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Summoning retrieves quantum information, prepared somewhere in spacetime, at another spec-
ified point in spacetime, but this task is limited by the quantum no-cloning principle and the
speed-of-light bound. We develop a thorough mathematical framework for summoning quantum
information in a relativistic system and formulate a quantum summoning protocol for any valid
configuration of causal diamonds in spacetime. For single-qubit summoning, we present a protocol
based on a Calderbank-Shor-Steane code that decreases the space complexity for encoding by a
factor of two compared to the previous best result and reduces the gate complexity from scaling as
the cube to the square of the number of causal diamonds. Our protocol includes decoding whose
gate complexity scales linearly with the number of causal diamonds. Our thorough framework for
quantum summoning enables full specification of the protocol, including spatial and temporal imple-
mentation and costs, which enables quantum summoning to be a well posed protocol for relativistic
quantum communication purposes.

I. INTRODUCTION

Quantum summoning is the task of encoding and
transmitting quantum information to a configuration of
spacetime causal diamonds such that the quantum infor-
mation can be reconstructed in any one of these causal
diamonds [1–4]. Quantum summoning cannot be guaran-
teed to work for every configuration of causal diamonds
because quantum information cannot be copied [5–8] or
transmitted superluminally [6]. Summoning is only pos-
sible for a configuration of causal diamonds if every pair
of diamonds is causally related, where two diamonds are
causally related if the earliest point of one can commu-
nicate with the latest point of the other [2]. Our aim is
to construct efficient protocols for summoning quantum
information in any configuration of N pairwise-related
causal diamonds.

A variety of work has been done on summoning ever
since Kent introduced this task and presented a no-
summoning theorem [1]. Hayden and May [2] showed
that quantum summoning can be reduced to the prim-
itives of quantum secret sharing [9–11] and teleporta-
tion [12, 13]. They exploited a codeword-stabilized
(CWS) quantum code [14] to design a summoning pro-
tocol that is efficient in the sense that the number of
qubits Q used by the code is polynomial in N . Hayden
et al. [3] proposed a continuous-variable version of sum-
moning and an efficient protocol to perform this task, as
well as showing that optical circuits can be used to real-
ize summoning experimentally. In 2016, Adlam and Kent
proposed a summoning task with multiple summonses
and provided a protocol, which employs teleportation, to
accomplish this task for the configuration being an or-
dered set of causal diamonds [4].

Our protocol for summoning quantum information

uses a Calderbank-Shor-Steane (CSS) code [15, 16]
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physical qubits, with the

restriction that Ñ is even. We calculate that this CSS
code distance Ñ

2 , and this code is constructed from the
relation between graphs and linear algebra [17, 18]. Our
code is a qubit version of the homological continuous-
variable quantum error correcting code [3] and corrects
erasure errors that occur in summoning.

We provide a procedure to construct the encoding and
decoding circuits for our CSS code for any even positive
integer Ñ . The number of qubits Q used by our protocol
is reduced by a factor of two compared to the previous
best [2], and the number of quantum gates G is reduced
from O

(
N3
)

[2] to O
(
N2
)
. Our decoding procedure has

gate complexity O(N). Our results are significant in that
we complete the quantum summoning protocol [1–3] by
providing both encoding and decoding schemes, explain
how to utilize quantum error correction for summoning,
analyze quantum resources, and demonstrate improved
efficiency for our protocol.

Our paper is organized as follows. Section II reviews
the background knowledge regarding summoning, quan-
tum error correction and algebraic graph theory. Sec-
tion III provides the mathematical definition of summon-
ing. In section IV, we study a protocol for summoning
using a CSS code, including the encoding and the decod-
ing methods, and the resource analysis of the CSS code
and the CWS code. Sections V and VI give the discussion
and the conclusion, respectively.
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II. BACKGROUND

Here we explain the quantum information processing
task of summoning and the conditions for the config-
urations to make summoning feasible [1–3]. Then we
give the background knowledge on stabilizer quantum er-
ror correcting codes [21], especially CSS codes [15, 16].
We introduce the relation between graphs and binary
vectors [17], which is useful for the construction of the
CSS stabilizer code. Finally, we briefly review the CWS
code [14] used by Hayden and May to summon quantum
information [2].

A. Summoning

Summoning is an information processing task involv-
ing Alice and Bob [1–3]. Bob’s role is to provide the
quantum information to Alice and to designate where
the quantum information is to be summoned and Alice’s
role is to summon quantum information at the designated
spacetime location. Associated to each request point y is
a reveal point zy that is in the causal future of y. The in-
tersection of the future light cone of y with the past light

cone of zy is called a causal diamond, expressed as .
We label causal diamonds and show a label i in the dia-
mond as i . Besides the request and reveal points, Alice
and Bob also agree upon a starting point s, where Bob
provides the quantum information to Alice.

Alice and Bob can arrange their agents at various
points in spacetime prior to the start of summoning [3].
Bob designates one agent to be the referee who sends
quantum information to point s and classical informa-
tion to all the request points. Alice designates one agent
to be the starting agent S, who is situated at point s, and
she delegates agents to each request and reveal point. We
label the agent at point x by Ax. Figure 1 shows an ex-
ample of Alice’s and Bob’s agents arranged in spacetime.

When summoning starts, the referee prepares a quan-
tum state

|ψ〉 ∈H , (2)

where H is a finite d-dimensional Hilbert space [2], and
transmits |ψ〉 to the starting agent. Alice and all her
agents do not have any knowledge of |ψ〉. The referee
randomly chooses one request point, say y, and sends
the request only to Ay. Then Alice’s task is to present
the quantum state |ψ〉 at the corresponding reveal point
zy, by her agents’ collaboration.

Given a set of causal diamonds
{
i
}N

i=1
, summoning

might be infeasible [1] due to the restrictions of both the
no-cloning theorem [5–8] and no superluminal commu-
nication [6]. Summoning is possible if and only if the
following two conditions are satisfied [2].

C1 All reveal points are in the causal future of s.

y1 y2

y3

z1 z2

z3

s

referee

reveal agent

request agent

starting agent

t

x y

FIG. 1: Three causal diamonds (red, blue and purple)
in spacetime. A referee, a starting agent, three request
agents and three reveal agents are arranged in
spacetime. An arrow represents a quantum
communication channel from one agent to another
agent, and a line segment between two agents represents
a classical channel from one to the other. The referee
sends a quantum state |ψ〉 to the starting agent, and
randomly chooses y2 to send a classical request to Ay2 .
The starting agent encodes |ψ〉 to three qutrits and
distribute them to three request agents respectively.
Ay2 sends her qutrit to Az2 . Receiving no request, the
request agents at y1 and y3 send their qutrits to Az3

and Az2 respectively. Hence, Az2 receives two qutrits
and decodes the state |ψ〉.

C2 Each pair of causal diamonds is causally related,
which means that there exists a point in one causal
diamond that is causally related with at least one
point in the other causal diamond.

We call a set of causal diamonds satisfying these
two conditions a “valid configuration” for summoning.
We represent a configuration of causal diamonds by a
graph G as follows [2, 3]. We assign each causal diamond
to a vertex and use the label of the causal diamond to
label the vertex. If two causal diamonds are causally re-
lated, an edge e is inserted between the two correspond-
ing vertices in G. A valid configuration of N causal di-
amonds is represented by an N -vertex complete graph
denoted KN , for which each pair of vertices is connected
by an edge [17].

In Fig. 1, we present an example of using quantum se-
cret sharing [9–11] to summon quantum information [2].
After receiving a qubit |ψ〉, the starting agent encodes |ψ〉
into three qutrits [9] and distributes the three qutrits to
the three request agents. If Ayi

(i = 1, 2, or 3) receives
the request, then the request agent sends her qutrit to
the reveal point

zi := zyi
. (3)

Otherwise, she sends her qutrit to the reveal point
z(i−1)mod 3. In such a way, no matter which request agent
receives the request, the associated reveal agent receives
two qutrits to retrieve the original qubit |ψ〉.
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B. Stabilizer codes

In this subsection, we begin by introducing the Pauli
group and the representation of Pauli operators using
binary vectors. We explain the parameters characteriz-
ing a quantum error correcting code and the definition of
erasure errors. Then we explain stabilizer codes [21], spe-
cially CSS codes [15, 16]. Finally, we show the encoding
of a stabilizer code.

An n-qubit Pauli group [22] is

Gn := ±{I,X, Y, Z}⊗n, (4)

where

X :=

[
0 1
1 0

]
, Z :=

[
1 0
0 −1

]
, and Y := ZX. (5)

The Pauli group module sign is isomorphic to a cartesian
product of binary vector spaces according to

IP : Gn/Z2 → Zn
2 × Zn

2 :

n⊗
i=1

ZuiXvi 7→
[
u v

]
, (6)

where

u := [u1 . . . un] , v := [v1 . . . vn] . (7)

Two Pauli operators represented as binary vectors,
[
u v

]
and

[
u′ v′

]
, mutually commute if and only if [22]

u · v′ + v · u′ = 0, (8)

where · is the indefinite inner product

u · v :=

n∑
i=1

uivi ∈ Z2. (9)

Otherwise, these two Pauli operators anti-commute with
each other.

In quantum error correcting codes, [[n, k, d]] denotes a
quantum code, where k qubits are encoded into n qubits,
and d is the distance of the code [22]. Given a Pauli
operator P ∈ Gn, the weight of P is the number of non-
identity single-qubit Pauli operators, i.e., X, Y and Z in
the tensor product P . The distance of a quantum error
correcting code is the minimum weight of a Pauli opera-
tor P such that

〈i|P |j〉 6= C(P )δij , (10)

where |i〉 and |j〉 are basis elements of the code, C(P )
is a constant depending on P , and δij is the Kronecker
delta function. When transmitting a block of n qubits, if
t qubits (t < n) are lost or never received, while the other
n − t qubits are undamaged, then the errors at these t
qubits are called erasure errors [23].

A stabilizer code [21] is the simultaneous eigenspace
of all the elements of an Abelian subgroup S of Gn with

eigenvalue one. A generator set of S is a set of indepen-
dent elements in S such that every element of S can be
expressed as a product of the elements in this generator
set. An [[n, k, d]] stabilizer code has n − k independent
stabilizer generators, each of which can be represented
by a 2n-dimensional binary vector. The [[n, k, d]] stabi-
lizer code is characterized by an (n − k) × 2n stabilizer
generator matrix, where each row represents a stabilizer
generator.

Now we introduce CSS codes, which are a type of sta-
bilizer codes. A CSS code [15, 16] is specified by two
classical linear codes C1 and C2, where C2 is a subcode of
C1, i.e.,

C2 ⊆ C1. (11)

Each basis element of a CSS code corresponds to a
coset [24] of C2 in C1, where the basis element is an
equally weighted superposition of all the codewords in
the coset. A CSS code is a stabilizer code whose stabilizer
generators are either tensor products of X operators and
identities, or tensor products of Z operators and identi-
ties [21]. Hence, the CSS stabilizer code is characterized
by an (n− k)× 2n stabilizer generator matrix[

HZ 0
0 HX

]
, (12)

where HZ and HX are two matrices, and the 0s are ap-
propriately sized zero matrices.

Here we explain the encoding of a stabilizer code with
stabilizer S. The Pauli operators that preserve the stabi-
lizer code space but act nontrivially on the encoded state
are the logical Pauli operators on the encoded state [21].
The logical Pauli operators commute with all stabilizers
in S but lie outside S.

For an [[n, 1, d]] stabilizer code with stabilizer S, we
denote Z̄ and X̄ as the logical Z and logical X operators
on an n-qubit encoded state. Suppose

Z̄ |ψ0〉 = |ψ0〉 , (13)

and

{Mi}n−1i=1

are n − 1 independent stabilizer generators of S. The
encoded logical states are [21]

|0〉L :=

n−k∏
i=1

(I +Mi) |ψ0〉 , (14)

and

|1〉L := X̄

n−k∏
i=1

(I +Mi) |ψ0〉 =

n−k∏
i=1

(I +Mi)X̄ |ψ0〉 . (15)

Equations (14) and (15) indicate how to encode one qubit
by a stabilizer code.

We have discussed quantum error correction, especially
stabilizer codes in this subsection. Next we study the
close relation between a graph and a binary vector, which
provides a powerful tool to construct the CSS stabilizer
code.
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C. Graphs and linear algebra

In this subsection, we begin by defining graphs and
the binary linear space. After explaining these two con-
cepts, we describe an isomorphism from sets of edges of
an n-vertex graph to binary vectors with length

(
n
2

)
[17].

Our approach is inspired by homology theory to con-
struct quantum error correcting codes [3, 18]. Finally, we
present the examples of triangle graphs and star graphs.

A graph [17]

G := (V,E) (16)

comprises a set of vertices V and a set of edges

E ⊆ V × V. (17)

One example of a graph is the n-vertex complete
graph, Kn.

To explain the binary linear space, we introduce
GF (2), which is the smallest finite field containing two el-
ements {0, 1}, together with addition and multiplication
operations [25]. The linear space [24] over field GF (2),
denoted by Zm

2 , is a set {0, 1}m, together with vector
addition,

+ : Zm
2 × Zm

2 → Zm
2 , (18)

and scalar multiplication,1

· : GF (2)× Zm
2 → Zm

2 . (19)

Next we explain the relation between an edge set E of a

graph G and a binary vector with length
(|V |

2

)
, where |V |

is the cardinality of V .
Given Kn = (VK , EK), the power set of EK , which is

the set of all the subsets of EK , forms a binary linear
space E [17]. The power set of EK is denoted 2EK . For
U , U ′ ∈ 2EK , the addition of U and U ′ amounts to the
symmetric difference of U and U ′,

U + U ′ := (U ∪ U ′) \ (U ∩ U ′) . (20)

The empty set Ø is the zero element and

∀U ∈ 2EK , −U := U. (21)

For i and j , an edge eij is a unit vector in E , and

eji = eij because we are dealing with undirected graphs.
The set of edges

{eij}1≤i<j≤n (22)

1 Note we use · for the scalar multiplication only in Eq. (19) and
Table I. After this subsection, we use · only for the indefinite
inner product.

(a)

(b)

(c)

1

2

3

4

T123 = [1 1 0 1 0 0]

1

2

3

4

T124 = [1 0 1 0 1 0]

1

2

3

4

T134 = [0 1 1 0 0 1]

1

2

3

4

A1 = [1 1 1 0 0 0]

1

2

3

4

A2 = [1 0 0 1 1 0]

1

2

3

4

A3 = [0 1 0 1 0 1]

1

2

3

4

A1 +A2 = [0 1 1 1 1 0]

1

2

3

4

A1 +A3 = [1 0 1 1 0 1]

FIG. 2: For n = 4, (a) the triangle graphs representing
T1jk (2 ≤ j < k ≤ 4), (b) the star graphs representing
Al (1 ≤ l ≤ 3) and (c) the graphs representing
A1 + Am (2 ≤ m ≤ 3).

forms an orthonormal basis of E . As
(
n
2

)
edges exist

in Kn,

dim E =

(
n

2

)
. (23)

Now we show that E is isomorphic to Z(n
2)

2 [17]. Given
any U ∈ E , an isomorphism is

IG : E → Z(n
2)

2 : U 7→ u =
[
u1 . . . u(n

2)

]
, (24)

where

{ui}(
n
2)

i=1

are the coefficients of U with respect to the basis in
Eq. (22). The isomorphic mappings of the vector ad-
dition and the scalar multiplication are shown in Table I.

Here we introduce two types of
(
n
2

)
-dimensional binary

vectors and two linear subspaces spanned by these two
types of vectors as examples of the isomorphism (24).

E Z(n2)
2

+ (U ∪ U ′) \ (U ∩ U ′) u + u′

· 0U = Ø, 1U = U 0u = 0, 1u = u

TABLE I: The mapping of the vector addition and the

scalar multiplication on E to those operations on Z(n
2)

2
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These examples are used later for the construction of the

CSS stabilizer code. The two types of vectors in Z(n
2)

2 are

Tijk := eij + ejk + eki, Aj :=
∑

1≤l≤n, l 6=j

elj , (25)

where eij is the unit vector IG(eij). From the isomor-
phism (24), these two types of vectors can be represented
by two different types of graphs. Tijk is represented by
a triangle graph connecting vertices{

i , j , k
}
, (26)

and Aj is represented by a star graph with vertex j

connected to every other vertex.
We construct the linear space

C1 := span {A1,A2, . . . ,An−1} (27)

spanned by n − 1 linearly independent {Aj}, and the
orthogonal linear space

C⊥1 := span {T123,T124, . . . ,T12n,T134, . . . ,T1n−1n}
(28)

spanned by
(
n−1
2

)
linearly independent {Tijk}. The el-

ements in C⊥1 are represented by Eulerian cycles (graph
cycles that use each edge exactly once) [17]. Meanwhile,
C1 comprises vectors orthogonal to all vectors in C⊥1 [17],
i.e.,

C1 =
(
C⊥1
)⊥
. (29)

We introduce an (n − 2)-dimensional linear subspace
of C1
C2 := span {A1 + A2,A1 + A3 . . . ,A1 + An−1} ⊂ C1.

(30)
C2 together with C1 specifies the CSS code for summon-
ing in Subsec. IV B. Figure 2(a), (b) and (c) depict the
graphs representing bases of linear spaces C⊥1 , C1 and C2
respectively for n = 4.

This subsection has shown that the power set of the
edge set of an n-vertex complete graph forms a binary

linear space, isomorphic to Z(n
2)

2 . Hence, we have con-
structed a graph representation of any

(
n
2

)
-binary vector.

The examples given in this subsection are useful to con-
struct the CSS code for summoning.

D. The CWS code for summoning

In this subsection, we first introduce CWS codes [14],
then explain the graph-state formalism of CWS codes.
Finally we discuss the CWS code used by Hayden and
May for quantum summoning [2]. In Subsec. IV D, we
study the gate complexity of the encoding of the CWS
code for summoning and compare it with the CSS code.

(1,(1,3))

(1, (1, 2))

(1, (1, 4))
(2,(2,4))

(2, (1, 2))

(2, (2, 3))

(3,(1,3))

(3, (3, 4))

(3, (2, 3))
(4,(2,4))

(4, (3, 4))

(4, (1, 4))

FIG. 3: GCWS for N = 4. Each vertex of GCWS is
labeled by (j, (j, k)) for 1 ≤ j, k ≤ 4 and k 6= j. Each
(j, (j, k)) is adjacent to (k, (j, k)) and (j, (j, l)), where
1 ≤ l ≤ 4 and l 6= j or k.

An ((n, k)) CWS code [14] encodes a k-dimensional
Hilbert space to n qubits. This CWS code is specified
by a word stabilizer, which is a 2n-element Abelian sub-
group S of Gn, and a set of k word operators, which are
n-qubit Pauli operators

{Wl}kl=1.

The word stabilizer S specifies a unique |ψS〉 such that
∀M ∈ S,

M |ψS〉 = |ψS〉 . (31)

The CWS code is spanned by the basis

{|wl〉 := Wl |ψS〉}kl=1. (32)

Under local Clifford operations, any CWS code is
equivalent to its standard form [14], whose word sta-
bilizer is a graph-state stabilizer [26], and whose word
operators contain only Z operators and identities. Thus,
the stabilized state |ψS〉 of a CWS code in its standard
form is a graph state. Given a graph G = (V,E), the
associated graph state is [26]

|G〉 =
∏

(i, j)∈E

CZ(i, j)H
⊗|V | |0〉|V | , (33)

where CZ(i j) is the controlled-Z gate with control qubit i
and target qubit j, and H is the Hadamard gate.

Hayden and May propose a
((

2
(
N
2

)
, 2
))

CWS code

to summon a qubit in N causal diamonds [2]. This((
2
(
N
2

)
, 2
))

CWS code is specified by a graph-state sta-

bilizer represented by a graph GCWS and two word oper-
ators {

I, Z⊗N(N−1)
}
. (34)
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Given an N -vertex complete graph KN = {VK , EK},
GCWS is the line graph [17] of G′ := {V ′, E′}, where

V ′ = VK ∪ EK , (35)

and

E′ = {(v, (v, w)); v ∈ VK , (v, w) ∈ EK} . (36)

Figure 3 presents GCWS for N = 4. This CWS code can
be used to summon one qubit in four causal diamonds [2]
by employing twelve qubits.

This section has introduced quantum summoning as a
quantum information processing task in spacetime and
explained the conditions on the configurations to make
quantum summoning feasible. We have briefly reviewed
the background knowledge on quantum error correction,
especially stabilizer codes and CSS codes, which are used
for quantum summoning in this paper. We have ex-
plained the connection between graphs and binary vec-
tors, which is useful for the construction of the CSS code
for summoning. Finally, we have reviewed the CWS code
used for quantum summoning [2], with which we compare
our CSS code in Subsec. IV D.

III. MATHEMATICAL DEFINITION OF
SUMMONING

In this section, we mathematically define both classi-
cal and quantum summoning. We begin by formalizing
the notions of past and future light cones and causal di-
amonds. We than establish notations for a configuration
of causal diamonds and the sets of request and reveal
points. Subsequently, we give a careful definition of both
classical and quantum summoning, and when these tasks
are trivial.

Each spacetime point is x ∈ M, where M denotes
Minkowski spacetime [27]. The future light cone for x is

fut(x) := {w ∈M;w � x} , (37)

where w � x indicates that information can be sent
from x to w. The past light cone for x is

pas(x) := {w ∈M;w ≺ x} , (38)

where w ≺ x indicates that information can be received
at x from w. A causal diamond for a pair of points
(yi, zi) ∈M×M satisfying yi ≺ zi is

i := {x ∈M;x ∈ fut(yi) ∩ pas(zi)} . (39)

A configuration of causal diamonds is

C :=
{
i ; yi ≺ zi

}
, (40)

and N := |C |. Two causal diamonds i and j are

causally related if and only if ∃x ∈ i , ∃w ∈ j such

that either x ∈ fut(w), or x ∈ pas(w). The set of request
points is

REQ :=
{
yi ∈M; i ∈ C

}
, (41)

and the set of reveal points is

REV :=
{
zi ∈M; i ∈ C

}
. (42)

A starting point is s ∈ M such that ∀ z ∈ REV, z ∈
fut(s), where there is a starting agent S.

We now formalize Kent’s classical summoning proto-
col [1] by making each object mathematically well de-
fined. Given starting agent S at s ∈ M, request agents

REQAG := {Ay; y ∈ REQ} (43)

and corresponding reveal agents

REVAG := {Az; z ∈ REV} , (44)

and S possessing n-bit string m ∈ {0, 1}n, summoning is
the task of delivering m to any agent in REVAG given
arbitrary external selection of some y ∈ REQ, which is
only revealed at spacetime point y.

Remark 1. Classical summoning is trivial because S
broadcasts m to all z ∈ REV [1].

The notion of quantum summoning [1, 2] builds on the
concept of classical summoning, which we formalize as
follows. Given a starting agent S, REQAG and REVAG,
and S possessing quantum information

|Ψ〉 ∈H ⊗n
2 (45)

(with S possibly oblivious to |Ψ〉), summoning is the task
of delivering |Ψ〉 to any agent in REVAG given arbitrary
external selection of some y ∈ REQ, which is only re-
vealed at spacetime point y.

Remark 2. Summoning is trivial if S has a classical
description of |Ψ〉 because S broadcasts this description
such that all agents in REVAG receive and can recon-
struct |Ψ〉.
Remark 3. Quantum summoning is trivial if there is a
causal curve, which starts from s and runs sequentially

through all i ∈ C in any order. The protocol is trivial
in this case because quantum information can simply be
sent along this causal curve. When quantum information

arrives at j , Ayj
decides whether to send it to zj or to

send it to the next causal diamond depending on whether
she receives the request or not.

IV. SUMMONING BY QUANTUM ERROR
CORRECTION

Here we present a protocol for Alice to summon quan-
tum information. We specify the actions that the start-
ing agent and each of the request and reveal agents per-
form to fulfill any summoning request (Subsec. IV A). For
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any valid configuration of causal diamonds, we propose a
CSS code for the protocol of quantum summoning (Sub-
sec. IV B). The encoding and decoding circuits of the CSS
code are provided (Subsec. IV C). We show that the CSS
code consumes fewer quantum resources than the CWS
code [2] (Subsec. IV D).

A. Protocol

Here we propose a protocol using the CSS code (1) for
summoning one qubit in any valid spacetime configura-
tion. This CSS code assigns one qubit to each edge of the
complete graph KÑ ; hence, the number of qubits used by
the protocol is

Q =

(
Ñ

2

)
, (46)

for N and Ñ related according to Eq. (1).
For a spacetime configuration with an even number N

of causal diamonds, Ñ := N and S employs the CSS
code (1) to encode a qubit,

|ψ〉 = α |0〉+ β |1〉 , (47)

into Q (46) qubits and assigns each qubit to an edge of
the complete graph KÑ . The qubit assigned to the edge

eij is called qij , where eij denotes the edge connecting i

to j for i, j ∈ [N ] and i 6= j,.

S sends qij to Ayi
if

yi ≺ zj , (48)

and to Ayj if

yj ≺ zi. (49)

If Ayi receives the summoning request, she sends all the
qubits in her possession to Azi . Otherwise, she sends
each qubit qij in her possession to Azj . As each vertex is
adjacent to N − 1 edges, any reveal agent, who receives
the summoning request, receives N −1 qubits. Later, we
prove that ∀ r ∈ [N ] := (1 2 · · ·N), the qubits

{qrk; k ∈ [N ] \ {r}} (50)

can be used to decode |ψ〉 perfectly. Fig. (4) shows how
the qubits are assigned to the request agents for a con-
figuration of four causal diamonds.

In a configuration of an odd number of causal dia-
monds,

Ñ := N + 1. (51)

S introduces one more vertex

N+1

to obtain graph KN+1. This new vertex can be seen
as ficticious causal diamond causally related with ev-
ery causal diamond, but the summoning request is never
sent to this causal diamond. Then S employs the CSS
code (1), which encodes |ψ〉 into

(
N+1
2

)
qubits. As be-

fore, S sends each qubit qij , where i, j ∈ [N ], to Ayi if

yi ≺ zj , (52)

and to Ayj
if

yj ≺ zi. (53)

S sends each additional qubit qj N+1 to reveal agent Azj .
As in the even case, if Ayi

receives the summoning re-
quest, Ayi

sends all the qubits in her possession to Azi .
Otherwise, she sends each qubit qij in her possession
to Azj . Any reveal agent who receives the summoning
request, ultimately receives N qubits to decode |ψ〉. For
any r ∈ [N + 1], the qubits

{qrk; k ∈ [N + 1] \ {r}} (54)

can be used to decode |ψ〉 perfectly.

This protocol can also be used to accomplish a vari-
ant of the summoning task [4]. In this modified task,
the set of causal diamonds are causally ordered and the
request may be sent to multiple request agents but only
one of them needs to comply with the summon. If the
causal diamonds are causally ordered, then in the subset
of request agents to whom the requests are sent,

{Ayi
; i ∈ K ⊆ [N ]}, (55)

let Ayr
be the earliest request agent according to the

causal order of the diamonds. By following the above
protocol, the reveal agent Azr receives the N − 1 qubits
if N is even and the N qubits if N is odd. Hence, Azr

can decode the state |ψ〉.
This subsection has explained our protocol for quan-

tum summoning. Subsection IV B provides the detail of
the CSS code (1) used in our protocol.

B. The CSS code

In this subsection, we propose a stabilizer code with
each qubit assigned to an edge of KÑ . We show that it is

an
[[(

Ñ
2

)
, 1, Ñ2

]]
CSS code, which can be used to summon

a qubit by following the protocol in Subsec. IV A.

Theorem 1. The stabilizer code, specified by a[(
Ñ

2

)
− 1

]
× 2

(
Ñ

2

)
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y1

y2

y3

y4

z1

z2

z3

z4

y

x

t

1

2

3

4

q12
q13

q14

q24

q34q23

Agent Assigned qubits

Ay1 q12, q13, q14
Ay2 q24
Ay3 q23
Ay4 q34

(a) (b) (c)

FIG. 4: (a) A configuration of four causal diamonds in 2 + 1 dimensions. Three request points (y2, y3, y4) are placed
at the base vertices of a equilateral triangular prism and a fourth (y4) is placed at the centroid of base vertices. The
reveal points are placed at the midpoints of the top vertices (z1, z2, z3) and the centroid of the top vertices. The
volume of the diamond is not shown for visual clarity. The black arrows represent causal connections between points.
(b) A complete graph representing the causal connections between the diamonds depicted in (a). For the CSS code
the qubit qij is assigned to edge eij . (c) A table showing which requests agents is each physical qubit sent to.

stabilizer generator matrix

HÑ =



T123 0

T124 0
...

...

T12Ñ 0

T134 0
...

...

T1 Ñ−1 Ñ 0

0 A1 + A2

0 A1 + A3

...
...

0 A1 + AÑ−1



, (56)

where 0 is an
(
Ñ
2

)
-dimensional zero vector, is an[[(

Ñ
2

)
, 1, Ñ2

]]
CSS code, which can correct erasure errors

at qubits qij for i, j ∈ [N ] \ {r} for any r ∈
[
Ñ
]
.

The stabilizer generator matrix (56) is analogous
to the stabilizer generator matrix of the homological
continuous-variable quantum error correcting code [3].
By changing −1 to 1 in the stabilizer generator matrix of
the continuous-variable code, one obtains the generator
matrix (56) from the generator matrix of the continuous-
variable code. In continuous-variable codes, ±1 in the
generator matrix represents the phase-space displace-

ment operators e±iX̂ or e±iP̂ , where X̂ and P̂ are quadra-
ture operators [28, 29]. On the other hand, in the qubit
code, 1 in the generator matrix represent Pauli opera-
tors Z or X.

To prove this theorem, we prove the following three
lemmas.

Lemma 2. HÑ (56) is a stabilizer generator matrix of

a CSS code, which encodes one qubit into
(
Ñ
2

)
qubits.

Proof. From Eqs. (27) and (28),

T1jk · (A1 + Al) = 0 (57)

for any j, k, l such that 2 ≤ j < k ≤ Ñ and 2 ≤ l ≤ Ñ−1
Using Eq. (8), we know that all the stabilizer generators
in HÑ (56) commute with each other, thereby generat-

ing an Abelian subgroup S of G
(Ñ

2 )
. There are

(
Ñ
2

)
− 1

independent stabilizer generators, so this stabilizer code

encodes one qubit into
(
Ñ
2

)
qubits. The first

(
Ñ−1
2

)
sta-

bilizer generators contain only Z operators and identities
and the other Ñ − 2 stabilizer generators contain only X
operators and identities. Thus, the stabilizer code is a
CSS code.

In HÑ , the vectors representing the Z-type stabilizers

and the X-type stabilizers span C⊥1 (28) and C2 (30) for

n = Ñ respectively. Thus, the CSS code in Theorem 1
is specified by the linear codes C1 (27) and C2 (30) for

n = Ñ .
Now we show that by assigning each of the

(
Ñ
2

)
physical

qubits to an edge in KÑ , this CSS code can correct the
erasure errors at those qubits, which are not connected

to vertex r , for any r ∈
[
Ñ
]
. Hence, by following

the protocol of quantum summoning in Subsec. IV A, no
matter which Ayr

receives the request, the associated
reveal agent Azr can decode the original state |ψ〉 from

her Ñ − 1 qubits in Eq. (50) or Eq. (54).
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Lemma 3. For any r ∈
[
Ñ
]
, the CSS code in Theorem 1

can correct erasure errors at qubits qij for i, j ∈
[
Ñ
]
\{r}.

The proof of Lemma 3 is in Appendix A. The proof
is a modified version of that for the continuous-variable
code [3] with the infinite-dimensional field R replaced by
the finite-dimensional field Z2. One side effect of this
modification is that Ñ has to be even. Lemma 3 is no
longer true if Ñ is odd. To see this, we consider an
example of a three-qubit code with stabilizer generators
{ZZZ, IXX}. If r = 3, this code should correct any
Pauli error at q12. This is obviously false, because the
Pauli error at q12, ZII, commutes with both stabilizer
generators but does not lie in the stabilizer group.

Now we find the distance of the CSS code, which is an
important parameter characterizing the capability of the
code to detect and correct errors.

Lemma 4. The distance of the CSS code in Theorem 1
is Ñ/2.

Proof of Lemma 4 is in Appendix B. Lemma 4 implies

that the CSS code can correct any
(
Ñ/2− 1

)
-qubit era-

sure errors. Although the distance of this CSS code scales

as O
(
Ñ
)

, Lemma 3 implies that the CSS code can cor-

rect particular erasure errors at O
(
Ñ2
)

qubits.

This subsection has specified the CSS code (1) by its
stabilizer generator matrix (56). We have shown the era-
sure errors that the CSS code, can correct and the dis-
tance of the CSS code. In next subsection, we explain
how to encode and decode this CSS code.

C. Encoding and decoding

In last subsection, we have shown that the encoding of
our CSS code employs O(N2) qubits while the decoding
uses only O(N) qubits. In this subsection, we present
systematic methods to construct encoding and decod-
ing circuits for our CSS code. The encoding method
used here follows the standard method of encoding stabi-
lizer codes [21], discussed in Subsec. II B. Our decoding
method differs from the stabilizer code decoding method
because it only corrects erasure errors, which occur in
summoning. We also calculate the gate complexity of
both the encoding and the decoding circuits. It is shown
that G in the encoding is O(N2) and G in the decoding
is O(N).

To build the encoding circuit of this CSS code, we in-
troduce logical operations on the encoded state. By using
the vector representation (6), the logical operations are
defined as

X̄ :=
[
0 A1

]
(58)

and

Z̄ :=
[
A1 0

]
. (59)

(a)

|ψ〉e12

|0〉e13

...
...

|0〉e1Ñ

(b) e12

...
...

e1j

e1 j+1

...
...

e1Ñ

ej2

...
...

ej Ñ−1

|0〉ejÑ H

FIG. 5: (a) Multiple CNOT gates with |ψ〉e12 as the

control qubit and {|0〉e1i}Ñi=2 as the target qubits; (b) A
Hadamard gate is applied at |0〉ejÑ followed by multiple

CNOT gates with |0〉ejÑ as the control qubit and the

qubits assigned to {e1l}l=[Ñ ],l 6=j ∪ {ejk}Ñ−1k=2 as target

qubits.

From A1 ·A1 = 1 and Eq. (8), X̄ and Z̄ anti-commute
with each other.

We choose

|ψ0〉 = |0〉 := |0〉(
Ñ
2 ) , (60)

which is an eigenstate of Z̄ with eigenvalue one. To en-
code |ψ〉 (47), using Eqs. (14) and (15), and the fact that
Z-type stabilizers act trivially on |ψ0〉, we obtain the en-
coded state

α |0〉L + β |1〉L =
1√

2Ñ−2

Ñ−1∏
j=2

I +

(Ñ
2 )⊗

i=1

X(A1+Aj)i

 (α |0〉+ β |A1〉) , (61)
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|ψ〉 q12

|0〉 q13

|0〉 q14

|0〉 q23

|0〉 H q24

|0〉 H q34

FIG. 6: The encoding circuit of the CSS code
comprising Hadamard gates and CNOT gates when
Ñ = 4. The inputs of this circuit are |ψ〉 ⊗ |00000〉 and
the outputs of this circuit are the qubits assigned to
each edge of the complete graph K4 shown in Fig. 4(b).

where

|A1〉 =

(Ñ
2 )∏

i=1

X(A1)i |0〉 , (62)

and (A1 + Aj)i and (A1)i are the i-th entries of vectors
A1 + Aj and A1 respectively.
S applies CNOT gates as in Fig. 5(a) to the product

state

|ψ〉 ⊗ |0〉(
Ñ
2 )−1 , (63)

to obtain

α |0〉+ β |A1〉 . (64)

Then S implements each operation

I +

m⊗
i=1

X(A1+Aj)i , (65)

where 1 ≤ j ≤ Ñ − 2, by using CNOT gates and a
Hadamard gate as in Fig. 5(b). Finally, S obtains the
encoded state (61). Figure 6 presents an example of the

encoding circuit for Ñ = 4.
The number of CNOT gates in Fig. 5(a) is O(N).

In Fig. 5(b), the number of CNOT gates is O(N) and
the number of Hadamard gate is one. As the circuit
in Fig. 5(a) is only applied once and the circuit in
Fig. 5(b) must be applied O(N) times. the encoding of
the CSS code consumes O

(
N2
)

CNOT gates and O(N)
Hadamard gates. Hence, for the encoding of the CSS
code, G ∈ O

(
N2
)
.

The decoding scheme is explained in the following.
Suppose the request is sent to yr. Reveal agent Azr

cannot decode by measuring the syndromes as she has
only Ñ − 1 qubits. The encoded state (61) is an
equally weighted superposition of the codewords given

q14 •
q24 • •
q34 • • |ψ〉
|0〉 +1

|0〉 −1

FIG. 7: One example of the decoding circuit comprising
CNOT gates and measurements of Z operators for
Ñ = 4. The inputs of the circuit are three physical
qubits q14, q24 and q34 and two ancillary qubits |00〉.
The measurement outcomes on the two ancillary qubits
are +1 and −1, based on which two CNOT gates are
applied with the third qubit as the control qubit and
the first two qubits as the target qubits. The third
output qubit is the original qubit |ψ〉.

in Eqs. (C1) and (C2) (see Appendix C). After trac-
ing out the lost qubits, the reduced state ρr (C12) be-
comes a mixture of the codewords. To decode the origi-
nal state |ψ〉 from the Ñ − 1 qubits with reduced density
matrix ρr, reveal agent Azr measures the set of mutually
commutative Hermitian operators{

ZqrkZqr k+1
; k ∈

[
Ñ − 1

]
\{r}

}
, (66)

where Zqrk represents the Z operator on the qubit qrk.
After applying the projective measurements, the reduced
state is projected onto one codeword, becoming a pure
state (see Appendix C).

According to the measurement outcomes, by applying
Ñ − 2 CNOT gates with one control qubit and distinct
target qubits, Azr obtains the original state |ψ〉 at the
control qubit. Fig. 7 presents an example of the decoding

circuit when the request is received at 4 . In decoding,

G ∈ O(N) and the number of single-qubit measurements
is also O(N).

D. Comparison with the CWS code

Now we compare the quantum resources required by
our CSS code with Hayden and May’s CWS code. To
investigate the complexity of the encoding of the CWS
code, we need to know the complexity of preparing graph
state |GCWS〉. From Eq. (33), we know that the number
of controlled-Z gates and Hadamard gates in preparing
a graph state equals to the number of edges and vertices
in the graph, respectively. The numbers of edges and
vertices in GCWS are

|E(GCWS)| =N(N − 1)2

2
, (67)

|V (GCWS)| =N(N − 1). (68)
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Thus, preparing |GCWS〉 requires O
(
N3
)

controlled-

Z gates and O
(
N2
)

Hadamard gates. Applying the

codeword operators (34) requires additional O
(
N2
)

controlled-Z gates.
In conclusion, the encoding of the CWS code consumes

O
(
N3
)

controlled-Z gates and O
(
N2
)

Hadamard gates.
Compared with the CWS code, our CSS code reduces G
for encoding from O

(
N3
)

to O
(
N2
)
.

Our protocol employs a CSS code to summon quantum
information in any valid configuration. The CSS code
can correct the erasure errors that occur in the quan-
tum summoning task. The encoding and the decoding
methods for this CSS code have been presented. Finally,
we have compared the complexity of the encoding of the
CSS code with the encoding of the CWS code and found
that our CSS code is more efficient.

V. DISCUSSION

We have presented a protocol to summon quantum in-
formation efficiently in any valid configuration of causal
diamonds. Central to our protocol is a CSS code that
encodes one logical qubit into O(N2) physical qubits,
where each physical qubit is assigned to an edge of a
complete graph whose vertices correspond to causal dia-
monds. This code is a qubit version of the homological
continuous-variable quantum error correcting code [3].
The CSS code is designed using the fact that the power
set of edges of a complete graph can be cast as a vector
space. The stabilizer generators of the CSS code corre-
spond to triangle graphs and sums of star graphs.

The properties of these graphs are used to show that
the logical qubit can be decoded from the subset of phys-
ical qubits that are assigned to edges adjacent to any
vertex. In order to employ this code for summoning, the
physical qubits are sent to the request points in such a
way that the past of every reveal point contains enough
physical qubits to decode the original qubit. Our proto-
col design, similar to one used previously [3], ensures that
whenever a request agent receives the request the associ-
ated reveal agent receives all physical qubits required to
decode the original qubit.

We also present procedures to design the encoding and
decoding circuits for the CSS code. We show that our
protocol is less resource-intensive than the protocol based
on the CWS code [2] which uses circuits that are O(N2)
wide and O(N3) deep. The circuits for the CSS code
have width that is also O(N2) but half that of the CWS
code and require only O(N2) gates.

VI. CONCLUSION

Our protocol for summoning is designed to work for
any valid configuration of causal diamonds, where the un-
derlying CSS code depends only on the number of causal

diamonds. It is likely that codes can be designed that re-
duce resource usage by exploiting the structure of causal
connections between the causal diamonds, examples be-
ing when a single causal curve connects multiple causal
diamonds [3] or when the graph representing causal con-
nections is acyclic [4].

While any given configuration of causal diamonds may
be realized in man-made quantum networks, a useful av-
enue of research would be to classify the configurations
that can occur naturally in flat or curved spacetimes. Our
codes as well as other codes for quantum summoning as-
sume that entangled states may be tranferred without de-
coherence in spacetime. Quantum summoning in curved
spacetime or Rindler coordinates might require the usage
of codes that protect against decoherence caused due to
gravity or acceleration [30–32].
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Appendix A: Proof of Lemma 3

Proof. Denote Er as the set of Pauli operators at qubits

qij for i, j ∈
[
Ñ
]
\ {r}. For any Pauli operator P ∈ Er,

its vector representation (6) is denoted

P =
[
PZ PX

]
. (A1)

As P acts nontrivially only at qubits qij for i, j ∈
[
Ñ
]
\

{r},

∀k ∈
[
Ñ
]
\ {r}, PZ · erk = PX · erk = 0. (A2)

To show that the stabilizer code in Theorem 1 can
correct any error in Er for every r, it is sufficient to prove
that [21]

∀P ∈ Er, P ∈ C(S)⇒ P ∈ S, (A3)

where S is the stabilizer group generated by the stabilizer
generators in HÑ (56) and C(S) is the centralizer of S
in G

(Ñ
2 )

, i.e. the group of the Pauli operators commuting

with all the elements of S. Using Eq. (8), we know that
P ∈ C(S) if and only if

∀v ∈ C⊥1 , PX · v = 0, (A4)
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and

∀u ∈ C2, PZ · u = 0. (A5)

From Trij ∈ C⊥1 and Eq. (A4),

PX · Trij = 0. (A6)

It implies that

PX · (eri + erj + eij) = 0. (A7)

Using Eq. (A2), we know that

PX · eij = 0. (A8)

Equation (A8), together with Eq. (A2), implies that
PX = 0.

Next we prove that Eq. (A5) implies that PZ ∈ C⊥1 .
Suppose

PZ ·A1 = 1. (A9)

Then Eq. (A5) implies that for 2 ≤ l ≤ Ñ − 1,

PZ ·Al = 1. (A10)

As Ñ is even,

Ñ−1∑
m=1

PZ ·Am = 1. (A11)

As

Ñ∑
m=1

PZ ·Am = PZ ·
Ñ∑

m=1

Am = 0, (A12)

we have

PZ ·AÑ = 1. (A13)

Hence,

∀ k ∈
[
Ñ
]
, PZ ·Ak = 1. (A14)

Equation (A14) contradicts Eq. (A2) because Eq. (A2)
implies that

PZ ·Ar = 0. (A15)

Thus, (A9) is false and

PZ ·A1 = 0. (A16)

Then Eq. (A5) indicates that for 2 ≤ l ≤ Ñ − 1,

PZ ·Al = 0. (A17)

Hence

Ñ−1∑
m=1

PZ ·Am = 0. (A18)

From Eq. (A12), we know that

PZ ·AÑ = 0. (A19)

Thus,

∀ k ∈
[
Ñ
]
, PZ ·Ak = 0, (A20)

which indicates that PZ ∈ C⊥1 . Since PX = 0, we know
that P is a Z-type stabilizer in S.

Appendix B: Proof of Lemma 4

Proof. The distance (10) of the stabilizer code in Theo-
rem 1 equals to the minimum weight of the Pauli oper-
ators in C(S) \ S [21]. To prove the minimum weight of

the Pauli operators in C(S)\S is Ñ/2, we first show that
there exists a Pauli operator

P :=

Ñ/2⊗
i=1

Zq2i−1, 2i
(B1)

with weight Ñ/2 such that P ∈ C(S) \S. Then we show

that no Pauli operator with weight less than Ñ/2 lies in
C(S) \ S.

From Eq (B1), we know that

PZ =

Ñ/2∑
i=1

e2i−1, 2i, PX = 0. (B2)

From Eq. (B2), we find that

∀ l ∈
[
Ñ
]
, PZ ·Al = 1. (B3)

Hence,

∀v ∈ C2, PZ · v = 0. (B4)

From the fact that PX = 0, we know that P (B1) com-
mutes with all the stabilizers in S, i.e., P ∈ C(S). As
PZ cannot be represented by an Euclidean cycle,

PZ /∈ C⊥1 . (B5)

Thus, E /∈ S, and hence

P ∈ C(S) \ S. (B6)

For any Pauli operator P ′ with weight less than Ñ/2,

there exists an r ∈
[
Ñ
]

such that

∀k ∈
[
Ñ
]
\ {r}, P ′Z · erk = P ′X · erk = 0. (B7)

From the discussion in Appendix A, we know that

P ′ ∈ C(S)⇒ P ′ ∈ S. (B8)

It implies that

P ′ /∈ C(S) \ S. (B9)

Thus, no Pauli operator with weight less than Ñ/2 lies
in C(S) \ S.
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Appendix C: Reduced density matrix

In this appendix, we calculate the reduced density ma-
trix ρr and show the state after the measurements of the
operators in Eq. (66).

From Eqs. (14) and (15),

|0〉L =
1√

2Ñ−2

∑
x∈C2

|x〉 , (C1)

|1〉L =
1√

2Ñ−2

∑
x∈C2

|A1 + x〉 , (C2)

form a basis of the CSS code in Theorem 1. Hence,

the density matrix of the
(
Ñ
2

)
physical qubits encod-

ing |ψ〉 (47) is

ρ =
1

2Ñ−2

∑
x∈C2

(α |x〉+ β |A1 + x〉)

×
∑
y∈C2

(α∗ 〈y|+ β∗ 〈A1 + y| |) . (C3)

To express the reduced density matrix, we give the
following notations. The subset of edges connected to r
in KÑ is denoted by Er and the complement of Er in E,

i.e. the subset of edges not connected to r , is denoted

by Ec
r . In the same way as 2EK forms a linear space

E ∼= Z(Ñ
2 )

2 ,

the power set 2Er forms a linear subspace

Er
∼= ZÑ−1

2 (C4)

and the power set 2E
c
r forms the orthogonal complement

of Er in E , denoted by

E⊥r
∼= Z(Ñ−1

2 )
2 . (C5)

For a vector v ∈ E , we use vr to denote the projection
of v onto Er, and v⊥r to denote the projection of v onto
E⊥r .

Now we calculate the reduced density matrix ρr of the

Ñ − 1 qubits
{
qrk; k ∈

[
Ñ
]
\ {r}

}
. As

∀r ∈
[
Ñ
]
,
∑
x∈C2

|Ar + x〉 =
∑
x∈C2

|A1 + x〉 , (C6)

ρr =
1

2Ñ−2
trEc

r

∑
x∈C2

(
α |x〉+ β |Ar + x〉

) ∑
y∈C2

(
α∗〈y|+ β∗〈Ar + y|

) , (C7)

where trEc
r

denotes the partial trace over the qubits
{
qij ; i, j ∈

[
Ñ
]
\ {r}

}
. From the definition of partial trace [33],

ρr =
1

2Ñ−2

∑
v∈E⊥r

〈
v

∣∣∣∣∣∣
∑
x∈C2

(
α |x〉+ β |Ar + x〉

) ∑
y∈C2

(
α∗〈y|+ β∗〈Ar + y|

)∣∣∣∣∣∣v
〉
. (C8)

For each v ∈ E⊥r , there is at most one x ∈ C2 such that

x⊥r = v. (C9)

Hence, we get

ρr =
1

2Ñ−2

∑
x∈C2

〈
x⊥r
∣∣ (α |x〉+ β |Ar + x〉) (α∗〈x|+ β∗〈Ar + x|)

∣∣x⊥r 〉 . (C10)

As

〈x⊥r |x〉 = |xr〉 and 〈x⊥r |Ar + x〉 = |1 + xr〉 , (C11)

where 1 is an (Ñ − 1)-dimensional vector with all the entries equal to 1,

ρr =
1

2Ñ−2

∑
x∈C2

(α |xr〉+ β |1 + xr〉) (α∗〈xr|+ β∗〈1 + xr|) . (C12)

Consider the set of mutually commutative Hermitian operators in (66){
ZqrkZqr k+1

; k ∈
[
Ñ − 1

]
\{r}

}
.
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∀x ∈ C2, |xr〉 and |1 + xr〉 are the eigenstates of each
Hermitian operator in (66) with same eigenvalue, so any
linear combination

α |xr〉+ β |1 + xr〉

is a common eigenstate of the Hermitian operators (66),
with the eigenvalues forming a vector consisting of ±1.
For

∀x, z ∈ C2 and x 6= z, (C13)

the two eigenstates

α |xr〉+ β |1 + xr〉 (C14)

and

α |zr〉+ β |1 + zr〉 (C15)

have different eigenvalue vectors. This is because if (C14)
and (C15) have the same eigenvalues, then either xr = zr
or xr = zr+1, both of which contradict condition (C13).
Thus, ρr in Eq. (C12) is an equally weighted mixture of
the common eigenstates of the Hermitian operators (66)
with different eigenvalue vectors.

After the projective measurements on all the Hermi-
tian operators (66), the reduced state is projected onto

α |yr〉+ β |1 + yr〉 , (C16)

where y ∈ C2 and yr is the projection of y
onto Er. The corresponding measurement outcomes

are
{

(−1)y
(i)
r +y(i+1)

r ; i ∈
[
Ñ − 2

]}
, where y

(i)
r is the i-th

component in yr. (C16) is the state after the measure-
ments of the Hermitian operators in (66).
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