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Abstract

A student’s ability to learn a new concept can be greatly improved by providing
them with clear and easy to understand explanations from a knowledgeable teacher.
However, many existing approaches for machine teaching only give a limited
amount of feedback to the student. For example, in the case of learning visual
categories, this feedback could be the class label of the object present in the image.
Instead, we propose a teaching framework that includes both instance-level labels
as well as explanations in the form of feature-level feedback to the human learners.
For image categorization, our feature-level feedback consists of a highlighted part
or region in an image that explains the class label. We perform experiments on
real human participants and show that learners that are taught with feature-level
feedback perform better at test time compared to existing methods.

1 Introduction

The goal of computer-assisted teaching of humans is to teach a new set of concepts to a learner
as efficiently as possible. Efficiency is usually evaluated by the number of examples used during
teaching. In the context of teaching visual categories, this is typically posed as selecting the most
informative subset of images to show from a much larger set. However, one of the major limitations
of existing approaches, e.g. [19, 10], is that they only give very limited feedback to students in
the form of instance-level labels. In Fig. 1 (a) we see an example of this instance-level, i.e. class
label, feedback. As opposed to only telling the student the correct class label, a knowledgeable
human teacher would instead show them the specific parts and attributes that are informative for that
particular class i.e. Fig. 1 (b).

We introduce an interpretable teaching algorithm that jointly selects informative images and features.
This additional feature-level feedback provides more information than traditional instance-level only
feedback, enabling the student to learn the task at hand more effectively. We validate the performance
of our approach on two challenging image datasets with real human participants, and show superior
results compared to existing methods.

2 Related Work

To date, a variety of different approaches have been explored for modeling the teaching of students
such as assuming perfect learners [7, 23, 12], heuristic based approaches [2], Bayesian models [4, 6],
recurrent neural networks [14], and reinforcement learning based approaches [16, 1, 21].

In the context of teaching binary visual classification tasks, Singla et al. [19] model the student
as stochastically switching between a set of different hypotheses during learning. Their approach
attempts to select the set of teaching examples offline that best guides the student towards the ground
truth classification function. Johns et al. [10] propose an interactive approach, where the the choice of
future images to show is based on the individual’s past performance. However, the major limitation
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Figure 1: (a) The majority of existing machine teaching algorithms that teach visual categorization
tasks only give feedback at the image-level. (b) It is much more informative to display the discrimina-
tive regions that help determine the species. Here, by highlighting the important features we can see
that the MacGillivray’s Warbler has a broken eye ring while the Connecticut Warbler’s is complete.

of these existing methods is that the feedback they provide to the student is not fully informative. In
both cases, a student is shown a sequence of images and asked to estimate the object category they
believe to be present in each image. They only receive the ground truth class label as feedback, and
are not informed of the important features and parts in the image that indicate the correct label.

Clear and interpretable instructional material can improve a student’s ability to learn a new concept
e.g. [8, 18]. For example, when a human teacher is unavailable, the most common way novices
attempt to learn and perform species identification is by consulting expertly curated field guides.
These field guides often come in the form of books or apps and contain descriptive text and example
images highlighting important features for classifying different species e.g. [13]. Attempts have
been made to automate the creation of these guides using highlighted part annotations [3] and image
specific text descriptions [9]. [5] also showed that it is possible to collect distinctive image regions
through gamification. An alternative approach that requires less additional annotations is to learn
human interpretable models from the raw data e.g. [17, 11]. In the context of computer vision, there
is some evidence to suggest that deep models commonly used in large scale image classification tasks
learn features that are interpretable to humans [22].

Recently, Poulis and Dasgupta [15] outlined an method for incorporating additional supervised data
from users which they call ‘feature feedback’. In addition to class level labels, their annotators
provide information about the values of specific feature dimensions. Instead, our model selects the
most informative image at each teaching iteration and presents it to the student. It then gives feedback
to the learner regarding the importance of individual features and models how they incorporate this
new information when updating their belief. In this work, we assume that an interpretable feature
space is provided and leave the learning of these features for future work.

3 Teaching with Feature Feedback

Suppose we are given a set of m images X = {x1, . . . , xm

}, from which we can choose a subset
(i.e., the teaching set) to teach the learner. Let F = {f1, . . . , fn} be the collection of all possible
interpretable features for the images in the teaching set. For example, for the bird classification task,
each f

j

2 F could be an (attribute, value) pair that is visually meaningful, such as ‘blue wing’, ‘flat
bill’, etc. In other words, each image x

i

2 X is a realization of F . The label set Y = {y1, . . . yc}
denotes all possible label classes. Each x

i

2 X is associated with a class label y
i

2 Y , along with a
set of up to n interpretable features e

i

= {f1, . . . fn} ✓ F that explain why x

i

is a member of class
y

i

. One important thing to note is that for f
i

2 F to be in e

i

, f
i

must be realized in x

i

. For discussion
simplicity, we focus on binary classification tasks1 where y 2 {�1, 1}.

Let H be a finite set of hypotheses. Each hypothesis h : X 7! Rn+1 represents a possible scoring
rule of the learner, which maps any given image to a (n + 1)-dimensional vector, where the first
n entries (h

(1)
(x), . . . , h

(n)
(x)) represent its evaluation of the importance of the n interpretable

features, and the (n+ 1)

th entry h

(n+1)
(x) associates its class label. Intuitively, the importance of

features can be viewed as an intermediate label of the image. For a given image x

i

, hypothesis h

1Note that our model can be readily extended to the c-class classification tasks as long as we have access to
the prior over the learners’ hypotheses.
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will predict the positive label if sign(h(n+1)
(x)) > 0. Furthermore, we assume that there exists an

optimal hypothesis h⇤ 2 H that correctly predicts both the labels and the feature importance of all
x 2 X .

3.1 Image Only Learner Model

In our setting, we assume that the teacher has access to image set X , label set Y , prior hypothesis
space H0. During the teaching session, the teacher selectively shows a sequence of images from the
teaching set to the learner. In particular, the teacher will select the most informative images so that
the learner doesn’t need to review all possible images to learn a particular concept. For each image
shown, the learner will guess or apply their knowledge learned to identify its true class label. After
the learner provides their answer, the teacher will reveal the ground truth to the learner. For this work,
we focus on the non-interactive setting, where the teacher doesn’t take the learner’s response into
account at the end of each teaching iteration.

We adopt the stochastic STRICT model of Singla et al. [19] as a basic model to characterize how
learners adapt to the images shown by the teacher. The model was originally proposed for teaching
with label only feedback. It assumes that learners carry out a random walk in the hypothesis space H.
At the beginning of teaching, the learner randomly pick a hypothesis h 2 H according to the prior
distribution P0(h). After receiving a new image, the learner will stick to the current hypothesis if the
ground truth label is consistent with her own prediction; otherwise she randomly switches to a new
h 2 H according to P

t

(h) which is constructed in a way that reduce the probability of hypotheses
that disagree with the true labels in the images that are taught so far

P

t

(h

j

) =

1

Z

t

P0(hj

)

tY

s=1
ys 6=sign(h(n+1)

j (xs))

P (y

s

|h
j

, x

s

) (1)

where Z

t

is a normalization factor. As in [19], we model how consistent the prediction of hypothesis
h

j

is with example (x

s

, y

s

) as

P (y

s

|h
j

, x

s

) =

1

1 + exp(�↵h(n+1)
j

(x

s

)y

s

)

, (2)

where ↵ > 0 is a parameter that controls how degree of noise tolerance of the model. As ↵!1,
hypotheses that are inconsistent with the class label are immediately discarded.

3.2 Feature Feedback Learner Model

In the above setting, the teacher limits its teaching power in that it does not fully utilize all available
resources. By having access to the prior hypothesis space H0, the teacher also knows the ‘importance’
each learner puts on each of the features. In other words, the teacher not only knows what each
learner will predict for each image, it also knows why they make that descision. Since h

⇤ is also in
P0(h), the teacher knows what the optimal importance should be. In our feature feedback setting
we make use of this additional knowledge. During each round of teaching, after the learner reveals
their answer the teacher shows not only the ground truth class label but also the explanatory features
indicating why the image has that particular ground truth label.

Here, we also assume that learners carry out a random walk in the hypothesis space. However, in
addition to label feedback, the learners also incorporate the feature feedback by jumping to another
hypothesis when observing any inconsistency according to probability distribution P

t

, which is
constructed such that the inconsistent hypotheses will have lower probability at the end.

In order to capture how the learners would adapt to feature feedback, we introduce an additional
discount factor

p(e

sk

| h
j

, x

s

) = exp(��|e
sk

� h

(k)
j

(x

s

)| ⇤ w
k

), (3)

where e

sk

is the ‘true importance score’ for the k

th feature selected for image x

s

revealed by the
teacher, and h

(k)
j

(x

s

) is the importance score h

j

assigns to feature k for image x

s

. The parameter
w

k

defines the global importance known by teacher. It is initialized such that predictive features
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will have higher weights than noisy features. This is achieved by first initializing the weights to be
uniformly distributed and then adding a one to the predictive dimension and finally renormalizing.
Similar to the noise parameter ↵ from above, � captures the learner’s ability to adapt to the feature
feedback (in other words, � represents the learner’s noise from the teacher’s perspective). At the limit
� !1 indicates that inconsistent hypotheses are completely removed from the hypothesis space.
The posterior P after revealing t images becomes

P

t

(h

j

) =

1

Z

t

P0(hj

)

tY

s=1
ys 6=sign(h(n+1)

j (xs))

P (y

s

|h
j

, x

s

)

Y

esk2Es

P (e

sk

|h
j

, x

s

), (4)

where Z

t

is again a normalization constant, which sums over the hypothesis space and E

s

is the set
of predictive features selected for images {x

s

}
s=1:t.

3.3 Teaching Objective

Given our model of the learner, our goal is to select a sequence of ‘explanatory’ teaching images A
(including explanations E

A

), such that after teaching, the learners are directed towards a distribution
over the hypotheses that result in as few mistakes as possible. More concretely, we define the error of
a single hypothesis as

err(h
j

) =

|x 2 X : sign(h(n+1)
j

(x)) 6= y|
|X | .

This is the fraction of images that the hypothesis will incorrectly predict when compared to the
ground truth labels. The expected error for the learner given teaching set A is then defined as

E[err(h)|A] =

X

hj2H
P (h

j

| A)err(h
j

),

and the learner’s posterior after seeing the teaching set A is

P (h

j

|A) =

1

Z

A

P0(hj

)

Y

x2A

y 6=sign(h(n+1)
j (x))

P (y | h
j

, x)

Y

ek2EA

P (e

k

| h
j

, x).

Here, E
A

is the sets of important features selected for examples x 2 A. Our goal, is to find a set (of
teaching images) A⇤ of minimal size, such that upon observing the labels and explanations for the
images in |A|, the learner would achieve an expected error rate of at most ✏. Formally, we want

A

⇤
= argmin

A2X

|A|, s.t. E[err(h) | A]  ✏, (5)

where ✏ is a parameter that defines the allowed tolerance on learner error.

3.4 Optimization

Similar to the STRICT policy [19], we propose to adopt a greedy strategy for accommodating feature
feedback. Let us define

R(A) = E[err(h)]� E[err(h) | A] =

X

hj2H
(P0(hj

)� P (h

j

| S))err(h
j

),

as the reduction in expected error after observing the teaching images in A. Therefore, solving Eq. (5)
is equivalent to finding the smallest set A achieving error reduction E[err(h)]� ✏. As shown in [19],
the problem of optimizing the original objective is NP-hard. We therefore replace the R(A) with the
following surrogate function

Q(A) =

X

hj2H
(V (h)� V (h | A))err(h

j

), (6)
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making use of the unnormalized posterior of the learner

V (h

j

| A) = P0(hj

)

Y

x2A

y 6=sign(h(n+1)
j (x))

P (y | h
j

, x)

Y

ek2Ea

P (e

k

| h
j

, x). (7)

In our model, we assume that the importance scores of different features across different images
are conditionally independent given the underlying hypothesis h (and hence the joint distribution of
the feature feedback factorizes). One immediate observation is that the surrogate objective Q(A) is
submodular. Hence, greedily optimizing the objective is guaranteed to output a near-optimal sequence
of images for the problem of optimizing Q(A) (Eq. (6)). Let E =

P
h

P (h)err(h) be the expected
error probability with respect to the prior distribution. It is easy to show that after receiving the
teaching images in A, the learner’s expected error is at most a constant factor of E �Q(A) :

E[err(h) | A] 
X

h

P (h | A)

P0(h
⇤ | A)

err(h) =
X

h

V (h | A)

P0(h
⇤
)

err(h) =
E �Q(A)

P0(h
⇤
)

.

Note, that here h

⇤ represents the optimal hypothesis that agrees with the teacher’s feedback on
both labels and features for all images in the teaching set, as opposed to the one that achieves 0
error rate on the labels only. Thus, greedily selecting teaching images according to Q(A) until
Q(A) � E � P0(h

⇤
)✏ is sufficient to provide a solution that achieves expected error probability

E[err | A]  ✏. Our final selection approach is outlined in Algorithm 1. It follows from [19] that
the performance of our greedy strategy (measured by the number of examples taught in the worst
case) achieving error ✏ is within a logarithmic factor of the worst-case cost of the optimal algorithm
OPT achieving error at least P0(h

⇤)✏
2 . More specifically, the cost of our algorithm is bounded by

OPT(P0(h
⇤)✏

2 ) · log
⇣

1
P0(h⇤)✏

⌘
.

Algorithm 1: Teaching with Feature Feedback
1 Input: images X {(x

i

, y

i

, e

i

)}
i=1:m , hyps H, prior P0, tolerance ✏.

2 Output: Selected images to teach A.
3 A ;;
4 while Q(A) < E[err(h)]� P0(h

⇤
)✏ do

5 i

⇤
, k

⇤  argmax

i,k

Q(A [ {x
i

, e

ik

});
6 A A [ {x

i

⇤
, e

i

⇤
k

⇤}

4 Experiments

We perform two sets of experiments using 1) simulated learners and 2) real human participants from
Amazon’s Mechanical Turk to validate the performance of our algorithm. Performance is measured
using both learner classification error on the test set and the amount of time it takes the learners
to complete the test set. Here, time acts as a proxy for measuring how confident the learner is in
answering the test questions after completing the teaching phase, where faster is better. We compare
our method against three baselines: 1) random image - random selection of each teaching image
with image-level feedback i.e. only giving the class label, 2) random feature - random selection of
image and feedback for a randomly selected interpretable feature i.e. class label with random feature
highlighted, and 3) STRICT- the submodular image selection approach of [19] with image-level
feedback.

4.1 Simulated Learners

For our first experiment we use the Breast Cancer dataset of [20] from the UCI Machine Learning
repository. It contains a total of 569 examples from two classes with 30 positive real valued feature
dimensions. We generate 200 linear hypotheses by randomly sampling pairs of points from the
dataset and adding the hyperplane that bisects them. This ensures that the hypotheses span the space
of the dataset. We do not use the ground truth class labels and instead pick a random hypothesis from
the hypotheses set as the optimal hypothesis and use its predictions as the ground truth labels. We

5



random_features
random_images

strict
our_approach

(a) Breast Cancer Dataset
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random_images

(b) Hard Alien Objects Dataset

Figure 2: Test error for simulated learners. Our method performs best overall.

average ten trials with different train and test splits, different random prior hypothesis spaces, and
different optimal hypotheses. For all experiments in the paper we use the same noise parameters with
↵ = 1 and � = 1.

4.1.1 Simulation Experiment Results

In Fig. 2 (a), we see that our approach outperforms the baselines converging to a lower test error
faster. This implies that our approach selects more informative images and features to show to the
learner.

4.2 Human Learners

For our experiments featuring real human participants, we generated two datasets of hypothetical
alien objects coming from either ‘Jupiter’ or ‘Mars’. This simulated data gives us full control over
the generating distribution and hypothesis space. Both datasets contain a total of 128 images evenly
distributed between the two classes. One of the datasets is more challenging than the other as it
requires a more complicated decision rule to separate the data. Example images from both datasets
can be seen in Figs. 3 and 4.

For both datasets, each of the images has a fixed number of parts, where each part has up to two
attributes such as color, size, and shape that vary from image to image. Features are represented in
binary format, indicating the presence or absence of a particular dimension. Each dimension of our
ten dimensional binary feature vector corresponds to a particular attribute of a part e.g. ‘red head’,
’square neck’, etc. By altering the set of features that form the ground truth classification rule for a
given class we can control the difficulty level of the learning task for the student. The easy dataset
has six different visual parts in total and the hard dataset has eight. The predictive features for easy
dataset also occupy larger area in the image and thus are more visible to learners. The ground truth
decision rule for the hard datatset is more challenging to learn.

The hypothesis space H consists of a set of linear functions h(x) = w

T

x with w 2 {0, 1}d, that
place a weight of {0, 1} on any given feature. The interpretation of w

k

= 0 is that learners ignore
the k

th feature when making their classification decision. Similarly, w
k

= 1 implies that learners
perceive the k

th feature as a indicator that the example belongs to the positive class. We generate
200 prior hypotheses by randomly sampling from all hypotheses that have non zero weights on at
most four features. The optimal hypothesis is determined by design and is described in the captions
in Figs. 3 and 4 where w

⇤
= 1 for predictive features associated with the positive class and w

⇤
= 0

everywhere else. We inject the optimal hypothesis into the prior hypothesis space to ensure that the
learner can reach optimal performance i.e. the task is realizable.

Results with simulated learners for the hard dataset can be seen in Fig. 2 (b).

4.2.1 Experimental Setup

Experiments were performed on Amazon’s Mechanical Turk. Participants were randomly assigned
one of the four different teaching strategies, where each strategy received on the order of 30 par-
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ticipants. Participants were shown 10 training images for the ‘easy’ task and 15 for the ‘hard’ task
during teaching and 12 images at test time for both. In order to motivate the participants, we paid a
bonus to the top 10% of participants based on their performance at test set.

Experiments were conducted using the same protocol as [10]. Learners were shown a sequence of
images during the ‘teaching’ phase and after each image asked to estimate the correct class label for
the image they just saw. After estimating the class label for each image, they were given feedback in
the form of the ground truth class label. For the teaching strategies that utilize feature feedback they
were also shown a single interpretable feature, displayed as an arrow pointing to a single feature per
image. Teaching was then followed by a ‘testing’ phase, similar to teaching, except no feedback was
provided to the learners. We used the same randomly selected testing images when comparing all
methods, where images from the test set were not contained in the teaching set.

(a) Mars Easy 1 (b) Mars Easy 2 (c) Jupiter Easy 1 (d) Jupiter Easy 2

Figure 3: Sample images from the ‘easy’ alien objects dataset. Here, arrows indicate the predictive
features. The ground truth decision rule is that Mars should have a yellow color, pink circle, and
large size in the three locations highlighted by arrows, from top to bottom. Any other combination of
features means the object is from Jupiter.

(a) Mars Hard 1 (b) Mars Hard 2 (c) Jupiter Hard 1 (d) Jupiter Hard 2

Figure 4: Sample images from the ‘hard’ alien objects dataset. Again, the arrows indicate the
predictive features. The ground truth rule is that Mars must have blue color, grey square shape, and
thick size on the three dimensions highlighted by the arrow, from top to bottom. Not having this
combination of parts and attributes means the objects are from Jupiter.

4.2.2 Human Experiment Results

In Fig. 5 we see the median performance at test time for the four different teaching strategies on both
alien objects datasets. Our approach performs best overall but has higher variance than some of the
other baselines. In Fig. 6 (a) and (b) we can see that this variance is explained by two distinct modes
in the test time performance histograms. Unlike the other baselines which have a peak around 50%
accuracy i.e. close to random guessing from the noisy participants, our method is clearly capable of
teaching some of the learners as there is a greater number of learners that achieve higher performance.
In Fig. 7, we observe that participants also answer questions faster on average at test time. This
implies that learners are more confident with the decision rule learned during teaching phase. Overall,
the result suggests that our method does a better job at selecting teaching examples and providing
feedback as the learners are able to answer the test questions both faster and more accurately.
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(a) Easy alien objects dataset (b) Hard alien objects dataset

Figure 5: Test time accuracy on the the two alien objects datasets for real human participants, where
higher values are better. Workers perform better on average when taught with our approach.

(a) Easy alien objects dataset (b) Hard alien objects dataset

Figure 6: Histograms of learner test time accuracy on the two alien objects datasets.

(a) Easy alien objects dataset (b) Hard alien objects dataset

Figure 7: Average time it takes the participants to complete the testing phase for both datasets. As
expected, it takes the learners more time on average to complete the hard dataset in (b) compared to
the easy one in (a). We see in both cases that our approach results in workers that are able to answer
test questions faster.

5 Conclusion

We presented a method for the teaching of visual categories to human learners with interpretable,
feature-level, feedback. Our experiments show that teaching with interpretable feedback generates
more informative teaching sequences, resulting in faster learning. Our approach assumes that we
have access to an interpretable feature space for teaching. In future, automatically discovering these
informative features from weakly labeled datasets would allow us to significantly reduce the amount
of annotation required to teach new concepts.
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