Meter Telescope

1. INTRODUCTION

It is a goal of Thirty Meter Telescope (TMT) that seeing limited performance of the telescope achieves 90%
of that of a perfect telescope. “Performance” (or science) is an abstract term and can be represented using a
performance metric. Therefore, a performance metric should describe performance (science) well. In addition,
it is desirable to predict or estimate overall performance when aberrations from multiple error sources are
considered. This estimation feature of a metric is even more important when designing and budgeting errors
for a large telescope such as TMT since its modeling tasks are highly distributed to multiple optical designers,
vendors and manufacturers.1

The root mean square of the wavefront error (RMS WFE) and 80% encircled energy diameter (EE80) are
often used as a performance metrics. The RMS WFE is useful when estimation of multiple aberration errors
is needed since overall RMS WFE is simply the square root of the sum of the square (RSS) of RMS WFEs of
individual aberrations. However, the RMS WFE fails in describing telescope’s performance well enough since
a higher spatial frequency aberration degrades the science more than lower frequency aberrations even though
they both have the same RMS WFE. On the other hand, the EE80 is known to describe the science well but
overall estimation from multiple error sources is challenging since it has non-linear characteristics when errors
are in the physical optics regime.

We investigate a new metric, Normalized Point Source Sensitivity (PSSN), for characterizing the seeing
limited performance of the TMT. As the PSSN metric is directly related to the photometric error of background
limited observations, it accurately represents the efficiency loss in telescope observing time. The PSSN metric
properly accounts for the optical consequences of wavefront spatial frequency distributions due to different error
sources, which makes it superior to traditional metrics such as RMS WFE and EE80.
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2. ANALYTICAL ANALYSIS OF NORMALIZED POINT SOURCE SENSITIVITY

2.1 Analytical Definition of Normalized Point Source Sensitivity
The metric, Point Source Sensitivity (PSS), is simply the integration of the square of the point spread function
(PSF) over the entire image space and King2 found that the PSS is a metric that maximizes the signal to noise
ratio (SNR) of images formed on a digital detector array. In order to reflect telescope performance in terms of
science ratio, we propose the normalized PSS (PSSN), which represents the degradation ratio of the aberrated
PSS to the ideal PSS in the seeing limited condition. Therefore, the proposed metric, PSSN, can be denoted as,

PSSN =

∫
∞ |PSFerr(�θ)|2d�θ
∫
∞ |PSFo(�θ)|2d�θ

(1)

where PSFo is the time-averaged PSF of the ideal telescope exposed to the atmosphere and PSFerr is the
time-averaged PSF of an aberrated telescope exposed to the atmosphere. The PSF is defined over �θ, which can
be in angular space or spatial units.

Since the optical transfer function (OTF) and PSF are in Fourier transformation relations and according to
the Parseval’s energy conservation theorem, Eq. (1) can be represented using OTFs,

PSSN =

∫
∞ |OTFerr(�f)|2d�f
∫
∞ |OTFo(�f)|2d�f

(2)

where OTFo and OTFerr are the OTF of PSFo and PSFerr, respectively. The OTF has coordinate’s �f in the
units of cycles per radian or meter.

For aberrations whose the optical path difference (OPD) has random and shift-invariant characteristics, we
find in Appendix A that OTFerr can be represented as multiplication of OTFo and OTFe, where OTFe is the
time-averaged OTF due to the telescope aberrations only, i.e.: OTFerr(�f) = OTFe(�f)OTFo(�f). Then, PSSN
in Eq. (2) can be further decomposed as,

PSSN = 〈|OTFe(�f)|2〉 (3)

where 〈·〉 defines a new operator, average of atmosphere, such that,

〈·〉 ≡
∫
∞(·)|OTFo(�f)|2d�f
∫
∞ |OTFo(�f)|2d�f

(4)

We use this operator for the remainder of this paper for random shift-invariant aberrations. Note that the
operator is linear, i.e. 〈A + B〉 = 〈A〉 + 〈B〉, and mathematically similar in many ways to the average operator
used in the random variable theory with the |OTFo|2 being a probability density function. Thus, mathematically,
PSSN is the average of |OTFe|2 over |OTFo|2 .

2.2 Properties of Normalized Point Source Sensitivity
Based on the definition, we find that the PSSN has following properties, which we discuss in the remainder of
this section.

P1 The PSSN becomes unity when there are no telescope errors and becomes 0 when the error is infinitely
large.

0 ≤ PSSN ≤ 1 (5)

P2 The PSSN has a multiplicative feature for low frequency and weak aberrations. Suppose there are multiple
errors on the telescope. Let PSSNcombined and PSSNmultiplied be the PSSN for all combined error and
for multiplied values of PSSN from individual errors, respectively. Then, PSSNmultiplied approximates
PSSNcombined.

PSSNcombined ≈ PSSNmultiplied (6)

Proc. of SPIE Vol. 7017  70170T-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



P3 The PSSN has a relation to RMS WFE if we assume the RMS WFE is small.

PSSN ≈ 1 − ασ2 (7)

where σ is the RMS WFE and α is a proportional constant independent to σ. However, α is a function of
aberration frequency (correlation length of OPD) and atmosphere ro.

P4 The PSSN can be approximated to the square of the Strehl for white noise aberration (0 correlation length
of OPD). This is due to that the energy in PSF spreads out beyond atmosphere ro. Therefore,

PSSN ≈ 1 − 2σ2 (8)

where σ is the RMS WFE in radians and α becomes 2.

2.2.1 Multiplicative features

First, we make the following assumptions regarding the PSSN in the analytical studies of multiplicative features.

A1 Normalized Power : We assume the total power on the aperture is unity. All OTF’s have a value of one
at the origin.

A2 Random and shift-invariant aberration : We assume that aberrated OPDs have random and shift-invariant
characteristics (See Appendix A for its mathematical definition). This assumption allows us to use Eq. (3).

A3 Low order and weak aberration : In all errors on TMT, we observe that the OTFe(�f) is much wider than
the OTFo(�f). This implies that OTFe(�f) changes only by small amount over the region of interest where
OTFo(�f) is defined meaningfully. Therefore, (for calculation convenience) we define a small valued positive
real function, ε(�f) such that,

|OTFe(�f)|2 = 1 − ε(�f) (9)

As the error becomes smaller or the correlation length of OPD due to the error becomes larger than the
atmosphere correlation length, ro, the ε(�f) becomes small relative to unity near the origin.

Suppose that there are two different errors on the telescope, which generate their |OTFe(�f)|2s as 1 − ε1(�f)
and 1 − ε2(�f). Since the total OTF is a product of two individual OTFs and the averaging operator is linear,
the combined PSSN, PSSNcombined, is computed as,

PSSNcombined = 〈(1 − ε1)(1 − ε2)〉
= 1 − 〈ε1〉 − 〈ε2〉 + 〈ε1ε2〉 (10)

where we denote εi(�f) as εi for simplicity. On the other hand, the multiplied value PSSNmultiplied of PSSNs
from individual PSSN can be denoted as,

PSSNmultiplied = 〈1 − ε1〉〈1 − ε2〉
= 1 − 〈ε1〉 − 〈ε2〉 + 〈ε1〉〈ε2〉 (11)

These two equations immediately imply that PSSN is multiplicative to first order since the first orders, 〈εi〉,
are small according to A3, thus, their second orders are even smaller. In order to further investigate the PSSN
multiplicative feature beyond the first order, we define the difference of Eq. (10) and Eq. (11) as ∆1,2.

∆1,2 = 〈ε1ε2〉 − 〈ε1〉〈ε2〉 (12)

Note that ∆1,2 is mathematically similar to the statistic correlation in the random probability theory. According
to the theory, ∆1,2 is bounded by the product of the standard deviations of ε1(�f) and ε2(�f),

|∆1,2| ≤
√

(〈ε21〉 − 〈ε1〉2)(〈ε22〉 − 〈ε2〉2) (13)
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and becomes 0 when two εi(�f) are uncorrelated.

Assuming A3, we can further calculate the ∆1,2 in Eq. (12) using the Taylor expansion. We approximate the
εi(�f) up to the second order Taylor expansion coefficient after assuming the aberrations are isotropic. i.e εi(�f)
is only a function of magnitude of �f . Due to mathematical complexity, we detail the calculation in Appendix B.

∆1,2 ≈ 1.2119(1− PSSN1)(1 − PSSN2) (14)

where PSSN1 and PSSN2 are individual PSSN of two error sources and the constant, 1.2119, represents a
dimensionless unique value for the case of atmosphere we applied. By using Taylor series approximation up
to the second order, note that ∆1,2 is a positive number and is equal to the maximum boundary in Eq. (13).
Since we use the same positive polarity of coefficients for approximating ε1(�f) and ε2(�f), the result obtained in
Eq. (14) represents the correlation coefficient of 1, thus, is same as the analytical boundary in Eq. (13). However,
in general, ∆1,2 can be either positive or negative depending on the correlation between two εi(�f). Therefore,
Eq. (14) is reformulated using analytical boundary ∆A.

|∆1,2| ≤ ∆A ≈ 1.2119(1− PSSN1)(1 − PSSN2) (15)

Eq. (15) implies that the difference ∆1,2 between PSSNcombined and PSSNmultiplied is within the analytical
boundary, ∆A. i.e:

|PSSNcombined − PSSNmultiplied| ≤ ∆A (16)

Note that 1 − PSSNi is normally a small value, thus ∆A is on the order of the square of 1 − PSSNi. For
example, let us assume that PSSN1 = PSSN2 = 0.95. Then, ∆A becomes 3 × 10−3.

Furthermore, we consider N different errors by generalizing Eq. (12). Suppose that individual errors generate
εi where i = 1, 2, · · · , N and their multiplied and combined PSSN are PSSNmultiplied and PSSNcombined,
respectively. Then, the difference, ∆T , between multiplied and combined PSSN becomes:

∆T =
N∑

i=1

N∑

j=i+1

(〈εiεj〉 − 〈εi〉〈εj〉
)

−
N∑

i=1

N∑

j=i+1

N∑

k=j+1

(〈εiεjεk〉 − 〈εi〉〈εj〉〈εk〉
)

+ · · ·

+ (−1)N
(〈ε1ε2ε3 · · · εN 〉 − 〈εi〉〈εj〉〈εk〉 · · · 〈εN 〉) (17)

We assume A3 again to get an approximated boundary ∆A of ∆T using the Taylor expansion again as in
Appendix B.

|∆T | ≤ ∆A ≈ 〈r4〉 − 〈r2〉2
〈r2〉2

N∑

i=1

N∑

j=i+1

(1 − PSSNi)(1 − PSSNj)

− 〈r6〉 − 〈r2〉3
〈r2〉3

N∑

i=1

N∑

j=i+1

N∑

k=j+1

(1 − PSSNi)(1 − PSSNj)(1 − PSSNk) + · · ·

+ (−1)N 〈r2N 〉 − 〈r2〉N
〈r2〉N

N∏

i=1

(1 − PSSNi) (18)

where PSSNi are the PSSN value for the i′th error. We further assume that the errors have the same PSSN
(uniformly distributed errors in PSSN value sense), then, we have approximated ∆A as in Eq. (19).

∆A ≈
N∑

n=2

(−1)n 〈r2n〉 − 〈r2〉n
〈r2〉n

(N − n)!n!
N !

(
1 −N

√
1 − PSSNmultiplied

)n (19)
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Figure 1. The analytically calculated ∆A using Eq. (19) as a function of number of errors (N) when the multiplied
PSSNs are 0.85, 0.9 and 0.95, respectively. ∆A represents the analytical boundary for difference between combined and
multiplied PSSN. We assume that the errors have the same PSSN (uniformly distributed errors in PSSN value sense).
We also assume A2 and A3.

Fig. 1 show the analytically calculated ∆A using Eq. (19) as a function of number of errors (N) when the
multiplied PSSNs are 0.85, 0.9 and 0.95, respectively. When the multiplied PSSN is 0.9, the difference, ∆A is
near 3 × 10−3 and increases to around 8 × 10−3 as the number of errors increases from 2 to 100. This implies
that the multiplicative feature is valid within 1 % when the science loss of all combined errors is smaller than
10 %.

2.2.2 Relation to Wavefront Errors

We derive a general formula for OTFerr from an OPD in Eq. (36) in Appendix A. We write Eq. (36) here again
for convenience.

OTFerr(�f) = OTFA(�f) ·
∫

r

A(�r)A(�r − λ�f)E[e−jk(OPD(�r)−OPD(�r−λ�f))]d�r (20)

where �r and d�r are the two-dimensional coordinates for the OPD (typically in meter units), �f is the coordinate for
the OTF space (typically in cycles per radian), k is the wavenumber defined as 2π/λ, λ is the wavelength, A(�r)
is the real, nonnegative telescope pupil function normalized with

∫
A2(�r)d�r = 1. OTFA(�f) is the time-averaged

OTF of the atmosphere and the operator, E[·], denotes the time average (or statistic average) of the aberration.

To investigate the PSSN dependency on the RMS WFE, we first normalize the OPD such that

OPD(�r) = σS(�r) (21)

where σ represents the RMS WFE in radians and S(�r) is the normalized OPD, i.e.
∫

A(�r)S(�r)2d�r = 1. After
denoting ∆S(�r, λ�f) ≡ S(�r) − S(�r − λ�f), Eq. (20) is represented as a function of RMS WFE, σ.

OTFerr(�f) = OTFA(�f) ·
∫

r

A(�r)A(�r − λ�f)E[e−jσ∆S(�r,λ�f)]d�r (22)

Then, the absolute square of OTFerr(�f) becomes:

|OTFerr(�f)|2 =
∫∫

Ω(�r, �r′, λ�f)E[e−jσ∆S(�r,λ�f)]E[e+jσ∆S(�r′,λ�f)]d�rd�r′ (23)
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where Ω(�r, �r′, λ�f) is defined for simplicity as,

Ω(�r, �r′, λ�f) = |OTFA(�f)|2 · A(�r)A(�r − λ�f)A(�r′)A(�r′ − λ�f). (24)

On the other hand, the OTF for the ideal telescope, OTFo(�f), is OTFerr(�f) when σ becomes 0.

|OTFo(�f)|2 =
∫∫

Ω(�r, �r′, λ�f)d�rd�r′ (25)

Using its definition in Eq. (2), we obtain the PSSN for this aberration.

PSSN =
〈〈

E[e−jσ∆S(�r,λ�f)]E[e+jσ∆S(�r′,λ�f)]
〉〉

(26)

where 〈〈·〉〉 defines another operator such that,

〈〈

·
〉〉

≡
∫∫∫

Ω(�r, �r′, λ�f)(·)d�rd�r′d�f
∫∫∫

Ω(�r, �r′, λ�f)d�rd�r′d�f
(27)

Assuming that the wavefront errors are small, we can expand Eq. (26) in terms of σ using the Taylor expansion.
Then, Eq. (26) is simplified as,

PSSN = 1 + a1σ + a2σ
2 + · · · (28)

where ai are the coefficients defined as:

an = jn

( n∑

k=0

(−1)k

k!(n − k)!

〈〈

E[∆S(�r, λ�f)k]E[∆S(�r′, λ�f)n−k]
〉〉)

(29)

Note that odd coefficients are all pure imaginary numbers while even coefficients are all real, suggesting that
odd orders are all vanishing since the OTF absolute square is a real number. Therefore, Eq. (28) shows that the
first dominant term with respect to RMS WFE is the second order and the PSSN is an even function to RMS
WFE. This proves P3 in section 2.2. Note also that P3 is valid for deterministic aberration as well as random
since Eq. (26) is obtained directly from the definition of the PSSN and 〈〈·〉〉 is the generalized representation of
the operator defined in Eq. (3).

2.2.3 Relation to Strehl

We find that the α value in P3 is the negative value of a2 in Eq. (29), i.e.

α = −a2 =
1
2

〈〈

E[∆S(�r, λ�f)2] + E[∆S(�r′, λ�f)2 + 2E[∆S(�r, λ�f)] · E[∆S(�r′, λ�f)]
〉〉

(30)

Suppose that the OPD of the aberration is zero-mean and the correlation length of the aberration is zero, i.e.
zero-mean white noise. Then, E[∆S(�r, λ�f)] becomes 0. Furthermore,

E[∆S(�r, λ�f)2] = E[∆S(�r, λ�f)2] = E[
(
S(�r) − S(�r − λ�f

)2]

=
(
E[S(�r)2] + E[S(�r − λ�f)2] − 2E[S(�r)S(�r − λ�f)]

)

= 2 (31)

Therefore, we find the α value for the white noise aberration.

α = 2 (32)

This implies that energy spreads out beyond any ro if the aberration is white noise and the PSSN becomes the
square of the Strehl. This proves P4 in section 2.2.
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Figure 2. Numerical procedure to calculate PSSN and Zernike mode 800 aberration for example.

3. NUMERICAL ANALYSIS OF POINT SOURCE SENSITIVITY

3.1 Simulation Method
In order to verify the properties of the PSSN we have investigated in the analytical studies in the previous section,
we perform numerical simulations with Zernike aberrations on the TMT pupil. Fig. 2 shows the numerical
calculation procedure for the PSSN with an example of Zernike mode∗ 800 aberration. First, we implement
Zernike aberrations in the TMT pupil map. After we obtain their PSFs and OTFs using the fast Fourier
transform (FFT) algorithm built in Matlab (The MathWorks, Inc.), we produce the atmosphere exposed OTFs
by multiplying the OTFs and atmosphere OTF denoted in Eq. (46). Then, we obtain the PSSerr (before
normalization as in the numerator in Eq. (2)) in the OTF domain using the Parseval’s energy conservation
theorem. This computation flow is shown in top of Fig. 2. Likewise as in bottom of Fig. 2, we compute the
atmosphere exposed PSSo for ideal telescope (before normalization as in the denominator in Eq. (2)) using an
unaberrated OPD map. Finally, we obtain the normalized PSS by dividing PSSerr by PSSo.

For the TMT pupil map, we first use the Modeling and Analysis for Controlled Optical Systems (MACOS)
software4 to define the logical region of the pupil and then employ the gray-pixel approximation (GPA)5 in order
to simulate the segments’ gaps effectively . MACOS is a tool for optical systems analysis developed at the Jet
Propulsion Laboratory (JPL) and has been used on projects such as JWST, SIM, TPF, and HST for optical
and integrated modeling purposes. MACOS has the desirable capability for our simulation including modeling
the gaps between segments and the actual side lengths using a hexagonal coordinate scheme for their placement
and running through a Matlab interface, which provides for a vast range of use including high-resolution surface
modeling, optical sensitivity calculation, and wavefront sensing and control simulation. We use a 1/64 m per
pixel sampling grid with 2048× 2048 pixels across the pupil, the Nyquist sampling for FFT, an atmosphere ro

of 200 mm, and the wavelength of 500 nm for the numerical simulation parameters.

3.2 Point Source Sensitivity for Zernike Aberrations
Zernike aberrations of mode 4, 200, 400, 800 on the TMT pupil are shown in Fig. 3(a) to Fig. 3(d), respectively.
Using the numerical method, we compute the PSSN with respect to the RMS WFE and the results are shown in
Fig. 4(a). The simulated RMS WFE ranges from 0 to 160 nm and The wavelength and atmosphere ro considered
are 500 nm and 200 mm, respectively. For all aberrations, the PSSN is 1 when the RMS WFE is zero and
decreases as RMS WFE increases. The PSSN decreases faster for higher Zernike aberration as expected. The
log-log scale plots of 1-PSSN is shown in Fig. 4(b). Note that the plots in Fig. 4(b) are close to linear lines and
the ratio between the x and y axis is 2, verifying the P3 in Eq. (7).

∗All Zernike mode in this paper refers to Zernike Noll Modes.3
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Figure 3. Example Zernike Modes on TMT pupil
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Figure 4. Numerically calculated PSSN for Zernike 4, 100, 200, 400 and 800 modes with respect to the RMS WFE. The
simulated RMS WFE ranges from 0 to 160 nm. (a) PSSN plot in linear scale and (b) 1-PSSN plot in log log scale.

In addition, we have performed similar simulations to other Zernikes and we compute the α values in Eq. (7)
and summarize the results in Table. 1. From the results, we observe that the α values of lower azimuthal
aberrations are larger in the same radial Zernike mode. We also find that the α value for the white noise is close
to 2 as we expect in P4 in Eq. (8).

In order to verify the multiplicative feature of PSSN (P2 ), we first obtain combined OPDs by adding all
OPDs which have same RMS WFE for Zernikes shown in Fig. 4 and then calculate the combined PSSNs and
RMS WFEs for the combined OPDs. We also obtain multiplied PSSNs by multiplying the PSSN values for
all considered Zernikes with same RMS WFE. Then, we compare the combined PSSNs to multiplied PSSNs.
Fig. 5(a) shows the simulation results. The difference between combined and multiplied PSSN values is small
when the RMS WFE is small (or the multiplied PSSN is close to 1) and increases as the RMS WFE increases
(or the multiplied PSSN becomes worse). The x axis in Fig. 5(a) represents the computed RMS WFE for the
combined OPDs and they are similar to the RSSed RMS WFE due to the orthogonality of Zernikes. However,
they disagree with a small amount due to hexagonal outline of the TMT pupil and we ignore this discrepancy.

Fig. 5(b) shows that the difference, ∆N , between the combined and multiplied PSSN with respect to the
multiplied PSSN values. Zernike aberrations are deterministic and shift-variant while our analytical boundary of
∆A in Eq. (18) is approximated for random shift-invariant errors, the numerical ∆N cannot be directly compared
to the analytical boundary ∆A. Nonetheless, we compare the numerical ∆N to the analytical boundary ∆A using
Eq. (18) from the individual PSSN values in Fig. 5(b). Even though the numerical ∆N is larger than the analytical
boundary ∆A, we observe that ∆N is close to 0.01 when if the PSSN is larger than 0.9.
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Figure 5. (a) Combined and Multiplied PSSN for Zernikes considered in Fig. 4. (b) Difference ∆N between combined and
multiplied PSSN with respect to the multiplied PSSN. Even though comparison is not valid since the Zernike aberrations
are deterministic, we compare the difference to analytical difference boundary ∆A using Eq. (18). We observe that ∆N

is still close to 0.01 when if the PSSN is larger than 0.9.

For a more quantitative verification of the analytical boundary ∆A, we compare numerical ∆N and analytical
boundary ∆A for the TMT M1 primary errors as shown in Fig. 6. The numerically calculated ∆N is from intensive
studies done by Nissly, et. al.,1 and the analytical boundary ∆A is from Eq. (18) with individual PSSN values
from Nissly, et. al. Since the TMT M1 primary errors includes random errors which can have shift-invariant
characteristics, ∆N and ∆A match better than when compared to Zernike aberrations. As seen in Fig. 6, the
numerically obtained ∆N are within the analytical boundary of ∆A for most zenith angles , supporting that our
analytical studies and approximations are valid for the practical errors in the TMT system engineering.

Table 1. Alpha Table

Zernike Mode Radial Mode Azimuthal Mode α [/rad2]
4 2 0 3.086e-04
5 2 2 1.488e-04
6 2 2 1.488e-04
7 3 1 5.573e-04
8 3 1 5.575e-04
9 3 3 2.978e-04
10 3 3 2.939e-04
56 10 0 5.925e-03
66 10 10 2.598e-03
211 20 0 1.912e-02
231 20 20 9.370e-03
821 40 0 7.009e-02
861 40 40 3.296e-02
1831 60 0 4.862e-01
1891 60 60 7.143e-02
3082 78 0 1.403e+00
3160 78 78 1.038e-01

White Noise NA NA 1.962e+00
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Figure 6. Numerical difference ∆N and analytical difference boundary ∆A between combined and multiplied PSSN for
TMT M1 primary errors. Two plots are obtained using two independent methods. Numerically calculated ∆N is from
intensive studies done by Nissly, et. al.,1 and the analytical boundary ∆A is from Eq. (18) with individual PSSN values
from Nissly, et. al.

4. SUMMARY

Among other science metrics, the normalized PSS is distinguished in that it includes atmosphere information by
appropriately weighting telescope errors in terms of atmosphere. Therefore, we believe that the normalized PSS
is truly a measure of the science loss for seeing limited instruments. Furthermore, it has a multiplicative feature
when combining multiple error sources. In this paper, we find that the multiplicative feature is valid within a
few percent (within 1 % for shift-invariant errors) when the science loss of all combined errors is smaller than
10 %, i.e., the combined PSSN is larger than 90 %. Since TMT has a goal that the telescope should not introduce
more than a 10% loss of science, we believe that this metric is useful for optical designing and budgeting errors
of the TMT.

APPENDIX A.

For aberrations whose the OPD has random and shift-invariant characteristics, prove that the OTFerr (time-
averaged OTF of an aberrated telescope exposed to the atmosphere) can be represented as a multiplication of
OTFo and OTFe, where OTFo is the time-averaged OTF of the ideal telescope exposed to the atmosphere and
OTFe are the time-averaged OTF due to the telescope aberrations only. i.e.

OTFerr(�f) = OTFe(�f) · OTFo(�f) (33)

[Proof.]

The instantaneous or static PSF (before exposed to atmosphere) due to aberrated OPD and telescope can
be represented as,

PSFe+t(�θ) =
∣
∣
∣
∣

∫

r

A(�r)e−jk(OPD(�r)ej�θ�rd�r

∣
∣
∣
∣

2

(34)

where �r and d�r are the two-dimensional coordinates for the OPD (typically in meter units), k is the wavenumber
defined as 2π/λ, λ is the wavelength, A(�r) is the real, nonnegative telescope pupil function normalized with
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∫
A2(�r)d�r = 1. The subscripts e and t in PSFe+t represent that the PSF is due to aberrated OPD and telescope,

respectively. Using the Fourier transformation properties and integration properties, the OTF of PSFe+t (before
exposed to atmosphere) can be obtained and simplified as the same equation, Ellerbroek derived.6

OTFe+t(�f) =
∫

r

A(�r)A(�r − λ�f)e−jk(OPD(�r)−OPD(�r−λ�f))d�r (35)

where �f is the coordinate for the OTF space (typically in cycles per radian). We obtain the OTFerr, time-
averaged OTF of the aberrated telescope exposed to the atmosphere if we consider exposed OTF of atmosphere,
OTFA.

OTFerr(�f) = OTFA(�f) ·
∫

r

A(�r)A(�r − λ�f)E[e−jk(OPD(�r)−OPD(�r−λ�f))]d�r (36)

Note that OTFA is independent to the pupil coordinates �r, and the operator, E[·], denotes the time aver-
aged (or statistic averaged) of the aberration. If the OPD has the random shift-invariant characteristics, i.e.
E[e−jk(OPD(�r)−OPD(�r−λ�f))] is only a function of λ�f , the OTFerr is further simplified as,

OTFerr(�f) = OTFe(�f) · OTFA(�f) · OTFt(�f) (37)

where OTFe is the time-averaged OTF due to the telescope aberration only and OTFt is the deterministic OTF
of the ideal telescope, i.e.

OTFe(�f) = E[e−jk(OPD(�r)−OPD(�r−λ�f))]

OTFt(�f) =
∫

r

A(�r)A(�r − λ�f)d�r (38)

Note that OTFo is equivalent to OTFAOTFt, therefore we prove Eq. (33).

APPENDIX B.

Assume A3 is valid and two different errors generate ε1 and ε2, respectively and individual PSSN values are
PSS1 and PSS2, respectively. Using the Taylor expansion, prove that

∆1,2 ≡< ε1ε2 > − < ε1 >< ε2 > ≈ 1.2119(1− PSS1)(1 − PSS2) (39)

[Proof.]

First, we approximate individual εi(x, y) as,

εi(x, y) = a1x + b2y + a2x
2 + b2x

2 + c1,1xy + · · · (40)

where the coefficients, ak, bk, and ci,j are 1
k!

∂kε
∂xk

∣
∣
∣
(0,0)

, 1
k!

∂kε
∂yk

∣
∣
∣
(0,0)

, and i+jCi

(i+j)!
∂i+jε

∂ix∂jy

∣
∣
∣
(0,0)

, respectively. Since the

OTF has a Fourier transformation relation to the PSF and the PSF is a real positive valued function, according
to the Fourier transform property, OTF (hence ε) are even functions. Therefore, odd orders are all dropped in
Eq. (40). With the further assumption that errors are isotropic in the �f domain, i.e. , ak = bk = αk and ci,j = 0
and if we approximate Eq. (40) up to second order terms,

εi(r) ≈ α2r
2 (41)

Therefore, ∆1,2 can be approximated as,

∆1,2 = p2q2(< r4 > − < r2 >2) (42)

where p2 and q2 are α2 for error 1 and error 2, respectively. Since we know the individual PSSN values,

1 − PSS1 =< ε1 >= p2 < r2 >

1 − PSS2 =< ε2 >= q2 < r2 > (43)
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Eq. (42) becomes,

∆1,2 ≈ (< r4 > − < r2 >2)
< r2 >2

(1 − PSS1)(1 − PSS2) (44)

Since the atmosphere OTF is well defined, (<r4>−<r2>2)
<r2>2 is a scalar value that can be computed to a finite value.

From Appendix C, we find the constant as 1.2119, hence, we prove Eq. (39).

APPENDIX C.

Compute and prove
(< r4 > − < r2 >2)

< r2 >2
= 1.2119 · · · (45)

[Proof.]

The OTF of the long exposure atmosphere is defined as,

OTFA(r) = exp(−3.44
( r

ro/λ

)5/3) (46)

Using integral properties and definition defined in Eq. (4), < rn > becomes:

< rn >=
(ro

λ

)n
r̄n (47)

where n = 1, 2, · · ·, r̄n =
∫
∞ rnw(r)rdr∫
∞ w(r)rdr

, and w(r) = exp(−2× 3.44× r5/3). We calculate r̄n analytically to obtain,

(< r4 > − < r2 >2)
< r2 >2

=
(r̄4 − r̄22

)

r̄22 = 1.2119 · · · (48)
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