
A Simple Multi-Class Boosting Framework

with Theoretical Guarantees and Empirical Proficiency

Ron Appel 1 Pietro Perona 1

Abstract

There is a need for simple yet accurate white-box

learning systems that train quickly and with lit-

tle data. To this end, we showcase REBEL, a

multi-class boosting method, and present a novel

family of weak learners called localized similar-

ities. Our framework provably minimizes the

training error of any dataset at an exponential

rate. We carry out experiments on a variety of

synthetic and real datasets, demonstrating a con-

sistent tendency to avoid overfitting. We eval-

uate our method on MNIST and standard UCI

datasets against other state-of-the-art methods,

showing the empirical proficiency of our method.

1. Motivation

The past couple of years have seen vast improvements in

the performance of machine learning algorithms. Deep

Nets of varying architectures reach almost (if not better

than) human performance in many domains (LeCun et al.,

2015). A key strength of these systems is their ability to

transform the data using complex feature representations

to facilitate classification. However, there are several con-

siderable drawbacks to employing such networks.

A first drawback is that validating through many architec-

tures, each of which may have millions of parameters, re-

quires a lot of data and time. In many fields (e.g. pathology

of not-so-common diseases, expert curation of esoteric sub-

jects, etc.), gathering large amounts of data is expensive

or even impossible (Yu et al., 2015). Autonomous robots

that need to learn on the fly may not be able to afford the

large amount of processing power or time required to prop-

erly train more complex networks simply due to their hard-

ware constraints. Moreover, most potential users (e.g. non-

machine-learning scientists, small business owners, hobby-

1Caltech, Pasadena, USA. Correspondence to: Ron
Appel <appel@vision.caltech.edu>, Pietro Perona <per-
ona@vision.caltech.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

(a) Old: Decision Stumps (b) New: Localized Similarities

Figure 1. (a) The typical decision stumps commonly used in

boosting lead to classification boundaries that are axis aligned

and not representative of the data. Although these methods can

achieve perfect training accuracy, it is apparent that they heavily

overfit. (b) Our method uses localized similarities, a novel family

of simple weak learners (see Sec. 5.1). Paired with a procedure

that provably guarantees exponential loss minimization, our clas-

sifiers focus on smooth, well-generalizing boundaries.

ists, etc.) may not have the expertise or artistry required to

hypothesize a set of appropriate models.

A second drawback is that the complex representations

achieved by these networks are difficult to interpret and to

analyze. For many riskier applications (e.g. self-driving

cars, robotic surgeries, military drones, etc.), a machine

should only run autonomously if it is able to explain its ev-

ery decision and action. Further, when used towards the sci-

entific analysis of phenomena (e.g. understanding animal

behavior, weather patterns, financial market trends, etc.),

the goal is to extract a causal interpretation of the system in

question; hence, to be useful, a machine should be able to

provide a clear explanation of its internal logic.

For these reasons, it is desirable to have a simple white-box

machine learning system that is able to train quickly and

with little data. With these constraints in mind, we show-

case a multi-class boosting algorithm called REBEL and

a novel family of weak learners called similarity stumps,

leading to much better generalization than decision stumps,

as shown in Fig. 1. Our proposed framework is simple, effi-

cient, and is able to perfectly train on any dataset (i.e. fully

minimize the training error in a finite number of iterations).

A Simple Multi-class Boosting Framework

The main contributions of our work are as follows:

1. a simple multi-class boosting framework using local-

ized similarities as weak learners (see Sec. 3)

2. a proof that the training error is fully minimized within

a finite number of iterations (see Sec. 5)

3. a procedure for selecting an adequate learner at each

iteration (see Sec. 5.2)

4. empirical demonstrations of state-of-the-art results on

a range of datasets (see Sec. 7)

2. Background

Boosting is a fairly mature method, originally formulated

for binary classification (e.g. AdaBoost and similar vari-

ants) (Schapire, 1990; Freund, 1995; Freund & Schapire,

1996). Multi-class classification is more complex than its

binary counterpart, however, many advances have been

made in both performance and theory in the context of

boosting. Since weak learners come in two flavors, bi-

nary and multi-class, two corresponding families of boost-

ing methods have been explored.

The clever combination of multiple binary weak learn-

ers can result in a multi-class prediction. AdaBoost.MH

reduces the K-class problem into a single binary prob-

lem with a K-fold augmented dataset (Schapire & Singer,

1999). AdaBoost.MO and similar methods reduce the

K-class problem into C one-versus-all binary problems

using Error-Correcting Output Codes to select the final

hypothesized class (Allwein et al., 2001; Sun et al., 2005;

Li, 2006). More recently, CD-MCBoost and CW-Boost

return a K-dimensional vector of class scores, focusing

each iteration on a (binary) problem of improving the

margin of one class at a time (Saberian & Vasconcelos,

2011; Shen & Hao, 2011). REBEL also returns a vector of

class scores, increasing the margin between dynamically-

selected binary groupings of the K classes at each iteration

(Appel et al., 2016).

When multi-class weak learners are acceptable (and avail-

able), a reduction to binary problems is unnecessary. Ad-

aBoost.M1 is a straightforward extension of its binary

counterpart (Freund & Schapire, 1996). AdaBoost.M2 and

AdaBoost.MR make use of a K-fold augmented dataset

to estimate output label probabilities or rankings for a

given input (Freund & Schapire, 1996; Schapire & Singer,

1999). More recent methods such as SAMME, AOSO-

LogitBoost, and GD-MCBoost are based on linear com-

binations of a fixed set of codewords, outputting K-

dimensional score vectors (Zhu et al., 2009; Sun et al.,

2011; Saberian & Vasconcelos, 2011).

In the noteworthy paper “A Theory of Multiclass Boosting”

(Mukherjee & Schapire, 2010), many of the existing boost-

ing methods were shown to be inadequate at training; either

because they require their weak learners to be too strong,

or because their loss functions are unable to deal with

some training data configurations. (Mukherjee & Schapire,

2010) outline the appropriate Weak Learning Condition

that a boosting algorithm must require of its weak learn-

ers in order to guarantee training convergence. However,

no method is prescribed with which to find an adequate set

of weak learners.

The goal of our work is to propose a multi-class boosting

framework with a simple family of binary weak learners

that guarantee training convergence and are easily inter-

pretable. Using REBEL (Appel et al., 2016) as the multi-

class boosting method, our framework is meant to be as

straightforward as possible so that it is accessible and prac-

tical to more users; outlining it in Sec. 3 below.

3. Our Framework

In this section, we define our notation, introduce our boost-

ing framework, and describe our training procedure.

Notation

scalars (regular), vectors (bold): x, x ≡ [x1, x2, ...]
constant vectors: 0 ≡ [0,0, ...], 1 ≡ [1,1, ...]
indicator vector: δδδk (0 with a 1 in the kth entry)

logical indicator function: 1(LOGICAL EXPRESSION) ∈ {0,1}
inner product: 〈x,v〉
element-wise multiplication: x⊙ v

element-wise function: F[x] ≡ [F(x1), F(x2), ...]

In the multi-class classification setting, a datapoint is repre-

sented as a feature vector x and is associated with a class

label y. Each point is comprised of d features and belongs

to one of K classes: x ∈ X ⊆ R
d, y ∈ Y ≡ {1,2, ...,K}

A good classifier reduces the training error while gener-

alizing well to potentially-unseen data. We use REBEL

(Appel et al., 2016) due to its support for binary weak learn-

ers, its mathematical simplicity (i.e. closed-form solu-

tion to loss minimization), and its strong empirical perfor-

mance. REBEL returns a vector-valued output H, the sum

of T {weak learner f, accumulation vector a} pairs, where

ft : X → {±1} and at ∈ R
K

:

H(x) ≡
T∑

t=1

ft(x)at

The hypothesized class is simply the index of the maximal

entry in H:

F(x) ≡ argmax
y∈Y

{〈H(x), δδδy〉}

The average misclassification error ε can be expressed as:

ε ≡ 1

N

N∑

n=1

1(F(xn) 6=yn) (1)

A Simple Multi-class Boosting Framework

REBEL uses an exponential loss function to upper-bound

the average training misclassification error:

ε ≤ L ≡ 1

2N

N∑

n=1

〈exp[yn⊙H(xn)],1〉 (2)

where: yn ≡ 1−2δδδyn (i.e. all +1s with a −1 in the yth
n index)

Being a greedy, additive model, all previously-trained pa-

rameters are fixed and each iteration amounts to jointly op-

timizing a new weak learner f and accumulation vector a.

To this end, the loss at iteration I+1 can be expressed as:

LI+1 =
1

N

N∑

n=1

〈wn, exp[f(xn)yn⊙a]〉 (3)

where: wn ≡ 1

2
exp[yn⊙HI(xn)]

Given a weak learner f, we define true and false (i.e. correct

and incorrect) multi-class weight sums (sT
f and sF

f) as:

sT
f ≡ 1

N

N∑

n=1

1[f(xn)yn<0]⊙wn, sF
f ≡ 1

N

N∑

n=1

1[f(xn)yn>0]⊙wn

thus: sT
f+sF

f =
1

N

N∑

n=1

wn, sT
f−sF

f =
1

N

N∑

n=1

f(xn)wn⊙yn

Using these weight sums, the loss can be simplified to:

LI+1 ≡ Lf ≡ 〈sT
f , exp[−a]〉+ 〈sF

f , exp[a]〉 (4)

In this form, it is easily shown that with the optimal accu-

mulation vector a∗, the loss has an explicit expression:

a∗=
1

2

(
ln[sT

f]− ln[sF
f]
)

∴ L∗

f = 2〈
√

sT
f

⊙sF
f ,1〉 (5)

At each iteration, growing decision trees requires an ex-

haustive search through a pool of decision stumps (which

is tractable but time-consuming), storing the binary learner

that best reduces the multi-class loss in Eq. 5. In some sit-

uations, axis-aligned trees are simply unable to reduce the

loss any further, thereby stalling the training procedure.

Our proposed framework circumvents such situations. At

each iteration, instead of exhaustively searching for an ad-

equate learner, we first determine an appropriate “binariza-

tion” of the multi-class data (i.e. a separation of the K-class

data into two distinct groups) and then find a weak learner

with a guaranteed reduction in loss, foregoing the need for

an exhaustive search.

4. Binarizing Multi-Class Data

At each iteration, the first step in determining an adequate

weak learner is binarizing the data, i.e. assigning a tempo-

rary binary label to each data point by placing it into one of

two groups. The following manipulations result in a proce-

dure for binarizing datapoints given their boosting weights.

Eq. 5 can be upper-bounded as follows:

L∗

f = 2〈
√

sT
f

⊙sF
f ,1〉 ≤ 〈sT

f+sF
f ,1〉 −

1

2

U
︷ ︸︸ ︷
〈 [sT

f−sF
f]

2

[sT
f+sF

f]
,1

〉

(6)

since:
√

x(1−x) ≤ 1

2
−
(1

2
−x

)2

∀x, using: x=
sT

sT+sF

By expanding sT
f ± sF

f , U is expressed as a squared norm:

U =

〈
[

1
N

N∑

n=1

f(xn)wn⊙yn

]2

[
1
N

N∑

n=1

wn

] ,1

〉

=
∥
∥
∥

N∑

n=1

f(xn)un

∥
∥
∥

2

(7)

where: un ≡ 1√
N

wn⊙yn
√

N∑

n=1

wn

Eq. 7 can be written as a product of matrices by stacking

all of the un as column vectors of a K×N matrix U and

defining f as a row vector with elements f(xn):

U = f [U
⊤

U] f
⊤

Note that the trace of U
⊤

U can be lower-bounded:

tr(U
⊤

U) =

N∑

n=1

‖un‖2 =

〈
N∑

n=1

[wn]
2

N
[N∑

n=1

wn

] ,1

〉

≥ 1

N2

N∑

n=1

〈wn,1〉

since by Jensen’s inequality:

N∑

n=1

x2
n ≥ 1

N

(N∑

n=1

xn

)2

Furthermore, U
⊤

U has N (not-necessarily unique) non-

negative eigenvalues, each associated with an independent

eigenvector. Let v̂n be the eigenvector corresponding to the

nth largest eigenvalue λn. Hence, f can be decomposed as:

f = 〈f ,v̂1〉 v̂1 +
N∑

n=2

〈f ,v̂n〉 v̂n (8)

∴ U = λ1〈f ,v̂1〉2 +
N∑

n=2

λn〈f ,v̂n〉2 ≥ λ1〈f ,v̂1〉2

A Simple Multi-class Boosting Framework

Since the trace of a matrix is equal to the sum of its eigen-

values and U
⊤

U has at most K non-zero eigenvalues (λ1

being the largest), hence:

λ1 ≥ 1

K
tr(U

⊤

U) ≥ L0
KN

(9)

since:
1

N

N∑

n=1

〈wn,1〉 = L0

Based on this formulation, binarization is achieved by set-

ting the binarized class bn of each sample n as the sign of

its corresponding element in v̂1: bn ≡ sign(〈v̂1, δδδn〉)
Accordingly, if b is the vector with elements bn, then:

〈b,v̂1〉2 = 〈sign[v̂1],v̂1〉2 = 〈|v̂1|,1〉2 ≥ 1 (10)

(please refer to supplement for proof)

Finally, by combining Eq. 6, Eq. 9, and Eq. 10, with perfect

binarized classification (i.e. when the binary weak learner

perfectly classifies the binarized data), the loss ratio at any

iteration is bounded by:

Lf∗

L0
≤ 1− 1

2KN

In general, there is no guarantee that any weak learner can

achieve perfect binarized classification. In the following

section, we show that with the ability to isolate any single

point in space (i.e. to classify an inner point as +1 and all

outer points as −1), the loss decreases exponentially.

5. Isolating Points

Assume that we have a weak learner fi that can isolate a

single point xi in the input space X. Accordingly, denote

fi = 2δδδi−1 as a vector of −1s with a +1 in the ith entry,

corresponding to classification using the isolating learner

fi(xn). If N ≥ 4, then for any unit vector v̂ ∈ R
N :

max
i

{〈fi,v̂〉2} ≥ 4

N
(11)

(please refer to supplement for proof)

Combining Eq. 6, Eq. 9, and Eq. 11, the loss ratio at each

iteration is upper-bounded as follows:

mini{Lfi}
L0

≤ 1− 2

KN2

Before the first iteration, the initial loss L0 = K/2. Each

iteration decreases the loss exponentially. Since the train-

ing error is discrete and is upper bounded by the loss (as

in Eq. 2), our framework attains minimal training error on

any1 training set after a finite number of iterations:

define: T0 ≡
⌈

ln(2/KN)

ln
(
1− 2

KN2

)

⌉

≈
⌈
KN2

2
ln
(KN

2

)⌉

∴ T ≥ T0 ⇒ K

2

(

1− 2

KN2

)T

<
1

N
⇒ ε = 0

Although this bound is too weak to be of practical use, it

is a bound nonetheless (and can likely be improved). In

the following section, we specify a suitable family of weak

learners with the ability to isolate single points.

5.1. One/Two-Point Localized Similarities

Classical decision stumps compare a single feature to a

threshold, outputting +1 or −1. Instead, our proposed fam-

ily of weak learners (called localized similarities) compare

points in the input space using a similarity measure. Due

to its simplicity and effectiveness, we use negative squared

Euclidean distance −‖xi−xj‖2 as a measure of similarity

between points xi and xj . A localized similarity has two

modes of operation:

1. In one-point mode, given an anchor xi and a threshold

τ , the input space is classified as positive if it is more

similar to xi than τ , and negative otherwise; ranging

between +1 and −1:

fi(x) ≡ τ − ‖xi−x‖2
τ + ‖xi−x‖2

2. In two-point mode, given supports xi and xj , the input

space is classified as positive if it is more similar to

xi than to xj (and vice-versa), with maximal absolute

activations around xi and xj ; falling off radially away

from the midpoint m:

fij(x) ≡ 〈d,x−m〉
4‖d‖4 + ‖x−m‖4

where: d ≡ 1

2
[xi−xj] and: m ≡ 1

2
[xi+xj]

One-point mode enables the isolation of any single data-

point, guaranteeing a baseline reduction in loss. However,

it essentially leads to pure memorization of the training

data; mimicking a nearest-neighbor classifier. Two-point

mode adds the capability to generalize better by provid-

ing margin-style functionality. The combination of these

1 There may be situations in which multiple samples belong-
ing to different classes are coincident in the input space. These
cases can be dealt with (before or during training) either by as-
signing all such points as a special “mixed” class (to be dealt with
at a later stage), or by setting the class labels of all coincident
points to the single label that minimizes the error.

A Simple Multi-class Boosting Framework

two modes enables the flexibility to tackle a wide range of

classification problems. Furthermore, in either mode, the

functionality of a localized similarity is easily interpretable:

“which of these fixed training points is a given query point

more similar to?”

5.2. Finding Adequate Localized Similarities

Given a dataset with N samples, there are about N2 pos-

sible localized similarities. The following procedure effi-

ciently selects an adequate localized similarity:

0. Using Eq. 5, calculate the base loss L1 for the homoge-

neous stump f1 (i.e. the one-point stump with any xi

and τ ≡ ∞, classifying all points as +1).

1. Compute the eigenvector v̂1 (as in Eq. 8); label the

points based on their binarized class labels bn.

2. Find the optimal isolating localized similarity fi (i.e.

with xi and appropriate τ , classifying point i as +1 and

all other points as −1).

3. Using Eq. 5, calculate the corresponding loss Li. Of the

two stumps f1 and fi, store the one with smaller loss as

best-so-far.

4. Find point xj most similar2 to xi among points of the

opposite binarized class:

xj = arg min
bj=−bi

{‖xi−xj‖2}

5. Calculate the loss achieved using the two-point local-

ized similarity fij . If it outperforms the previous best,

store the newer learner and update the best-so-far loss.

6. Find all points that are similar enough to xj and remove

them from consideration for the remainder of the cur-

rent iteration. In our implementation, we remove all xn

for which:

fij(xn) ≤ fij(xj)/2

If all points have been removed, return the best-so-far

localized similarity; otherwise, loop back to step 4.

Upon completion of this procedure, the best-so-far local-

ized similarity is guaranteed to lead to an adequate reduc-

tion in loss, based on the derivation in Sec. 4 above.

6. Generalization Experiments

Our boosting method provably reduces the loss well after

the training error is minimized. In this section, we demon-

strate that the continual reduction in loss serves only to im-

prove the decision boundaries and not to overfit the data.

We generated 2-dimensional synthetic datasets in order to

better visualize and get an intuition for what the classifiers

2 “most similar” need not be exact; approximate nearest-
neighbors also works with negligible differences.

Figure 2. A 500-point 2-dimensional synthetic dataset with a

(2/3, 1/3) split of train data (left plot) to test data (right plot).

Background shading corresponds to the hypothesized class using

our framework.

100 101 102 103

Iteration [max = 1000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-20.6]

Train Error [0.0%]
Test Error [0.0%]

10-30

10-20

10-10

T
ra

in
in

g
Lo

ss

40 102

0

0.2

0.4

0.6

T
es

t E
rr

or
 [%

]
Figure 3. A plot of training loss, training error, and test error as

a classifier is trained for 1000 iterations. Note that the test error

does not increase even after the training error drops to zero. The

lower inset is a zoomed-in plot of the train and test error, the upper

inset is a plot of training loss using a log-scaled y-axis; both inset

plots are congruous with the original x-axis.

are doing. The results shown in this chapter are based on

a dataset composed of 500 points belonging to one of three

classes in a spiral formation, with a (2/3, 1/3) train/test

split. Fig. 2 shows the hypothesized class using a classifier

trained for 1000 iterations.

Our classifier achieves perfect training (left) and test

classification (right), producing a visually simple well-

generalizing contour around the points. Training curves

are given in Fig. 3, tracking the loss and classification er-

rors per training iteration. Note that the test error does not

increase even after the training error drops to zero.

The following experiments explore the functionality of our

framework (i.e. REBEL using localized similarities) in two

scenarios that commonly arise in practice: (1) varying spar-

sity of training data, and, (2) varying amounts of mislabeled

training data.

A Simple Multi-class Boosting Framework

(a4) Train Data (b4) Test Data (c4) Training on 4/5 of the data (267 points)

100 101 102 103

Iteration [max = 2000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-44.2]

Train Error [0.0%]
Test Error [1.2%]

10-50T
ra

in
in

g
Lo

ss

50 102 103

0

1

2

3

T
es

t E
rr

or
 [%

]

(a3) Train Data (b3) Test Data (c3) Training on 3/5 of the data (200 points)

100 101 102 103

Iteration [max = 1000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-22.5]

Train Error [0.0%]
Test Error [1.8%]

10-30

10-20

10-10

T
ra

in
in

g
Lo

ss

40 102

0

1

2

3

4

T
es

t E
rr

or
 [%

]

(a2) Train Data (b2) Test Data (c2) Training on 2/5 of the data (133 points)

100 101 102 103

Iteration [max = 5000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-116.5]

Train Error [0.0%]
Test Error [2.0%]

10-150

10-100

10-50

T
ra

in
in

g
Lo

ss

30 102 103

0

5

10

T
es

t E
rr

or
 [%

]

(a1) Train Data (b1) Test Data (c1) Training on 1/5 of the data (67 points)

100 101 102 103

Iteration [max = 2000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-58.9]

Train Error [0.0%]
Test Error [14.0%]

10-60

10-40

10-20

T
ra

in
in

g
Lo

ss

50 102 103

0

5

10

15

20

T
es

t E
rr

or
 [%

]

Figure 4. Classification boundaries (a,b), and training curves (c)

when a classifier is trained on varying amounts of data. Stars are

correctly-classified, circles are misclassified. In all cases, the test

error is fairly stable once reaching its minimum.

6.1. Sparse Training Data

In this section of experiments, classifiers were trained using

varying amounts of data, from 4/5 to 1/5 of the total train-

ing set. Fig. 4 shows the classification boundaries learned

by the classifier (ai,bi), and the training curves (ci). In all

cases, the boundaries seem to aptly fit (and not overfit) the

training data (i.e. being satisfied with isolated patches with-

out overzealously trying to connect points of the same class

together). This is more rigorously observed from the train-

ing curves; the test error does not increase after reaching its

minimum (for hundreds of iterations).

6.2. Mislabeled Training Data

In this section of experiments, classifiers were trained with

varying fractions of mislabeled data; from 1% to 30% of

the training set. Fig. 5 shows the classification boundaries

(ai,bi) and the training curves (ci). All classifiers seem to

degenerate gracefully, isolating rogue points and otherwise

maintaining smooth boundaries. Even the classifier trained

on 30% mislabeled data (which we would consider to be

unreasonably noisy) is able to maintain smooth boundaries.

(a1) Train Data (b1) Test Data (c1) ∼1% mislabeled data (4 points)

100 101 102 103

Iteration [max = 5000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-96.8]

Train Error [0.0%]
Test Error [0.0%]

10-100

10-50

T
ra

in
in

g
Lo

ss

40 102 103

0

1

2

3

4

T
es

t E
rr

or
 [%

]

(a2) Train Data (b2) Test Data (c2) ∼3% mislabeled data (10 points)

100 101 102 103

Iteration [max = 1000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-15.0]

Train Error [0.0%]
Test Error [3.6%]

10-20

10-10

T
ra

in
in

g
Lo

ss

40 102

0

5

10

15

T
es

t E
rr

or
 [%

]

(a3) Train Data (b3) Test Data (c3) ∼10% mislabeled data (32 points)

100 101 102 103

Iteration [max = 2000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-22.7]

Train Error [0.0%]
Test Error [5.4%]

10-30

10-20

10-10

T
ra

in
in

g
Lo

ss

70 102 103

0

2

4

6

8

T
es

t E
rr

or
 [%

]

(a4) Train Data (b4) Test Data (c4) ∼30% mislabeled data (97 points)

100 101 102 103 104

Iteration [max = 10000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-67.6]

Train Error [0.0%]
Test Error [31.1%]

10-100

10-50

T
ra

in
in

g
Lo

ss

200 103

0

10

20

30

40

T
es

t E
rr

or
 [%

]

Figure 5. Classification boundaries (a,b), and training curves (c)

when a classifier is trained on varying fractions of mislabeled data.

In all cases, the test error is fairly stable once reaching its mini-

mum. Even with 30% mislabeled data, the classification bound-

aries are reasonable given the training labels.

In all cases, the training curves still show that the test error

is fairly stable once reaching its minimum value. Moreover,

test errors approximately equal the fraction of mislabeled

data, further validating the generalization of our method.

6.3. Real Data

Although the above observations are promising, they could

result from the fact that the synthetic datasets are 2-

dimensional. In order to rule out this possibility, we

performed similar experiments on several UCI datasets

(Bache & Lichman, 2013) of varying input dimensionali-

ties (from 9 to 617). From the training curves in Fig. 6,

we observe that once the test errors saturate, they no longer

increase, even after hundreds of iterations.

In Fig. 7, we plot the training losses on a log-scaled y-axis.

The linear trend signifies an exponential decrease in loss

per iteration. Our proven bound predicts a much slower (ex-

ponential) rate than the actual trend observed during train-

ing. Note that within the initial ∼10% of the iterations, the

loss drops at an even faster rate, after which it settles down

A Simple Multi-class Boosting Framework

GLASS (9-dimensional) PENDIGIT (16-dimensional)

100 101 102 103 104

Iteration [max = 10000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

, T
ra

in
in

g
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-222.7]

Train Error [0.0%]
Test Error [27.0%]

10-300

10-200

10-100

T
ra

in
in

g
Lo

ss

200 103

0

25

30

T
es

t E
rr

or
 [%

]

~~~

100 101 102 103

Iteration [max = 2000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
E

rr
or

, T
ra

in
in

g 
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-10.2]

Train Error [0.0%]
Test Error  [1.8%]

10-15

10-10

10-5

T
ra

in
in

g 
Lo

ss
 

70 102 103

0

2

4

6

8

T
es

t E
rr

or
 [%

]

OPTDIGIT (64-dimensional) ISOLET (617-dimensional)

100 101 102 103 104

Iteration [max = 10000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
E

rr
or

, T
ra

in
in

g 
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-34.7]

Train Error [0.0%]
Test Error  [2.3%]

10-40

10-20

T
ra

in
in

g 
Lo

ss
 

100 103

0

2

4

6

T
es

t E
rr

or
 [%

]

100 101 102 103 104

Iteration [max = 10000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
E

rr
or

, T
ra

in
in

g 
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-10.6]

Train Error [0.0%]
Test Error  [3.5%]

10-15

10-10

10-5

T
ra

in
in

g 
Lo

ss
 

200 103

0

2

4

6

8

T
es

t E
rr

or
 [%

]

Figure 6. Training curves for classifiers trained on UCI datasets

with a range of dimensionalities. In all cases, the test error is

stable once it reaches its minimum.

to a seemingly-constant rate of exponential decay. We have

not yet determined the characteristics (i.e. the theoretically

justified rates) of these observed trends, and relegate this

endeavor to future work.

7. Comparison with Other Methods

In Sec. 5 we proved that our framework adheres to the-

oretical guarantees, and in Sec. 6 above, we showed

that it has promising empirical properties. In this sec-

tion, we compete against several state-of-the-art boost-

ing baselines. Specifically, we compared 1-vs-All Ad-

aBoost and AdaBoost.MH (Schapire & Singer, 1999),

AdaBoost.ECC (Dietterich & Bakiri, 1995), Struct-Boost

(Shen et al., 2014), CW-Boost (Shen & Hao, 2011), AOSO-

LogitBoost (Sun et al., 2011), REBEL (Appel et al., 2016)

using shallow decision trees, REBEL using only 1-point

(isolating) similarities, and our full framework, REBEL us-

ing 2-point localized similarities.

Based on the same experimental setup as in (Shen et al.,

2014; Appel et al., 2016), competing methods are trained

to a maximum of 200 decision stumps. For each dataset,

five random splits are generated, with 50% of the samples

for training, 25% for validation (i.e. for setting hyperparam-

eters where needed), and the remaining 25% for testing.

REBEL using localized similarities is the most accurate

method on five of the six datasets tested. In the Vowel

dataset, it achieves almost half of the error as the next best

method. Note that although our framework uses REBEL as

its boosting method, the localized similarities add an extra

edge, beating REBEL with decision trees in all runs.

Further, when limited to only using 1-point (i.e. isolating)

localized similarities, the performance is extremely poor,

validating the need for 2-point localized similarities as pre-

scribed in Sec. 5.2. Overall, these results demonstrate the

GLASS PENDIGIT
(d=9,K=6,N=53) (d=16,K=10, N=7494)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration Number

10-250

10-200

10-150

10-100

10-50

100

1050

T
ra

in
in

g 
Lo

ss

Proven bound
Loss
Exponential Fit

0 200 400 600 800 1000
10-40

10-20

100

1020
Initial Iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration Number

10-10

10-8

10-6

10-4

10-2

100

102

T
ra

in
in

g 
Lo

ss

Proven bound
Loss
Exponential Fit

0 50 100 150 200
10-2

10-1

100

101
Initial Iterations

OPTDIGIT ISOLET
(d=64,K=10, N=3823) (d=617,K=26, N=6238)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration Number

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

105

T
ra

in
in

g 
Lo

ss

Proven bound
Loss
Exponential Fit

0 200 400 600 800 1000
10-5

100

105
Initial Iterations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration Number

10-10

10-8

10-6

10-4

10-2

100

102

T
ra

in
in

g 
Lo

ss

Proven bound
Loss
Exponential Fit

0 200 400 600 800 1000
10-2

100

102
Initial Iterations

Figure 7. Training losses for classifiers trained on UCI datasets.

The linear trend (visualized using a log-scaled y-axis) signifies

an exponential decrease in loss, albeit at a much faster rate than

established by our proven bound.

GLASS VOWEL LANDSAT MNIST PENDIGITS SEGMENT
0

10

20

30

40

P
e
rc

e
n
t 

E
rr

o
r

31
.7

32
.3

32
.7

35
.8

35
.4

34
.2

30
.4

35
.9

27
.4

*

21
.1

18
.8

20
.6

17
.5

22
.4

20
.6

17
.4

62
.3

9.
5*

15
.1

12
.7

12
.8

12
.1

11
.1

15
.4

10
.7

52
.3

10
.6

*

11
.0

13
.4

15
.8

12
.5

9.
3*

12
.5

10
.5

87
.1

9.
3*

7.
1

7.
4

8.
4

6.
9

2.
5

12
.8

3.
2

32
.8 1.
2*

7.
7

3.
7

2.
9

2.
9

2.
5*

5.
6

4.
6

69
.7

3.
3

[0 0 1] Ada 1vsAll
[0 0 0] Ada.MH
[0 1 0] Ada.ECC
[0 2 0] Struct-Boost
[2 1 1] CW-Boost
[0 0 0] A0S0-Logit
[0 3 2] RBL-Stump
[0 0 0] RBL-Iso.Sim
[5 0 0] RBL-Loc.Sim

Figure 8. Test errors of various state-of-the-art and baseline

classification methods on MNIST and several UCI datasets.

REBEL using localized similarities (shown in yellow) is the best-

performing method on all but one of the datasets shown. When

constrained to use only 1-point (isolating) similarities (shown in

red), the resulting classifier is completely inadequate.

ability of our framework to produce easily interpretable

classifiers that are also empirically proficient.

7.1. Comparison with Neural Networks and SVMs

Complex neural networks are able to achieve remarkable

performance on large datasets, but they require an amount

of training data proportional to their complexity. In the

regime of small to medium amounts of data (within which

UCI and MNIST datasets belong, i.e. 10 < N < 106 train-

ing samples), such networks cannot be too complex. Ac-

cordingly, in Fig. 9, we compare our method against fully-

connected neural networks.



A Simple Multi-class Boosting Framework

53 52
8

38
23
44

35
55

94
62

38
74

94

16
00

0

43
50

0

60
00

0

Number of Training Samples (N)

0.03

0.1

0.3

1

3

10

30

100

A
v
e

ra
g

e
 T

e
s
t 

E
rr

o
r 

[%
]

G
G

G

S

S

S

VV

V

P

PP

L

L

L
A
AA

O
O

O

I

I

I

M

M

M

C

C

C

[2/10] NN 

[2/10] SVM 

[8/10] Ours

GLASS

SHUTTLE

VOWEL

PENDIGIT

LETTER

LANDSAT

OPTDIGIT

ISOLET

MNIST

CUB200

G

S

V

P

L

A

O

I

M

C

Method

Dataset

Figure 9. Comparison of our method versus Neural Networks and

Support Vector Machines on ten datasets of varying sizes and dif-

ficulties. Our method is the most accurate on almost all datasets.

Four neural networks were implemented, each having one

of the following architectures: [d−4d−K], [d−4K−K],
[d−2d−d−K], [d−4K−2K−K], where d is the number

of input dimensions and K is the number of output classes.

Only the one with the best test error is shown in the plot. A

multi-class SVM (Chang & Lin, 2011) was validated using

a 5× 6 parameter sweep for C and γ. Our method was run

until the training loss fell below 1/N . Overall, REBEL us-

ing localized similarities achieves the best results on eight

of the ten datasets, decisively marking it as the method of

choice for this range of data.

8. Discussion

In Sec. 6, we observed that our classifiers tend to smoothen

the decision boundaries in the iterations beyond zero train-

ing error. In Fig. 10, we see that this is not the case with

the typically-used axis-aligned decision stumps. Why does

this happen with our framework?

Figure 10. The contrasted difference between overtraining using

(a) classical decision stumps and (b) localized similarities. (a)

leads to massive overfitting of the training data, whereas (b) leads

to smoothening of the decision boundaries.

Firstly, we note that the largest-margin boundary between

two points is the hyperplane that bisects them. Every two-

point localized similarity acts as such a bisector. There-

fore, it is not surprising that with only a pool of localized

similarities, a classifier should have what it needs to place

good boundaries. Further, not all pairs need to be separated

(since many neighboring points belong to the same class);

hence, only a small subset of the ∼ N2 possible learners

will ever need to be selected.

Secondly, we note that if some point (either an outlier or an

unfortunately-placed point) continues to increase in weight

until it can no-longer be ignored, it can simply be isolated

and individually dealt with using a one-point localized sim-

ilarity, there is no need to combine it with other “innocent-

bystander” points. This phenomenon is observed in the mis-

labeled training experiments in Sec. 6.2.

Together, the two types of localized similarities comple-

ment each other. With the guarantee that every step reduces

the loss, each iteration focuses on either further smoothen-

ing out an existing boundary, or reducing the weight of a

single unfit point.

9. Conclusions

We have presented a novel framework for multi-class boost-

ing that makes use of a simple family of weak learners

called localized similarities. Each of these learners has a

clearly understandable functionality; a test of similarity be-

tween a query point and some pre-defined samples.

We have proven that the framework adheres to theoretical

guarantees: the training loss is minimized at an exponen-

tial rate, and since the loss upper-bounds the training error

(which can only assume discrete values), our framework is

therefore able to achieve maximal accuracy on any dataset.

We further explored some of the empirical properties of

our framework, noting that the combination of localized

similarities and guaranteed loss reduction tend to lead to a

non-overfitting regime, in which the classifier focuses on

smoothing-out its decision boundaries. Finally, we com-

pare our method against several state-of-the-art methods,

outperforming all of the methods in most of the datasets.

Altogether, we believe that we have achieved our goal of

presenting a simple multi-class boosting framework with

theoretical guarantees and empirical proficiency.

Acknowledgements

The authors would like to thank anonymous reviewers for

their feedback and Google Inc. and the Office of Naval

Research MURI N00014-10-1-0933 for funding this work.



A Simple Multi-class Boosting Framework

References

Allwein, E. L., Schapire, R. E., and Singer, Y. Reducing

multiclass to binary: a unifying approach for margin clas-

sifiers. JMLR, 2001.

Appel, R., Burgos-Artizzu, X. P., and Perona, P. Improved

multi-class cost-sensitive boosting via estimation of the

minimum-risk class. arXiv, (1607.03547), 2016.

Bache, K. and Lichman, M. UCI machine

learning repository (uc irvine), 2013. URL

http://archive.ics.uci.edu/ml.

Chang, C. and Lin, C. LIBSVM: A library for support vec-

tor machines. Transactions on Intelligent Systems and

Technology, 2011.

Dietterich, T. G. and Bakiri, G. Solving multiclass learn-

ing problems via error-correcting output codes. arXiv,

(9501101), 1995.

Freund, Y. Boosting a weak learning algorithm by majority.

Information and Computation, 1995.

Freund, Y. and Schapire, R. E. Experiments with a new

boosting algorithm. In Machine Learning International

Workshop, 1996.

LeCun, Y., Bengio, Y., and Hinton, G. E. Deep learning.

Nature Research, 2015.

Li, L. Multiclass boosting with repartitioning. In ICML,

2006.

Mukherjee, I. and Schapire, R. E. A theory of multiclass

boosting. In NIPS, 2010.

Saberian, M. and Vasconcelos, N. Multiclass boosting:

Theory and algorithms. In NIPS, 2011.

Schapire, R. E. The strength of weak learnability. Machine

Learning, 1990.

Schapire, R. E. and Singer, Y. Improved boosting algo-

rithms using confidence-rated predictions. In Conference

on Computational Learning Theory, 1999.

Shen, C. and Hao, Z. A direct formulation for totally-

corrective multi-class boosting. In CVPR, 2011.

Shen, G., Lin, G., and van den Hengel, A. Structboost:

Boosting methods for predicting structured output vari-

ables. PAMI, 2014.

Sun, P., Reid, M. D., and Zhou, J. Aoso-logitboost:

Adaptive one-vs-one logitboost for multi-class problem.

arXiv, (1110.3907), 2011.

Sun, Y., Todorovic, S., Li, J., and Wu, D. Unifying

the error-correcting and output-code adaboost within the

margin framework. In ICML, 2005.

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. LSUN:

construction of a large-scale image dataset using deep

learning with humans in the loop. arXiv, (1506.03365),

2015.

Zhu, J., Zou, H., Rosset, S., and Hastie, T. Multi-class

adaboost. Statistics and its Interface, 2009.

http://archive.ics.uci.edu/ml

